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Exploiting Channel Memory for Multi-User
Wireless Scheduling without Channel Measurement:

Capacity Regions and Algorithms
Chih-ping Li, Student Member, IEEE and Michael J. Neely, Senior Member, IEEE

Abstract—We study the fundamental network capacity of a
multi-user wireless downlink under two assumptions: (1) Chan-
nels are not explicitly measured and thus instantaneous states are
unknown, (2) Channels are modeled as ON/OFF Markov chains.
This is an important network model to explore because channel
probing may be costly or infeasible in some contexts. In this
case, we can use channel memory with ACK/NACK feedback
from previous transmissions to improve network throughput.
Computing in closed form the capacity region of this network
is difficult because it involves solving a high dimension partially
observed Markov decision problem. Instead, in this paper we
construct an inner and outer bound on the capacity region,
showing that the bound is tight when the number of users is large
and the traffic is symmetric. For the case of heterogeneous traffic
and any number of users, we propose a simple queue-dependent
policy that can stabilize the network with any data rates strictly
within the inner capacity bound. The stability analysis uses a
novel frame-based Lyapunov drift argument. The outer-bound
analysis uses stochastic coupling and state aggregation to bound
the performance of a restless bandit problem using a related
multi-armed bandit system. Our results are useful in cognitive
radio networks, opportunistic scheduling with delayed/uncertain
channel state information, and restless bandit problems.

Index Terms—stochastic network optimization, Markovian
channels, delayed channel state information (CSI), partially
observable Markov decision process (POMDP), cognitive radio,
restless bandit, opportunistic spectrum access, queueing theory,
Lyapunov analysis.

I. INTRODUCTION

Due to the increasing demand of cellular network services,
in the past fifteen years efficient communication over a single-
hop wireless downlink has been extensively studied. In this
paper we study the fundamental network capacity of a time-
slotted wireless downlink under the following assumptions:
(1) Channels are never explicitly probed, and thus their in-
stantaneous states are never known, (2) Channels are modeled
as two-state ON/OFF Markov chains. This network model is
important because, due to the energy and timing overhead,
learning instantaneous channel states by probing may be costly
or infeasible. Even if this is feasible (when channel coherence
time is relatively large), the time consumed by channel probing
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cannot be re-used for data transmission, and transmitting
data without probing may achieve higher throughput [1].1 In
addition, since wireless channels can be adequately modeled
as Markov chains [2], [3], we shall take advantage of channel
memory to improve network throughput.

Specifically, we consider a time-slotted wireless downlink
where a base station serves N users through N (possibly
different) positively correlated Markov ON/OFF channels.
Channels are never probed so that their instantaneous states
are unknown. In every slot, the base station selects at most one
user to which it transmits a packet. We assume every packet
transmission takes exactly one slot. Whether the transmission
succeeds depends on the unknown channel state. At the end
of a slot, an ACK/NACK is fed back from the served user to
the base station. Since channels are ON/OFF, this feedback
reveals the channel state of the served user in the last slot and
provides partial information of future states. Our goal is to
characterize all achievable throughput vectors in this network,
and to design simple throughput-achieving algorithms.

We define the network capacity region Λ as the closure of
the set of all achievable throughput vectors. We can compute
Λ by locating its boundary points. Every boundary point can
be computed by formulating a partially observable Markov
decision process (POMDP) [4], with information states de-
fined as, conditioning on the channel observation history, the
probabilities that channels are ON. This approach, however,
is computationally prohibitive because the information state
space is countably infinite (which we will show later) and
grows exponentially fast with N .

The first contribution of this paper is that we construct
an outer and an inner bound on Λ. The outer bound comes
from analyzing a fictitious channel model in which every
scheduling policy yields higher throughput than it does in the
real network. The inner bound is the achievable rate region of
a special class of randomized round robin policies (introduced
in Section IV-A). These policies are simple and take advantage
of channel memory. In the case of symmetric channels (that

1One quick example is to consider a time-slotted channel with state
space {B,G}. Suppose channel states are i.i.d. over slots with stationary
probabilities Pr [B] = 0.2 and Pr [G] = 0.8. At state B and G, at most
1 and 2 packets can be successfully delivered in a slot, respectively. Packet
transmissions beyond the capacity will all fail and need retransmissions.
Channel probing can be done on each slot, which consumes 0.2 fraction
of a slot. Then the policy that always probes the channel yields throughput
0.8(2 · 0.8 + 1 · 0.2) = 1.44, while the policy that never probes the
channel and always sends packets at rate 2 packets/slot yields throughput
2 · 0.8 = 1.6 > 1.44.
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is, channels are i.i.d.) and when the network serves a large
number of users, we show that as data rates are more balanced,
or in a geometric sense as the direction of the data rate vector
in the Euclidean space is closer to the 45-degree angle, the
inner bound converges geometrically fast to the outer bound,
and the bounds are tight. This analysis uses results in [5], [6]
that derive an outer bound on the maximum sum throughput
for a symmetric system.

The inner capacity bound is indeed useful. First, the struc-
ture of the bound itself shows how channel memory improves
throughput. Second, we show analytically that a large class
of intuitively good heuristic policies achieve throughput that
is at least as good as this bound, and hence the bound acts
as a (non-trivial) performance guarantee. Finally, supporting
throughput outside this bound may inevitably involve solving
a much more complicated POMDP. Thus, for simplicity and
practicality, we may regard the inner bound as an operational
network capacity region.

In this paper we also derive a simple queue-dependent dy-
namic round robin policy that stabilizes the network whenever
the arrival rate vector is interior to our inner bound. This policy
has polynomial time complexity and is derived by a novel
variable-length frame-based Lyapunov analysis, first used
in [7] in a different context. This analysis is important because
the inner bound is based on a mixture of many different types
of round robin policies, and an offline computation of the
proper time average mixtures needed to achieve a given point
in this complex inner bound would require solving Θ(2N )
unknowns in a linear system, which is impractical when N
is large. The Lyapunov analysis overcomes this complexity
difficulty with online queue-dependent decisions.

