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Abstract: We present a novel technique for designing discrete, logical control loops, on top of continuous
control tasks, ensuring logical safety properties of the tasks sequencings and mode changes. We define
this new handler on top of the real-time executives built with the Orccad design environment for control
systems, which is applied, e.g. to robotics and real-time networked control. It features structures of
control tasks, each equipped with a local automaton, used for the reactive, event-based management
of its activity and modes. The additional discrete handler manages the interactions between tasks,
concerning, e.g., mutual exclusions, forbidden or imposed sequences. We use a new reactive programming
language, with constructs for finite-state machines and data-flow nodes, and a mechanism of behavioural
contracts, which involves discrete controller synthesis. The result is a discrete control loop, on top of the
continuous control loops, all integrated in a coherent real-time architecture. Our approach is illustrated
and validated experimentally with the case study of a robot arm.
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Génération automatique de controleur discret de taches de
commande temps réel

Résumé : Nous présentons une nouvelle technique pour concevoir des boucles de controle sur des
critéres discrets et logiques, au-dessus des taches de commande continue , assurant les propriétés logiques
de séquencement des tiches et de changement de modes. Nous définissons ce nouveau gestionnaire au-
dessus d’un exécutif temps réel. Celui-ci est construit avec ’environnement Orccad de conception de
systémes de controle, qui est appliqué, par exemple & la robotique et & la commande temps réel en
réseau. Le systéme est constitué d’un ensemble de tache de commande, chacune équipée d’un automate
local, utilisé pour la gestion réactive & base d’événement de son activité et de ses modes. Le gestionnaire
discret additionnel gére les interactions entre les taches, concernant, par exemple, les exclusions mutuelles,
des séquences interdites ou imposées. Nous utilisons un nouveau langage de programmation réactif, avec
des constructions pour les machines & états finis et les noeuds de flot de données, et un mécanisme de
contrats sur le comportement, qui implique la synthése de controleurs discrets. Le résultat est une boucle
de controle discret, au-dessus des boucles de controle continu, le tout intégré dans une architecture temps
réel cohérente. Notre approche est illustrée et validée expérimentalement avec I’étude de cas d’un bras
de robot.

Mots-clés : controle temps réel, systémes adaptatifs et reconfigurables, synthése de controleurs discrets,
programmation réactive.
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1 Motivation: RTOS and reactive control

Control systems and their programming A control system is a heterogeneous collection of physical
devices, in continuous time, and information sub-systems, with discrete time scales. The physical devices,
e.g. mechanical, electrical or chemical devices, are governed by the laws of physics and mechanics. Their
input/output transfer characteristics exhibit a complex dynamic behaviour (e.g. due to inertia) described
by differential equations where time is a continuous variable. For their control, their state is measured
or estimated using various sensors. Control theory provides a large set of methods and algorithms to
govern their behaviour through closed-loop control, ensuring the respect of required performance and
crucial properties like stability.

Control systems are often implemented as a set of tasks running on top of a real-time operating
system (RTOS). Closed-loop digital control systems use computers to cyclically sample sensors, compute
a control law and send control signals to the actuators of the physical process. The performance of a
control loop, e.g. measured by the tracking error, and even more importantly its stability, strongly relies
on the values of the sampling rates and sensor-to-actuator latencies [2]. A quite general rule states that
smaller are the periods and latencies, better is the control performance. Thus it is essential that the
implementation of the controller respects a specified timing behaviour to meet the expected performance,
i.e. the actual sampling periods and latencies must be fit in ranges which are consistent with the digital
controller specification. Orccad is a design environment dedicated to such control systems [B], as briefly
recalled in Section 2

Discrete, reactive controllers Another level of control systems is more related to events and states,
which define execution modes of the control system, typically with changes of control law. Reactive
languages based on finite state automata, like StateCharts [I1], or StateFlow in Matlab/Simulink [TH],
are widely used for these aspects. Their underlying fundamental model, transition systems, is the basic
formalism for discrete control theory, which studies closed-loop control of discrete-event and logical
aspects of control systems.