The results of this paper apply to the emerging area of
opportunistic spectrum access in cognitive radio networks
(see [8] and references therein), where the channel occupancy
of a primary user acts as a Markov ON/OFF channel to the
secondary users. Specifically, our results apply to the important
case where every secondary users has a designated channel and
they cooperate via a centralized controller. This paper is also
a study on efficient scheduling over wireless networks with
delayed/uncertain channel state information (CSI) (see [9]–
[11] and references therein). The work on delayed CSI that
is most closely related to ours is [10], [11], in which the
capacity region and throughput-optimal policies of different
wireless networks are studied, assuming that channel states
are persistently probed but fed back with delay. Our paper is
significantly different. Here channels are never probed, and
new (delayed) CSI of a channel is only acquired when the
channel is served. Implicitly, acquiring the delayed CSI of
any channel is part of the control decisions in this paper. The
problem formulation of this paper also applies to an important
scenario in partial channel probing (see [1], [12] and references
there in) where: (1) At most one channel is probed in every
slot, (2) Data can be transmitted over probed channels but
not on unknown channels. Specifically, we study how channel
memory can improve the network throughput.

This paper is organized as follows. The network model is
given in Section II, inner and outer bounds are constructed in
Sections III and IV, and compared in Section V in the case

of symmetric channels. Section VI gives the queue-dependent
policy to achieve the inner bound.

II. NETWORK MODEL

Consider a base station transmitting data to N users through
N Markov ON/OFF channels. Suppose time is slotted with
normalized slots t in {0, 1, 2, . . .}. Each channel is modeled
as a two-state ON/OFF Markov chain (see Fig. 1). The state

ON(1) OFF(0)

Pn,10

Pn,11 Pn,00

Pn,01

Fig. 1. A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}.

evolution of channel n ∈ {1, 2, . . . , N} follows the transition
probability matrix

Pn =

[
Pn,00 Pn,01

Pn,10 Pn,11

]
,

where state ON is represented by 1 and OFF by 0, and Pn,ij
denotes the transition probability from state i to j. We assume
Pn,11 < 1 for all n so that no channel is constantly ON.
Incorporating constantly ON channels like wired links is easy
and thus omitted in this paper. We suppose channel states are
fixed in every slot and may only change at slot boundaries. We
assume all channels are positively correlated, which, in terms
of transition probabilities, is equivalent to assuming Pn,11 >
Pn,01 or Pn,01 + Pn,10 < 1 for all n.2 We suppose the base
station keeps N queues of infinite capacity to store exogenous
packet arrivals destined for the N users. At the beginning of
every slot, the base station attempts to transmit a packet (if
there is any) to a selected user. We suppose the base station has
no channel probing capability and must select users oblivious
of the current channel states. If a user is selected and its current
channel state is ON, one packet is successfully delivered to
that user. Otherwise, the transmission fails and zero packets
are served. At the end of a slot in which the base station
serves a user, an ACK/NACK message is fed back from the
selected user to the base station through an independent error-
free control channel, according to whether the transmission
succeeds. Failing to receive an ACK is regarded as a NACK.
Since channel states are either ON or OFF, such feedback
reveals the channel state of the selected user in the last slot.

Conditioning on all past channel observations, define the N -
dimensional information state vector ω(t) = (ωn(t) : 1 ≤ n ≤
N) where ωn(t) is the conditional probability that channel n
is ON in slot t. We assume initially ωn(0) = πn,ON for all
n, where πn,ON denotes the stationary probability that channel

2Assumption Pn,11 > Pn,01 yields that the state sn(t) of channel n
has auto-covariance E [(sn(t)− Esn(t))(sn(t+ 1)− Esn(t+ 1))] > 0.
In addition, we note that the case Pn,11 = Pn,01 corresponds to a channel
having i.i.d. states over slots. Although we can naturally incorporate i.i.d.
channels into our model and all our results still hold, we exclude them in this
paper because we shall show how throughput can be improved by channel
memory, which i.i.d. channels do not have. The degenerate case where all
channels are i.i.d. over slots is fully solved in [1].
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n is ON. As discussed in [4, Chapter 5.4], vector ω(t) is a
sufficient statistic. That is, instead of tracking the whole system
history, the base station can act optimally only based on ω(t).
The base station shall keep track of the {ω(t)} process.

We assume transition probability matrices Pn for all n are
known to the base station. We denote by sn(t) ∈ {OFF,ON}
the state of channel n in slot t. Let n(t) ∈ {1, 2, . . . , N}
denote the user served in slot t. Based on the ACK/NACK
feedback, vector ω(t) is updated as follows. For 1 ≤ n ≤ N ,

ωn(t+1) =


Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1− ωn(t))Pn,01, if n 6= n(t).
(1)

If in the most recent use of channel n, we observed (through
feedback) its state was i ∈ {0, 1} in slot (t−k) for some k ≤ t,
then ωn(t) is equal to the k-step transition probability P

(k)
n,i1. In

general, for any fixed n, probabilities ωn(t) take values in the
countably infinite setWn = {P(k)

n,01,P
(k)
n,11 : k ∈ N}∪{πn,ON}.

By eigenvalue decomposition on Pn [13, Chapter 4], we can
show the k-step transition probability matrix P(k)

n is

P(k)
n ,

[
P

(k)
n,00 P

(k)
n,01

P
(k)
n,10 P

(k)
n,11

]
= (Pn)

k

=
1

xn

[
Pn,10 + Pn,01(1− xn)k Pn,01 (1− (1− xn)k)
Pn,10(1− (1− xn)k) Pn,01 + Pn,10(1− xn)k

]
,

(2)

where we have defined xn , Pn,01 + Pn,10. Assuming that
channels are positively correlated, i.e., xn < 1, by (2) we have
the following lemma.

Lemma 1. For a positively correlated Markov ON/OFF chan-
nel with transition probability matrix Pn, we have

1) The stationary probability πn,ON = Pn,01/xn.
2) The k-step transition probability P

(k)
n,01 is nondecreasing

in k and P
(k)
n,11 nonincreasing in k. Both P

(k)
n,01 and P

(k)
n,11

converge to πn,ON as k →∞.