Different reactive languages exist, like StateCharts mentioned before, and the languages of the syn-
chronous approach []: Lustre, Esterel or Lucid Synchrone. They are used industrially in avionics
and safety-critical embedded applications design [I6]. They offer a coherent framework for specifica-
tion languages, their compilers, with functionalities for distributed code generation, test generation and
verification.

In the framework of discrete control theory, a basic technique used for the design of control loops is
Discrete Controller Synthesis (DCS) [T4, [6]. It consists in, from a controllable system, and a behavioural
property, computing a constraint on this system so that the composition of the system and this constraint
satisfies the property. There also is a tool able of automated DCS [12], which is concretely connected to
reactive languages and has been applied to the modelling of automatic generation of task handlers [T3].

More recently the BZR language has been defined with a contract mechanism, which is a language-
level integration of DCS [}, @]: the user specifies possible behaviours of a component, as well as safety
constraints, and the compiler synthesises the necessary control to enforce them. The programmer does
not need to design it explicitly, neither to know about the formal technicalities of DCS, which is used in
a completely encapsulated way. It is briefly explained in Section

Contributions of this paper We consider a discrete control loop handling underlying continuous
control tasks. We design safe discrete controllers, ensuring safety properties on the interactions of tasks,
by applying DCS. We concretely integrate the automatically generated task handlers in the Orccad
real-time executives. A contribution of the paper is in a case study of applying the Orccad and BZR
compiler real-time techniques in the design and implementation of a realistic application: a robot arm
controller. It is a study of the application of the DCS formal method to this realistic application: in the
event and state-based aspects where it is applicable, it is usable by non-experts, as it is encapsulated in
a programming language and compiler. Its compilation performance is subject to the natural complexity
of the algorithms, but we claim that it automatically generates an executable control solution, which is
to be compared with manual programming, verification and debugging, which is even more costly. The
execution cost of the controller is very small (see Section E3J).
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Outline of the paper The next sections make brief recalls, on the programming of control systems and
the Orccad approach in Section 2 and in Section Blon reactive programming with the BZR programming
language involving DCS. Section H] describes our contribution integrating the Orccad real-time executive
and the BZR programming language. Section Bl then illustrates the technique on the case study of a
robot arm, and its different control tasks which have to be sequenced according to a reconfiguration
strategy.

2 Programming control systems in Orccad

Orccad is an integrated design and programming environment dedicated to robotic systems. Robots
of any type interact with their physical environment. Although this environment can be sensed by
exteroceptive sensors like cameras or sonars, it is only partially known and can evolve because of robot
actions or external causes. Thus a robot will face different situations during the course of a mission and
must react to perceived events by changing its behaviour according to corrective actions. These abrupt
changes in the system’s behaviour are relevant of the theory of Discrete Events Systems. Besides the
logical correctness of computations the efficiency and reliability of the system relies on many temporal
constraints. The performance of control laws strongly depend on the respect of sampling rates and
computing latencies. Their execution must cope with strong resource constraints.

Therefore robotic systems belong to the class of hybrid reactive and real-time systems in which
different features require different programming and control methods. The ORCCAD environment is
aimed to provide users with a set of coherent structures and tools to develop, validate and encode
robotic applications.

2.1 Real-time tasks for continuous control

Orccad provides a bottom-up approach in which a robot controller design begins with the design and
implementation of specific control laws. Most feedback control systems are essentially periodic, where
the inputs (reading on sensors) and the outputs (posting on actuators) of the controller are sampled at
a fixed rate. While basic digital control theory deals with systems sampled at a single rate, it has been
shown, e.g. [, that the control performance of a closed-loop digital control system can be improved using
a multi-rate and multi-tasks controller : some parts of the control algorithm, e.g. updating parameters
or controlling slow modes, can be executed at a slower pace. Examples are hybrid position/force control
of a robot arm, visual servoing of a mobile robot following a wall or constant altitude survey of the sea
floor by an underwater vehicle.

Reaching efficient control requires an adequate setting of periods, latencies and gains according to the
available computing resource, e.g. as done through control/scheduling co-design approaches [3]. To this
end Orccad provides a set of design, programming and code generation tools allowing the control designer
to arbitrarily assign priorities and synchronisations to the set of control modules. Such a system can be
analysed through algebraic techniques and can be implemented using the basic features of an off-the-shelf
RTOS.