As a corollary of Lemma 1, it follows that

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01

(3)
for any integers k1 ≤ k2 and k3 ≥ k4 (see Fig. 2). To
maximize network throughput, (3) has some fundamental
implications. We note that ωn(t) represents the transmission
success probability over channel n in slot t. Thus we shall keep
serving a channel whenever its information state is Pn,11, for
it is the best state possible. Second, given that a channel was
OFF in its last use, its information state improves as long as the
channel remains idle. Thus we shall wait as long as possible
before reusing such a channel. Actually, when channels are
symmetric (Pn = P for all n), it is shown that a myopic
policy with this structure maximizes the sum throughput of
the network [6].

III. A ROUND ROBIN POLICY

For any integer M ∈ {1, 2, . . . , N}, we present a spe-
cial round robin policy RR(M) serving the first M users

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

Fig. 2. Diagram of the k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a

positively correlated Markov ON/OFF channel.

{1, 2, . . . ,M} in the network. The M users are served in the
circular order 1→2→· · ·→M→1→· · · . In general, we can
use this policy to serve any subset of users. This policy is the
fundamental building block of all the results in this paper.

A. The Policy

Round Robin Policy RR(M) :

1) At time 0, the base station starts with channel 1. Suppose
initially ωn(0) = πn,ON for all n.

2) Suppose at time t, the base station switches to channel
n. Transmit a data packet to user n with probability
P

(M)
n,01/ωn(t) and a dummy packet otherwise. In both

cases, we receive ACK/NACK information at the end
of the slot.

3) At time (t + 1), if a dummy packet is sent at time t,
switch to channel (n mod M) + 1 and go to Step 2.
Otherwise, keep transmitting data packets over channel
n until we receive a NACK. Then switch to channel (n
mod M) + 1 and go to Step 2. We note that dummy
packets are only sent on the first slot every time the
base station switches to a new channel.

4) Update ω(t) according to (1) in every slot.

Step 2 of RR(M) only makes sense if ωn(t) ≥ P
(M)
n,01, which

we prove in the next lemma.

Lemma 2. Under RR(M), whenever the base station switches
to channel n ∈ {1, 2, . . . ,M} for another round of transmis-
sion, its current information state satisfies ωn(t) ≥ P

(M)
n,01.

Proof of Lemma 2: Due to page limit please see [14].
We note that policy RR(M) is very conservative and not

throughput-optimal. For example, we can improve the through-
put by always sending data packets but no dummy ones. Also,
it does not follow the guidelines we provide at the end of
Section II for maximum throughput. Yet, we will see that, in
the case of symmetric channels, throughput under RR(M) is
close to optimal when M is large. Moreover, the underlying
analysis of RR(M) is tractable so that we can mix such
round robin policies over different subsets of users to form
a non-trivial inner capacity bound. The tractability of RR(M)
is because it is equivalent to the following fictitious round
robin policy (which can be proved as a corollary of Lemma 3
provided later).

Equivalent Fictitious Round Robin:

1) At time 0, start with channel 1.
2) When the base station switches to channel n, set its
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current information state to P
(M)
n,01.3 Keep transmitting

data packets over channel n until we receive a NACK.
Then switch to channel (n mod M) + 1 and repeat
Step 2.

For any round robin policy that serves channels in the
circular order 1→ 2→ · · · →M → 1→ · · · , the technique
of resetting the information state to P

(M)
n,01 creates a system

with an information state that is worse than the information
state under the actual system. To see this, since in the actual
system channels are served in the circular order, after we
switch away from serving a particular channel n, we serve
the other (M − 1) channels for at least one slot each, and
so we return to channel n after at least M slots. Thus, its
starting information state is always at least P

(M)
n,01 (the proof

is similar to that of Lemma 2). Intuitively, since information
states represent the packet transmission success probabilities,
resetting them to lower values degrades throughput. This is the
reason why our inner capacity bound constructed later using
RR(M) provides a throughput lower bound for a large class
of policies.

B. Network Throughput under RR(M)

Next we analyze the throughput vector achieved by RR(M).
1) General Case: Under RR(M), let Lkn denote the dura-

tion of the kth time the base station stays with channel n. A
sample path of the {Lkn} process is

(L11, L12, . . . , L1M︸ ︷︷ ︸
round k = 1

, L21, L22, . . . , L2M︸ ︷︷ ︸
round k = 2

, L31, . . .). (4)

The next lemma presents useful properties of Lkn, which serve
as the foundation of the throughput analysis in the rest of the
paper.

Lemma 3. For any integer k and n ∈ {1, 2, . . . ,M},
1) The probability mass function of Lkn is independent of

k, and is

Lkn =

{
1 with prob. 1− P

(M)
n,01

j ≥ 2 with prob. P(M)
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E [Lkn] = 1 +
P

(M)
n,01

Pn,10
= 1 +

Pn,01(1− (1− xn))M

xnPn,10
.

2) The number of data packets served in Lkn is (Lkn−1).
3) For every fixed channel n, time durations Lkn are i.i.d.

random variables over all k.

Proof of Lemma 3:
1) Note that Lkn = 1 if, on the first slot of serving channel

n, either a dummy packet is transmitted or a data packet
is transmitted but the channel is OFF. This event occurs
with probability(

1−
P

(M)
n,01

ωn(t)

)
+

P
(M)
n,01

ωn(t)
(1− ωn(t)) = 1− P

(M)
n,01.

3In reality we cannot set the information state of a channel, and therefore
the policy is fictitious.

Next, Lkn = j ≥ 2 if in the first slot a data packet
is successfully served, and this is followed by (j − 2)
consecutive ON slots and one OFF slot. This occurs with
probability P

(M)
n,01 (Pn,11)(j−2) Pn,10. The expectation of

Lkn can be computed from its probability mass function.
2) We can observe that one data packet is served in every

slot of Lkn except for the last one (when a dummy
packet is sent over channel n, we have Lkn = 1 and
zero data packets are served).