Once control laws have been designed and tuned, they are encapsulated in a so-called Robot-Task
object (RT) as depicted in Figure [l Different computation modules are defined, that take care of
the drivers of the sensors and actuators, of the various numerical computations calculating the control
values (which can have multiple rates, or be suspended and resumed in certain phases), of the observers
which can produce diagnostic events (e.g., thresholds, or the UnStableCam event in the example); all the
modules are assembled in a data-flow fashion, orthogonally to the logical behaviour, which is managed
via discrete events, as we describe next.

2.2 Automata for task management

In ORcCAD, logical behaviour appears at two levels: locally to RTs, and at a higher level in missions.

2.2.1 Generic control of RTs

It involves these events:
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UngtableCam
Control law (Discretized time)

T27Un?zféle0a
STARTED

External view (Discrete events)

§ SENSOR_FAILED

Figure 1: Encapsulation of the control law in a reactive shell

e preconditions, associated with e.g., measurements, sensors and watchdogs;
e events and exceptions of four types :

— synchronisations between RTs, e.g. w.r.t. state (e.g., in Figure[ll, event STARTED);
— type 1 exceptions, processed locally to the RT, e.g. by tuning a parameter of the control law;

— type 2 exceptions, ending the current RT, passing control to the upper level mission (e.g.,
event T2_UnStableCam);

— type 3 exceptions, fatal, stopping the whole system (e.g., event T3_SENSOR_FAILED);

¢ postconditions, emitted upon RT successful termination (e.g., event Good_End).

2.2.2 Missions design

The RT automaton gives an abstract view which facilities their composition into more complex actions:
the Robot-Procedures (RPs). The RP paradigm is used to logically and hierarchically compose RTs
and RPs, designed to fulfil a basic goal through several possible modes, e.g, a mobile robot can follow
a wall using predefined motion planning, visual servoing, or acoustic servoing according to sensory data
availability. RPs design is hierarchical so that common structures and programming tools can be used
from basic actions up to a full mission specification.

2.2.3 Specification and validation

The original Orccad framework uses Esterel [E] for each RT and RP logical behaviour design, verification
and code generation. The global behaviour is defined by the parallel composition of the automata. The
synchronous technology enables the use of formal techniques for automatic verification of the behaviour,
for liveness and safety properties. For example, a safety property specifically related with control systems
states that every physical actuator must be always under control, by one and only one control law. More
specific properties can also be defined and validated for various case studies.

2.2.4 Execution machine for the automata

Besides the user-defined signals (pre and post-conditions, exceptions), Orccad also defines many signals
used at run time to spawn and manage all the real-time threads necessary for the execution of the
tasks and procedures. The current ORCCAD ESTEREL automata are compiled into a transition function
in C. Input and output functions are associated to received and emitted signals, which are used to
interface the synchronous reactive program with the asynchronous execution environment, i.e. the RTOS.
Numerical computations can be called in linked libraries. The execution machine is in charge of feeding
the automaton with signals synthesised from collected input events, running the automaton transition
and exporting the output actions to the system. The automaton and execution machine are further
compiled into a real-time task and event queue glued with the rest of the system, as depicted in section
4.5

RR n® 7332
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delayable(r,c,e) = act ‘

act = false act = false

act — true

Figure 2: Example of a node in graphical syntax.

2.2.5 Position of the contribution in this paper

Until now, in ORCCAD, the discrete events control code is designed as a computer programming work,
written manually, then formally verified. One drawback is the difficulty for control engineers users of
specifying the discrete control without a methodology related to control theory, and the intrication
of verification techniques. Another is that static manual programming of all cases fails to encompass
adaptive behaviour, with regulation w.r.t. the system’s state and available resources. This papers
addresses these issues by considering discrete control loops on top of the continuous control loops.

3 Programming reactive systems in BZR

In this section we briefly introduce first the basics of the Heptagon language, to program data-flow
nodes and hierarchical parallel automata [8]. As for the reactive languages introduced in Section [J
the basic execution scheme is that at each reaction a step function is called, taking input flows as
parameters, computing the transition to be taken, updating the state, triggering the appropriate actions,
and emitting the output flows. We then define the BZR language which extends Heptagon with a new
contract construct [T}, 9.