3) At the beginning of every Lkn, we observe from the
equivalent fictitious round robin policy that RR(M)

effectively fixes P
(M)
n,01 as the current information state,

regardless of the true current state ωn(t). Neglecting
ωn(t) is to discard all system history, including all past
Lk′n for all k′ < k. Thus Lkn are i.i.d.. Specifically, for
any k′ < k and integers lk′ and lk we have

Pr [Lkn = lk | Lk′n = lk′ ] = Pr [Lkn = lk] .

Now we can derive the throughput vector supported by
RR(M). Fix an integer K > 0. By Lemma 3, the time average
throughput over channel n after all channels finish their Kth
rounds, which we denote by µn(K), is

µn(K) ,

∑K
k=1(Lkn − 1)∑K
k=1

∑M
n=1 Lkn

.

Passing K →∞, we get

lim
K→∞

µn(K)

= lim
K→∞

∑K
k=1(Lkn − 1)∑K
k=1

∑M
n=1 Lkn

= lim
K→∞

(1/K)
∑K
k=1 (Lkn − 1)∑M

n=1(1/K)
∑K
k=1 Lkn

(a)
=

E [L1n]− 1∑M
n=1 E [L1n]

(b)
=

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M
n=1 Pn,01(1− (1− xn)M )/(xnPn,10)

,

(5)

where (a) is by the Law of Large Numbers (noting by
Lemma 3 that Lkn are i.i.d. over k), and (b) is by Lemma 3.

2) Symmetric Case: We are particularly interested in the
sum throughput under RR(M) when channels are symmetric,
that is, all channels have the same statistics Pn = P for all n.
In this case, by channel symmetry every channel has the same
throughput. From (5), we can show the sum throughput is

M∑
n=1

lim
K→∞

µn(K) =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
,

where in the last term the subscript n is dropped due to channel
symmetry. It is handy to define a function c(·) : N→ R as

cM ,
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x , P01 + P10, (6)

and define c∞ , limM→∞ cM = P01/(xP10 +P01) (note that
x < 1 because every channel is positively correlated over time
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slots). The function c(·) will be used extensively in this paper.
We summarize the above derivation in the next lemma.

Lemma 4. Policy RR(M) serves channel n ∈ {1, 2, . . . ,M}
with throughput

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M
n=1 Pn,01(1− (1− xn)M )/(xnPn,10)

.

In particular, in symmetric channels the sum throughput under
RR(M) is cM defined as

cM =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x = P01 + P10,

and every channel has throughput cM/M .

We remark that the sum throughput cM of RR(M) in
the symmetric case is nondecreasing in M , and thus can be
improved by serving more channels. Interestingly, here we
see that the sum throughput is improved by having multiuser
diversity in the network, even though instantaneous channel
states are never known.

C. How Good is RR(M)?

Next, in symmetric channels, we quantify how close the sum
throughput cM is to optimal. The following lemma presents a
useful upper bound on the maximum sum throughput.

Lemma 5 ([5], [6]). In symmetric channels, any scheduling
policy that confines to our model has sum throughput less than
or equal to c∞.4

By Lemma 4 and 5, the loss of the sum throughput of
RR(M) is no larger than c∞ − cM . Define c̃M as

c̃M ,
P01(1− (1− x)M )

xP10 + P01
= c∞(1− (1− x)M )

and note that c̃M ≤ cM ≤ c∞. It follows

c∞ − cM ≤ c∞ − c̃M = c∞(1− x)M . (7)

The last term of (7) decreases to zero geometrically fast as
M increases. This indicates that RR(M) yields near-optimal
sum throughput even when it only serves a moderately large
number of channels.

IV. RANDOMIZED ROUND ROBIN POLICY, INNER AND
OUTER CAPACITY BOUND

A. Randomized Round Robin Policy

Lemma 4 specifies the throughput vector achieved by imple-
menting RR(M) over a particular collection of M channels.
Here we are interested in the set of throughput vectors
achievable by randomly mixing RR(M)-like policies over
different channel subsets and allowing a different round-robin
ordering on each subset. To generalize the RR(M) policy,

4We note that the throughput analysis in [5] makes a minor assumption
on the existence of some limiting time average. Using similar ideas of [5], in
Theorem 2 of Section IV-C we will construct an upper bound on the maximum
sum throughput for general positively correlated Markov ON/OFF channels.
When restricted to the symmetric case, we get the same upper bound without
any assumption (see Corollary 3).

first let Φ denote the set of all N -dimensional binary vectors
excluding the all-zero vector (0, 0, . . . , 0). For any binary
vector φ = (φ1, φ2, . . . , φN ) in Φ, we say channel n is active
in φ if φn = 1. Each vector φ ∈ Φ represents a different
subset of active channels. We denote by M(φ) the number of
active channels in φ.

For each φ ∈ Φ, consider the following round robin policy
RR(φ) that serves active channels in φ in every round.

Dynamic Round Robin Policy RR(φ):
1) Deciding the service order in each round:

At the beginning of each round, we denote by τn the
time duration between the last use of channel n and the
beginning of the current round. Active channels in φ
are served in the decreasing order of τn in this round
(in other words, the active channel that is least recently
used is served first).

2) On each active channel in a round:
a) Suppose at time t the base station switches to

channel n. Transmit a data packet to user n with
probability P

(M(φ))
n,01 /ωn(t) and a dummy packet

otherwise. In both cases, we receive ACK/NACK
information at the end of the slot.

b) At time (t+ 1), if a dummy packet is sent at time
t, switch to the next active channel following the
order given in Step 1. Otherwise, keep transmitting
data packets over channel n until we receive a
NACK. Then switch to the next active channel and
go to Step 2a. We note that dummy packets are
only sent on the first slot every time the base station
switches to a new channel.

3) Update ω(t) according to (1) in every slot.
Using RR(φ) as building blocks, we consider the following

class of randomized round robin policies.
Randomized Round Robin Policy RandRR:
1) Pick φ ∈ Φ with probability αφ, where

∑
φ∈Φ αφ = 1.

2) Run policy RR(φ) for one round. Then go to Step 1.
Note that active channels may be served in different order in

different rounds, according to the least-recently-used service
order. This allows more time for OFF channels to return to
better information states (note that P(k)

n,01 is nondecreasing in k)
and thus improves throughput. The next lemma guarantees the
feasibility of executing any RR(φ) policy in RandRR (similar
to Lemma 2, whenever the base station switches to a new
channel n, we need ωn(t) ≥ P

(M(φ))
n,01 in Step 2a of RR(φ)).

Lemma 6. When RR(φ) is chosen by RandRR for a new
round of transmission, every active channel n in φ starts with
information state no worse than P

(M(φ))
n,01 .

Proof of Lemma 6: See [14].
Although RandRR randomly selects subsets of users and

serves them in an order that depends on previous choices, we
can surprisingly analyze its throughput. This is done by using
the throughput analysis of RR(M), as shown in the following
corollary to Lemma 3:

Corollary 1. For each policy RR(φ), φ ∈ Φ, within time
periods in which RR(φ) is executed by RandRR, denote by
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Lφkn the duration of the kth time the base station stays with
active channel n. Then:

1) The probability mass function of Lφkn is independent of
k, and is

Lφkn =

{
1 with prob. 1− P

(M(φ))
n,01

j ≥ 2 with prob. P(M(φ))
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E
[
Lφkn

]
= 1 +

P
(M(φ))
n,01

Pn,10
. (8)

2) The number of data packets served in Lφkn is (Lφkn−1).
3) For every fixed φ and every fixed active channel n in
φ, Lφkn are i.i.d. random variables over all k.

B. Achievable Network Capacity — An Inner Capacity Bound

Using Corollary 1, next we present the achievable rate
region of the class of RandRR policies. For each RR(φ) policy,
define an N -dimensional vector ηφ = (ηφ1 , η

φ
2 , . . . , η

φ
N ) where

ηφn ,


E[Lφ

1n]−1∑
n:φn=1 E[Lφ

1n]
if channel n is active in φ,

0 otherwise,
(9)

where E
[
Lφ1n

]
is given in (8). Intuitively, by the analysis prior

to Lemma 4, round robin policy RR(φ) yields throughput ηφn
over channel n for each n ∈ {1, 2, . . . , N}. Incorporating all
possible random mixtures of RR(φ) policies for different φ,
RandRR can support any data rate vector that is entrywise
dominated by a convex combination of vectors {ηφ}φ∈Φ as
shown by the next theorem.

Theorem 1 (Generalized Inner Capacity Bound). The class of
RandRR policies supports all data rate vectors λ in the set
Λint defined as

Λint ,
{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
ηφ
}
φ∈Φ

)}
,

where ηφ is defined in (9), conv (A) denotes the convex hull
of set A, and ≤ is taken entrywise.

Proof of Theorem 1: See [14].
Next is a corollary to Theorem 1 for symmetric channels.

Corollary 2 (Inner Capacity Bound for Symmetric Channels).
In symmetric channels, the class of RandRR policies supports
all rate vectors λ ∈ Λint where

Λint =

{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
cM(φ)

M(φ)
φ

}
φ∈Φ

)}
,

where cM(φ) is defined in (6).

An example of the inner capacity bound and a simple queue-
dependent dynamic policy that supports all data rates within
this nontrivial inner bound will be provided later.

C. Outer Capacity Bound

We construct an outer bound on Λ using several novel ideas.
First, by state aggregation, we transform the information state

process {ωn(t)} for each channel n into non-stationary two-
state Markov chains (in Fig. 4 provided later). Second, we
create a set of bounding stationary Markov chains (in Fig. 5
provided later), which has the structure of a multi-armed bandit
system. Finally, we create an outer capacity bound by relating
the bounding model to the original non-stationary Markov
chains using stochastic coupling. We note that since the control
of the set of information state processes {ωn(t)} for all n can
be viewed as a restless bandit problem [15], it is interesting
to see how we bound the optimal performance of a restless
bandit problem by a related multi-armed bandit system.

We first map channel information states ωn(t) into modes
for each n ∈ {1, 2, . . . , N}. Inspired by (3), we observe that
each channel n must be in one of the following two modes:
M1 The last observed state is ON, and the channel has not

been seen (through feedback) to turn OFF. In this mode
the information state ωn(t) ∈ [πn,ON,Pn,11].

M2 The last observed state is OFF, and the channel has not
been seen to turned ON. Here ωn(t) ∈ [Pn,01, πn,ON].

On channel n, recall that Wn is the state space of ωn(t), and
define a map fn :Wn → {M1,M2} where

fn(ωn(t)) =

{
M1 if ωn(t) ∈ (πn,ON,Pn,11],
M2 if ωn(t) ∈ [Pn,01, πn,ON].

This mapping is illustrated in Fig. 3.

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

M1

M2

Fig. 3. The mapping fn from information states ωn(t) to modes {M1,M2}.

For any information state process {ωn(t)} (controlled by
some scheduling policy), the corresponding mode transition
process under fn can be represented by the Markov chains
shown in Fig. 4. Specifically, when channel n is served in
a slot, the associated mode transition follows the upper non-
stationary chain of Fig. 4. When channel n is idled in a slot, the
mode transition follows the lower stationary chain of Fig. 4. In
the upper chain of Fig. 4, regardless what the current mode is,
mode M1 is visited in the next slot if and only if channel n is
ON in the current slot, which occurs with probability ωn(t).
In the lower chain of Fig. 4, when channel n is idled, its
information state changes from a k-step transition probability
to the (k + 1)-step transition probability with the same most
recent observed channel state. Therefore, the next mode stays
the same as the current mode. We emphasize that, in the upper
chain of Fig. 4, at mode M1 we always have ωn(t) ≤ Pn,11,
and at mode M2 it is ωn(t) ≤ πn,ON. A packet is served if
and only if M1 is visited in the upper chain of Fig. 4.