3.1 Data-flow nodes and mode automata

Figure B shows a simple example of a Heptagon node, for the control of a task that can be activated
by a request r, and according to a control flow c, put in a waiting state; input e signals the end of the
task. Its signature is defined first, with a name, a list of input flows (here, simple events which can be
seen as Boolean flows), and outputs (here: the Boolean act), which is true when the task is active. In
the body of this node we have a mode automaton : upon occurrence of inputs, each step consists of a
transition according to their values; when no transition condition is satisfied, the state remains the same.
In the example, Idle is the initial state. From there transitions can be taken towards further states,
upon the condition given by the expression on inputs in the label. Here: when r and c are true then the
control goes to state Active, until e becomes true, upon which it goes back to Idle; if c is false it goes
towards state Wait, until ¢ becomes true. This is a mode automaton [] in the sense that to each state
we associate equations to define the output flows. In the example, the output act is defined by different
equation in each of the states.

We can build hierarchical and parallel automata, as will be seen in the case study e.g., in Figure
In the parallel automaton, the global behaviour is defined from the local ones: a global step is performed
synchronously, by having each automaton making a local step, within the same logical instant. In the
case of hierarchy, the sub-automata define the behaviour of the node as long as the upper-level automaton
remains in its state.

3.2 Contracts in the BZR language
3.2.1 Motivation

With this new construct, the management of dynamical adaptivity can be considered as a control loop, on
continuous or discrete criteria. It is illustrated in FigureB(a} on the basis of monitor information and of
an internal representation of the system, a control component enforces the adaptation policy or strategy,
by taking decisions w.r.t. the adaptation or reconfiguration actions to be executed, forming a closed

RR n® 7332
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policy / strategy BZR program
>[decision| =DCS ctrlr
V V
system | automaton
représentation model
monitor execute monitor execute
managed managed
system system
(a) Adaptive system. (b) BZR controller.

Figure 3: BZR programming of adaptation control.

control loop. The design of control loops with known behaviour and properties is the classical object of
control theory. Applications of continuous control theory to computing systems have been explored quite
broadly. In contrast, qualitative or logical aspects, as addressed by discrete control theory, have been
considered only recently for adaptive computing systems [I7)]. In our new approach, DCS is encapsulated
in the compilation of BZR [II, @]. Models of the possible behaviours of the managed system are specified
in terms of mode automata, and adaptation policies are specified in terms of contracts, on invariance
properties to be enforced. Compiling BZR yields a correct-by-construction controller, produced by DCS,
as illustrated in Figure in a user-friendly way: the programmer does not need to know technicalities
of DCS.

3.2.2 Contract construct

As illustrated in Figure Bl we associate a contract to a node. It is itself a program, with its internal
state, e.g., automata, observing traces, and defining states (for example an error state where eq is false,
to be kept outside an invariant subspace). It has two outputs: e, assumption on the node environment,
and eg, to be guaranteed or enforced by the node. A set C' = {c1,...,¢cq} of local controllable variables
will be used for ensuring this objective. This contract means that the node will be controlled, i.e., that
values will be given to ¢y, ..., ¢, such that, given any input trace yielding e, the output trace will yield
ec. This will be obtained automatically, at compilation, using DCS.

Without giving details [9] out of the scope of this case study, we compile such a BZR contract node
into a DCS problem as in Figure @l The body and the contract are each encoded into a state machine

f(:r17"'7xn) = (y17"'7yp)
assume €
enforce eg

with ci,...,¢q
y1 = f1(T1, .., Tn,Cly .y Cq)
yP :fp(I17...,In7017...,Cq)

Figure 4: BZR contract node graphical syntax

contract

q
A = e = sic -ZTl

body

x S| [t~

Figure 5: BZR contract node as DCS problem
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BZR program

=DCS ctrlx
V

application & ||
tasks automata

exceptions,
stops activations

discrete
control loop

computing
system

o tasks continuous

I

I

I

I

I

I

I

I

I

I

I

I

I

I .
. — real-time [=—
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I

I

L
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Figure 6: Discrete control handlers of continuous control tasks.

with transition function (resp. Trans and T'rC), state (resp. State and StC) and output function (resp.
Out and OutC'). The contract inputs X C come from the node’s input X and the body’s outputs Y, and
it outputs e4, ec. Assuming e produced by the contract program, DCS will obtain a controller C'trir
for the objective of enforcing eq (i-e., making invariant the sub-set of states where e4 = e is true),
with controllable variables cy,...cq. The controller then takes the states of the body and the contract,
the node inputs X and the contract outputs e, eq, and it computes the controllables X, such that the
resulting behaviour satisfies the objective.

3.2.3 Integration in a development process

The general scheme for using BZR consists of a treatment of the control part, using our target-independent
language and compiler, in derivation of the main system development process. In its instantiation for
the case of ORCCAD, illustrated in Figure [d one can see phases of:

e extraction of control part from the adaptive system, in the form of a BZR program;
e BZR compilation: synchronous compilation to:

— a Boolean equations form, with contracts compiled into DCS objectives; given to DCS to
produce the constraint on controllables;

— a sequential C code for the automata;
both are then assembled into an executable involving a resolution of the synthesised constraint;
e re-linking of the latter into the global executive.

We have ongoing work applying this development process for other targets in adaptive systems e.g., the
Fractal component-based middleware, a Java-based virtual machine, and reconfigurable FPGA-based
architectures.

Orccad Fxtractl RT & RP BZR compiler
7| automata
& contract

synchronous
compiler

spec.

executive | link |generated C code
(C, Linux/<— <

(with constraint
Xenomai) resolution)

constraint

Figure 7: Development process for BZR with Orccad.
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\‘ T3/ T3_ArmXcmove
Trap_T3

——=started_ArmXcmove

Outwork——=
START_ArmXcmove / Started_ArmXcmove

——= goodEndCmove

@ Trap_Abort
——= t2_Reconf

Olé)t;/vork / goodEndCmove ReadyToStart/ReadyToStart_WinX
Reconft2_Reconf,t2_ArmXcmove

Errtrack_____|

Reconf____|

Redbut——= —= t2_ArmXcmove

Outbound——=| [ - T3_ArmXcmove

FinTransite_WinX

START_ArmXcmove—=| /ActivateArmXcmove_WinX,Prev_rt_WinX |- activate_ArmXcmove_Win;

= rev_rt_WinX
FinTransite_ Winx ° T3 = Errtrack or Outbound or Redbut [ _prev_rt

| _ readyToStart_WinX

Figure 8: BZR/Heptagon programming of the generic task control automaton, in the case of ArmXcmove.

4 Discrete control handlers of continuous control tasks

4.1 General architecture
4.1.1 Discrete and continuous layers

The contribution of this paper is a novel method for designing discrete, logical control handlers, on top
of continuous control tasks. The goal is to ensure, by a discrete control loop, logical safety properties of
the tasks sequencings and mode changes. We contribute this new layer on top of the real-time executives
built with the Orccad design environment for control systems, by establishing the connection with the
BZR language and compiler, which is relying upon discrete controller synthesis techniques.

This is illustrated in Figure @ where, elaborating on the general Figure we show how the physical
system (a robot, with sensors giving values, and actuators taking commands) is in a closed loop with the
continuous control layer of the computing system. The latter is implemented on a RTOS, in the form of
real-time tasks in the Orccad approach .

These tasks are provided with local controllers in terms of reactive automata, that are interacting
with the real-time tasks typically through events corresponding to activation of tasks, or their stop-
ping, or exceptions to be handled. We will consider also application automata, which are describing
the sequencings of tasks, in reaction to internal events like task ends, or also to external events from
the controlled system. The application automaton interacts with the local automata typically through
emitting starting events towards them, and receiving end or exception events. On the basis of these
automata, we build another layer of closed-loop control, in the computing system, this time on discrete
aspects modelled in these transition systems. We will use DCS to produce a controller that will enforce
logical objectives on the allowed sequencings of tasks.

4.1.2 Design and development process

Figure[d shows that the particularities are in the interface between Orccad and BZR, at the two levels of:
language, to have the RT and RP automata of Orccad in BZR; and executive, where the code generated
by BZR is linked into the real-time executive generated by Orccad.