To upper bound throughput, we compare Fig. 4 to the mode
transition diagrams in Fig. 5 that corresponds to a fictitious
model for channel n. This fictitious channel has constant
information state ωn(t) = Pn,11 whenever it is in mode M1,
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M1 M2

1− ωn(t)

ωn(t) 1− ωn(t)

ωn(t)
When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 4. Mode transition diagrams for the real channel n.

M1 M2

1− Pn,11

Pn,11 1− πn,ON

πn,ON

When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 5. Mode transition diagrams for the fictitious channel n.

and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
corresponding real channel n is in the same mode. It follows
that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
the fictitious channel n in the same infinite sequence of time
slots, the fictitious channel n will yield higher throughput for
all n. This observation is made precise by the next lemma.

Lemma 7. Consider two discrete-time Markov chains {X(t)}
and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is
stationary and ergodic with transition probability matrix

P =

[
P00 P01

P10 P11

]
,

and {Y (t)} is non-stationary with

Q(t) =

[
Q00(t) Q01(t)
Q10(t) Q11(t)

]
.

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)},
let πX(1) denote the stationary probability of state 1; πX(1) =
P01/(P01 + P10). In {Y (t)}, define

πY (1) , lim sup
T→∞

1

T

T−1∑
t=0

Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then
we have πX(1) ≥ πY (1).

Proof of Lemma 7: See [14].
We note that executing a scheduling policy in the network

is to generate a sequence of channel selection decisions.
By Lemma 7, if we apply the same sequence of channel
selection decisions of some scheduling policy to the set of
fictitious channels, we will get higher throughput on every
channel. A direct consequence of this is that the maximum
sum throughput over the fictitious channels is greater than or
equal to that over the real channels.

Lemma 8. The maximum sum throughput over the set of
fictitious channels is no more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ ,
Pn,01

xnPn,10 + Pn,01
.

Proof of Lemma 8: Finding the maximum sum through-
put over fictitious channels in Fig. 5 is equivalent to solving a
multi-armed bandit problem [16] with each channel acting as
an arm (see Fig. 5 and note that a channel can change mode
only when it is served), and one unit of reward is earned if a
packet is delivered (recall that a packet is served if and only if
mode M1 is visited in the upper chain of Fig. 5). The optimal
solution to the multi-armed bandit system is to always play the
arm (channel) with the largest average reward (throughput).
The average reward over channel n is equal to the stationary
probability of mode M1 in the upper chain of Fig. 5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.
Together with the fact that throughput over any real channel

n cannot exceed its stationary ON probability πn,ON, we have
constructed an outer bound on the network capacity region Λ
(the proof follows the above discussions and thus is omitted).

Theorem 2. (Generalized Outer Capacity Bound): Any sup-
portable throughput vector λ = (λ1, λ2, . . . , λN ) necessarily
satisfies λn ≤ πn,ON for all n ∈ {1, . . . , N} and

N∑
n=1

λn ≤ max
n∈{1,2,...,N}

{cn,∞} , cn,∞ =
Pn,01

xnPn,10 + Pn,01
.

These (N + 1) hyperplanes form an outer bound Λout on Λ.

Corollary 3 (Outer Capacity Bound for Symmetric Channels).
In symmetric channels with Pn = P for all n, we have

Λout =

{
λ |

N∑
n=1

λn ≤ c∞, 0 ≤ λn ≤ πON ∀n

}
, (10)

where the subscript n is dropped due to channel symmetry.

D. A Two-User Example on Symmetric Channels

Here we consider a two-user example on symmetric chan-
nels. For simplicity we will drop the subscript n in notations.
From Corollary 3, we have the outer bound

Λout =


[
λ1

λ2

] ∣∣∣∣∣∣∣
0 ≤ λn ≤ P01/x, for 1 ≤ n ≤ 2,

λ1 + λ2 ≤ P01/(xP10 + P01),

x = P01 + P10

 .
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For the inner bound Λint, we note that policy RandRR can
execute three round robin policies RR(φ) for φ ∈ Φ =
{(1, 1), (0, 1), (1, 0)}. From Corollary 2, we have

Λint =


[
λ1

λ2

] ∣∣∣∣∣∣
0 ≤ λn ≤ µn, for 1 ≤ n ≤ 2,[

µ1

µ2

]
∈ conv

({[
c2/2
c2/2

]
,

[
c1
0

]
,

[
0
c1

]}) .

Under the special case P01 = P10 = 0.2, the two bounds λint
and Λout are shown in Fig. 6.

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5
Λout

Λideal

Λblind

Λint

Λ (unknown)

Fig. 6. Comparison of rate regions under different assumptions.

In Fig. 6, we also compare Λint and Λout with other
rate regions. Set Λideal is the ideal capacity region when
instantaneous channel states are known without causing any
(timing) overhead [17]. Next, work [5] shows that the max-
imum sum throughput in this network is achieved at point
A = (0.325, 0.325). The (unknown) network capacity region
Λ is bounded between Λint and Λout, and has boundary points
B, A, and C. Since the boundary of Λ is a concave curve
connecting B, A, and C, we envision that Λ shall contain but
be very close to Λint.

Finally, the rate region Λblind is rendered by completely
neglecting channel memory and treating the channels as i.i.d.
over slots [1]. We observe the throughput gain Λint \Λblind, as
much as 23% in this example, is achieved by incorporating
channel memory. In general, if channels are symmetric and
treated as i.i.d. over slots, the maximum sum throughput in the
network is πON = c1. Then the maximum throughput gain of
RandRR using channel memory is cN −c1, which as N →∞
converges to

c∞ − c1 =
P01

xP10 + P01
− P01

P01 + P10
,

which is controlled by the factor x = P01 + P10.

V. PROXIMITY OF THE INNER BOUND TO THE TRUE
CAPACITY REGION — SYMMETRIC CASE

Next we bound the closeness of the boundaries of Λint
and Λ in the case of symmetric channels. In Section III-C,
by choosing M = N , we have provided such analysis for
the boundary point in the direction (1, 1, . . . , 1). Here we

generalize to all boundary points. Define

V ,

{
(v1, v2, . . . , vN )

∣∣∣∣∣ vn ≥ 0 for 1 ≤ n ≤ N ,
vn > 0 for at least one n

}
as a set of directional vectors. For any v ∈ V , let λint =
(λint

1 , λ
int
2 , . . . , λ

int
N ) and λout = (λout

1 , λout
2 , . . . , λout

N ) be the
boundary point of Λint and Λout in the direction of v, respec-
tively. It is useful to compute

∑N
n=1(λout

n − λint
n ), because it

upper bounds the loss of the sum throughput of Λint from Λ in
the direction of v. We note that computing λint in an arbitrary
direction is difficult. Thus we will find an upper bound on∑N
n=1(λout

n − λint
n ).

Definition 1. For any v ∈ V , we say v is d-user diverse if
v can be written as a positive combination of vectors in Φd,
where Φd denotes the set of N -dimensional binary vectors
having d entries be 1. Define

d(v) , max
1≤d≤N

{d | v is d-user diverse},

and we shall say v is maximally d(v)-user diverse.

The notion of d(v) is well-defined because every v must be
1-user diverse.5 Definition 1 is the most useful to us through
the next lemma.

Lemma 9. The boundary point of Λint in the direction of v ∈
V has sum throughput at least cd(v), where

cd(v) ,
P01(1− (1− x)d(v))

xP10 + P01(1− (1− x)d(v))
, x , P01 + P10.

Proof of Lemma 9: See [14].
Fig. 7 provides an example of Lemma 9 in the two-

user symmetric system in Section IV-D. We observe that

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

λ1 + λ2 = c2

λ1 + λ2 = c1

Λint

Fig. 7. An example for Lemma 9 in the two-user symmetric network. Point
B and C achieve sum throughput c1 = πON = 0.5, and the sum throughput
at D is c2 ≈ 0.615. Any other boundary point of Λint has sum throughput
between c1 and c2.

direction (1, 1), the one that passes point D in Fig. 7, is
the only direction that is maximally 2-user diverse. The sum
throughput c2 is achieved at D. For all the other directions,
they are maximally 1-user diverse and, from Fig. 7, only
sum throughput c1 is guaranteed along those directions. In

5The set Φ1 = {e1, e2, . . . , eN} is the collection of unit coordinate
vectors where en has its nth entry be 1 and 0 otherwise. Any vector v ∈ V ,
v = (v1, v2, . . . , vN ), can be written as v =

∑
vn>0 vnen.
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general, geometrically we can show that a maximally d-user
diverse vector, say vd, forms a smaller angle with the all-1
vector (1, 1, . . . , 1) than a maximally d′-user diverse vector,
say vd′ , does if d′ < d. In other words, data rates along vd
are more balanced than those along vd′ . Lemma 9 states that
we guarantee to support higher sum throughput if the user
traffic is more balanced.

A. Proximity Analysis

We use the notion of d(v) to upper bound
∑N
n=1(λout

n −λint
n )

in any direction v ∈ V . Let λout = θλint (i.e., λout
n = θλint

n

for all n) for some θ ≥ 1. By (10), the boundary of Λout is
characterized by the interaction of the (N + 1) hyperplanes∑N
n=1 λn = c∞ and λn = πON for each n ∈ {1, 2, . . . , N}.

Specifically, in any given direction, if we consider the cross
points on all the hyperplanes in that direction, the boundary
point λout is the one closest to the origin. We do not know
which hyperplane λout is on, and thus need to consider all
(N + 1) cases. If λout is on the plane

∑N
n=1 λn = c∞, i.e.,∑N

n=1 λ
out
n = c∞, we get

N∑
n=1

(λout
n − λint

n )
(a)

≤ c∞ − cd(v)

(b)

≤ c∞(1− x)d(v),

where (a) is by Lemma 9 and (b) is by (7). If λout is on the
plane λn = πON for some n, then θ = πON/λ

int
n . It follows

N∑
n=1

(λout
n − λint

n ) = (θ − 1)

N∑
n=1

λint
n ≤

(
πON

λint
n

− 1

)
c∞.

The above discussions lead to the next lemma.

Lemma 10. The loss of the sum throughput of Λint from Λ in
the direction of v is upper bounded by

min

[
c∞(1− x)d(v), min

1≤n≤N

{(
πON

λint
n

− 1

)
c∞

}]
= c∞min

[
(1− x)d(v),

πON

max1≤n≤N{λint
n }
− 1

]
. (11)

Lemma 10 shows that, if data rates are more balanced,
namely, have a larger d(v), the sum throughput loss is domi-
nated by the first term in the minimum of (11) and decreases to
0 geometrically fast with d(v). If data rates are biased toward
a particular user, the second term in the minimum of (11)
captures the throughput loss, which goes to 0 as the rate of
the favored user goes to the single-user capacity πON.

VI. THROUGHPUT-ACHIEVING QUEUE-DEPENDENT
ROUND ROBIN POLICY

Let an(t), for 1 ≤ n ≤ N , be the number of exogenous
packet arrivals destined for user n in slot t. Suppose an(t) are
independent across users, i.i.d. over slots with rate E [an(t)] =
λn, and an(t) is bounded with 0 ≤ an(t) ≤ Amax, where
Amax is a finite integer. Let Un(t) be the backlog of user-n
packets queued at the base station at time t. Define U(t) ,
(U1(t), U2(t), . . . , UN (t)) and suppose Un(0) = 0 for all n.
The queue process {Un(t)} evolves as

Un(t+ 1) = max [Un(t)− µn(sn(t), t), 0] + an(t), (12)

where µn(sn(t), t) ∈ {0, 1} is the service rate allocated to
user n in slot t. We have µn(sn(t), t) = 1 if user n is served
and sn(t) = ON, and 0 otherwise. In the rest of the paper
we drop sn(t) in µn(sn(t), t) and use µn(t) for notational
simplicity. We say the network is (strongly) stable if

lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=1

E [Un(τ)] <∞.