4.2 Language-level integration
4.2.1 RT automata

Figure Rl illustrates the BZR /Heptagon programming of the generic automaton node associated to each
task, in the case of ArmXcmove. Input and output signals are exchanged with three main components of
the architecture:

e the real-time tasks managed by the RTOS: typically to activate them, abort them, ...

e the controlled system, through sensors and monitors, as e.g., the Outbound input corresponding
to the target being outside of the robot work area; signals with names featuring WinX interact with
the robot (2D simulator, see Section B.T.2);

e the application-level RP automaton, typically by the start signal, or T2 and T3 exceptions.
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‘ ‘ m StartJ ¢ StartFl StartCT]
ar art,
itork ppliCation Task C Task J Task F Task CT
outWork
T ¢ w‘ goodEndJmoVe‘ so0dEndCT ‘

Figure 9: Complete BZR program (simplified).

For the two first classes, the automaton is interfaced with the real-time platform as described in Sec-
tion
The hierarchical automaton is read as follows:

e The task is initially in the higher-level state called Trap_T3. This state is exited upon occurrence
of the condition T3, which is defined inside the underlying mode as a disjunction of three input
signals: Outbound , Errtrack, Redbut. This transition goes to the end state T3, with emission of
T3_ArmXcmove towards the RP level.

e at the lower level, inside state Trap_T3, the sub-automaton is initially in state I. Upon input
signal start_ArmXcmove from the application, it goes into state Trap_Abort, where another sub-
automaton is executed, until the outgoing transition takes the control back to I; this happens upon
the disjunction of two possible conditions: upon input reconf, then t2_reconf and t2_ArmXcmove
are emitted for the RP, or upon input outwork, then goodEndCmove is emitted towards the RP,
meaning that the task ended with success.

This automaton constitutes the BZR/Heptagon encoding of the behaviour described previously in
Section

4.2.2 RP automaton

The RP behaviour could of course be programmed in automata as in classical ORCCAD. Using the
special feature of BZR involves a change in specification style, because of the mixture between imperative
behaviours and declarative control objectives.

Automaton of tasks sequencing It describes possible behaviours, with alternatives leading to dif-
ferent sequencings of the tasks upon incoming events. The choice points are associated with free Boolean
variables; the intention is to use the latter as controllable variables in the DCS. The automata can also
involve models of parts of the environment, occupation of resources, or observers of intended or forbid-
den sequences of events. It interacts with RT automata typically by sending them requests to start, and
reacting from their end or exception signals. This automaton is naturally application specific; Figure [l
illustrates one on the case study.

Contracts and control objectives The properties to be considered for controlling the tasks are coded
as BZR contracts. For a given set of tasks of a system to be controlled, and application automaton, the
contract specifies what properties must be invariantly enforced, e.g. those mentioned in Section
The controller obtained by DCS will enforce these, by restricting the system to required behaviours, using
the controllable variables for which the values are chosen in order to satisfy the properties. Figure [l
gives an example of such a RP, equipped with a contract.

4.2.3 Complete automaton

The global automaton, representing the complete control part of the system, in terms of Figure [ is
then obtained by the composition of the tasks automata, and of the application automaton. Figure @
illustrates this for the case study.
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Figure 10: Implementation of the execution machine.

4.3 Executive-level integration

At this level, we have to interface the code generated by the BZR compiler, as shown in Figure [1
with the Orccad-generated real-time executive mentioned in Section Z2Z4l It implements the transition
step function, to be called at the appropriate pace, with appropriate input parameters, and handling of
outputs. The implementation of this execution machine (i.e. of the dotted box in Figure [) is sketched
as shown in Figure [0

A main task sets up the whole system. It spawns all the real-time tasks and associated communication
and synchronisation objects. In particular it generates the needed clocks used to trigger the cyclic
calculation modules. Real-time threads are made cyclic by blocking their first input port on a semaphore
which is released by clock ticks. Otherwise they can be triggered by any other event, such as a data
production from another thread or a signal sent by a driver.

The automaton is the highest priority task : it is awakened by the occurrence of input signals related
to the execution of the controllers, e.g. pre-conditions, exceptions, and post-conditions issued by the
feedback controllers. All events are serialised and received on a FIFO input events queue. In reaction,
the automaton tells the RTOS what action must be taken by releasing the corresponding semaphore.
Thanks to the use of a model based approach all the glue code is automatically generated, while using
only basic features of operating systems make easier porting the tools for different targets (current targets
are Linux/Posix threads and Xenomai).

Although this automaton is crucial for a safe and successful behaviour of the application, it spends
most of time doing nothing, just waiting for input events during the cyclic execution of the control
algorithms managed by the RTOS. Moreover its transitions take very short times (typically some usecs)
so that the overhead due to discrete events control is negligible.
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5 Case study of a robot arm

5.1 Description of the case study
5.1.1 The ArmX robot arm model

We define a robot arm, called ArmX, which is a two-link manipulator with rotational joints (q1,q2) shown
on Figure [[1l Each link i ([1,2]) has a point masses Mi ([1,2]) at the end of links. The dynamic model
of the manipulator can be written in the form: 7 = M(q)§ + V(q,q) + G(¢) where M (q) is the 2 x 2
mass matrix of the manipulator, V' (g, q) is an 2 x 1 vector of centrifugal an Coriolis terms, G(q) is an
2 x 1 vector of gravity terms and 7 the input joint torque. For this simple manipulator all details of
calculation can be found in [I0].

ArmX is equipped with a robotic tool changer which allows the robot to switch end effector. There
are two tools manipulated by the arm, one is used when the target is inside the robot workspace (for
example a gripper) and the second is used outside of this space (for example a proximity sensor to point
the target).

e

Ye q2

s
’,—\\‘( .
-
v
.
K

Yb 1
) 1 L1

Kb

Figure 11: The ArmX model.

5.1.2 The Orccad Robot-Tasks

In this application, we identify four control-laws, embedded in four RTs:

the joint space control task ArmXjmove controls the move in the joint space of the manipulator i.e.,
in terms of values of angles at the joints;

the Cartesian space control task ArmXcmove controls the move in the Cartesian space of the ma-
nipulator, in terms of 3d coordinates; it is appropriate for aiming at targets inside the workspace.

the target aiming task ArmXfmove controls the pointing towards a point by trajectory following; it
is appropriate for aiming at targets outside the workspace.

the tool change task CT first brings the robot to its initial position (¢1 = 0,¢2 = 0), in order to then
switch the end effector tool.

The Simulation environment As our case study is made in simulation, we need to simulate the
dynamics on the two-link manipulator ArmX modelled previously. We use its inverse dynamic model to
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Figure 12: The ArmX 2D simulation

node procRobot (goodEndCT,goodEndJmove,t2,0ut Work,inWork:bool) returns( startC, startF, startJ, startCT :bool)

goodtool = ( ActifCJ implies CTcj) & (ActifF implies CTf);
ex = ActifF xor ActifCJ xor ActifCT;
assume (not (inWork & outWork)) enforce (goodtool & ex)

with (okl,0k2,0k3:bool)

]
outWork and not okl
outWork and
okl / startE,

inWork inWorl

okl / startF

ok2 / startC goodEndCT

Figure 13: Global BZR node, with contract.

compute joint accelerations: § = M ~1(q)(t — V(q,¢) — G(q)) and we obtain the current ¢ and ¢ by a
double Euler integration.

The simulation is animated through a X11 window like in Figure This window is interactive and
the user can use keyboard to give information to the robot or move a target (a white square) with the
mouse.

So, from ORCCAD or another application, this simulator is perceived like a real robot; we have
functions to initialise it, to put torque, to get joint position, etc.

5.1.3 The application

The application designed is a target following task. When the target is inside the robot workspace, the
effector follows the target. When it is outside of the robot workspace the manipulator point towards
this target. This application must be safe and so it is performed taking into account exceptions like the
tracking error is too high, joints limit are reached, or reconfiguration arm is required.

The objective is that the arm automatically changes to the appropriate tool, according to the target
being inside or outside the workspace. The fact that the tool change task is inserted automatically in
function of the current situation makes it an adaptive system.