Consider a rate vector λ interior to the inner capacity region
bound Λint given in Theorem 1. Namely, there exists an ε > 0
and a probability distribution {βφ}φ∈Φ such that

λn + ε <
∑
φ∈Φ

βφη
φ
n , for all 1 ≤ n ≤ N, (13)

where ηφn is defined in (9). By Theorem 1, there exists a
RandRR policy that yields service rates equal to the right-
side of (13) and thus stabilizes the network with arrival rate
vector λ [18, Lemma 3.6]. The existence of this policy is
useful and we shall denote it by RandRR∗. Recall that on
each new scheduling round, the policy RandRR∗ randomly
picks a binary vector φ using probabilities αφ (defined over
all of the (2N−1) subsets of users). The M(φ) active users in
φ are served for one round by the round robin policy RR(φ),
serving the least recently used users first. However, solving for
the probabilities needed to implement the RandRR∗ policy that
yields (13) is intractable when N is large, because we need
to find a right combination of (2N −1) unknown probabilities
{αφ}φ∈Φ for a RandRR policy whose achievable throughput
vector satisfies (13). Instead, we use the following simple
queue-dependent policy.

Queue-dependent Round Robin Policy (QRR):
1) Start with t = 0.
2) At time t, observe the current queue backlog vectorU(t)

and find the binary vector φ(t) ∈ Φ defined as6

φ(t) , arg max
φ∈Φ

f(U(t),RR(φ)), where (14)

f(U(t),RR(φ))

,
∑

n:φn=1

[
Un(t)E

[
Lφ1n − 1

]
− E

[
Lφ1n

] N∑
n=1

Un(t)λn

]

and E
[
Lφ1n

]
= 1 + P

(M(φ))
n,01 /Pn,10 from (8). Ties are

broken arbitrarily.7

3) Run RR(φ(t)) for one round of transmission. We em-
phasize that active channels in φ are served in the least-
recently-used order. After the round ends, go to Step 2.

The QRR policy is a frame-based algorithm similar to
RandRR, except that at the beginning of every transmission
round the policy selection is no longer random but based on a
queue-dependent rule. We note that QRR is a polynomial time
algorithm because we can compute φ(t) in (14) in polynomial

6The vector φ(t) is a queue-dependent decision and thus we should write
φ(U(t), t) as a function of U(t). For simplicity we use φ(t) instead.

7It can be shown that as long as the queue backlog vector U(t) is not
identically zero and the arrival rate vector λ is interior to the inner capacity
bound Λint, we always have maxφ∈Φ f(U(t),RR(φ)) > 0.
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time with the following divide and conquer approach:
1) Partition the set Φ into subsets {Φ1, . . . ,ΦN}, where

ΦM , M ∈ {1, . . . , N}, is the set of N -dimensional
binary vectors having exactly M entries be 1.

2) For each M ∈ {1, . . . , N}, find the maximizer of
f(U(t),RR(φ)) among vectors in ΦM . For each φ ∈
ΦM , we have

f(U(t),RR(φ)) =∑
n:φn=1

[
Un(t)

P
(M)
n,01

Pn,10
−

(
1 +

P
(M)
n,01

Pn,10

)
N∑
n=1

Un(t)λn

]
,

and the maximizer of f(U(t),RR(φ)) is to activate the
M channels that yield the M largest summands of the
above equation.

3) Obtain φ(t) by comparing the maximizers from the
above step for different values of M .

The detailed implementation is as follows.
Polynomial time implementation of Step 2 of QRR:
For each fixed M ∈ {1, . . . , N}, compute

Un(t)
P

(M)
n,01

Pn,10
−

(
1 +

P
(M)
n,01

Pn,10

)
N∑
n=1

Un(t)λn (15)

for all n ∈ {1, . . . , N}. Sort these N numbers and define the
binary vector φM = (φM1 , . . . , φMN ) such that φMn = 1 if the
value (15) of channel n is among the M largest, otherwise
φMn = 0. Ties are broken arbitrarily. Let f̂(U(t),M) denote
the sum of the M largest values of (15). Then define M(t) ,
arg max1≤M≤N f̂(U(t),M) and assign φ(t) = φM(t).

Using a novel variable-length frame-based Lyapunov anal-
ysis, we show in the next theorem that QRR stabilizes the
network with any arrival rate vector λ strictly within the inner
capacity bound Λint. The idea is that we compare QRR with the
(unknown) policy RandRR∗ that stabilizes λ. We show that,
in every transmission round, QRR finds and executes a round
robin policy RR(φ(t)) that yields a larger negative drift on
the queue backlogs than RandRR∗ does in the current round.
Therefore, QRR is stable.

Theorem 3. For any data rate vector λ interior to Λint, policy
QRR strongly stabilizes the network.

Proof of Theorem 3: See [14].

VII. CONCLUSION

The network capacity of a wireless network is practically
degraded by communication overhead. In this paper, we take
a step forward by studying the fundamental achievable rate
region when communication overhead is kept minimum, that
is, when channel probing is not permitted. While solving the
original problem is difficult, we construct an inner and an outer
bound on the network capacity region, with the aid of channel
memory. When channels are symmetric and the network serves
a large number of users, we show the inner and outer bound
are progressively tight when the data rates of different users
are more balanced. We also derive a simple queue-dependent
frame-based policy and show that it stabilizes the network for
any data rates strictly within the inner capacity bound.

Transmitting data without channel probing is one of the
many options for communication over a wireless network.
Practically each option may have pros and cons on criteria like
the achievable throughput, power efficiency, implementation
complexity, etc. Part of our future work is to explore how to
combine all possible options to push the practically achievable
network capacity to the limit. We also like to generalize the
methodology and framework developed in this paper to more
general cases, such as when limited probing is allowed and
other QoS metrics such as energy consumption are considered.
It will also be interesting to see how this framework can
be applied to solve new problems in opportunistic spectrum
access in cognitive radio networks, in opportunistic scheduling
with delayed/uncertain CSI, and in restless bandit problems.
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