5.2 The tasks and their local RT control

To each task corresponds an instance of the generic task control automaton; for the case of the ArmXcmove
task the automaton is shown in Figure Bl Each of the three other tasks is associated with a similar one.
All are featured in the global controller as shown in Figure
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5.3 The application RP and its global control
5.3.1 Specification as a BZR contract

We apply the BZR programming methodology: first describe possible behaviours, then specify control
objectives in the contract. The application must launch robot tasks corresponding to the current state
of the target (inside or outside the workspace) and change the tool arm to get the right tool for each
task. So the control objective is first to ensure we have the right tool, and second, to check the smooth
running of the application, i.e., allowing at most task to be active at a time, and also at least one, as
mentioned in Section EZZ3 A set C = {okl,0k2, 0k3} of local controllable variable will be used for
ensuring this objective. The contract specifies that the node will be controlled, i.e., that values will be
given to oky,oks, 0ks such that, given any uncontrollable input trace, the output trace will satisfy the
two objectives.

5.3.2 The BZR node for the application

It is named procRobot, and illustrated in Figure

PR automaton It is composed of 4 parallel automata, described from left to right:

e the automaton for the F task: it can start the ArmXfmove task, by emitting startF, when it receives
the signal outWork and obtains the permission of the controller by the flow ok1; if ok1 is false,
then it goes to state Wait, until okl becomes true. It models the choice to delay the starting of F,
and corresponds to the delayable tasks pattern illustrated in Figure

e the automaton for the C and J tasks: it is hierarchical with two levels. The upper level is also an
instance of the delayable task pattern; the Boolean ok2 is used to mark the choice point.

The sub-automaton is in the ActifCJ state manages the alternation between C and J tasks. Upon
occurrence of an exception of type T2 in task C, it gives control to the task J. This is a way of
handling singularities, which are points that can’t be reached by using the control laws of task C:
in this case control is given to task J, by sending startJ, to reposition the arm to reach this point.
At its end a signal goodEndJmove is received from the RT, then task C is started again.

e the automaton observing the current tool state (top) is used to memorise the current tool of the
arm. It has two states corresponding to two tools manipulated by the arm, the first one is used in
the workspace accessible by the arm, and the other in outside. Every change of tool this automaton
receives a goodEndCT signal from the RT automaton to indicate that the task ended well.

e the automaton for the CT task (bottom) is modelling the fact that it can be triggered by the
controller that will be synthesised. Using controllable variable ok3, the controller can force the
tool change by sending startCT.

This parallel automaton describes the possible sequencings of the tasks. It can be noted that it does
not explicitly care for their exclusion, or for managing the appropriateness of the tool. This is shown
next in the declarative contract, and compiled with DCS.

Contract It can be seen in the upper part of Figure [3 it is itself a program, with its own equations.
Three controllable variables, defined in the with part, will be used for ensuring two objectives:

e the right tool for the right task: a Boolean variable goodtool is defined, as the conjunction of two
implications: they state that when a task is active (ActifCJ, respectively ActifF), it implies that
the arm carries the right tool (CTcj, respectively CT£).

e Mutual exclusion and default control: an equation defines ex, which is the exclusive disjunction of
active states for the tasks. it means actually two things: that there is at most one active task, and
also at least one, so that the arm is always controlled, as mentioned in Section

The contract is that, assuming that the target can not be inside and outside of the workspace at the
same time, control enforces that the two Boolean are true.
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5.4 Simulation and typical scenario

The above BZR program can be compiled and executed in the robot arm simulator. Here is a typical
scenario showing the intervention of the controller on the system, so that control objectives are preserved.

At some point the task CJmove is active, and the target inside the workspace, and the tool carried
by the arm corresponds to state CTcj. Then, the user clicks outside of the workspace, so the application
receives the outWork input. This event causes the automaton for CJ to move by a transition to its initial
state.

It also causes the automaton for task F to quit its initial state; here, we have a choice point conditioned
by ok1. Due to the first contract property, goodtool must be kept true, so given that the current tool
state is CTcj the controller can not allow the transition to ActifF, and must give the value false to
ok1l. Hence task F goes into Wait state. Due to the other contract property, ex must be kept true, which
forces the controller to maintain at least one active state. Therefore it launches the task CT using the
controllable variable ok3, which will change the tool.

At the end of the task CT, the goodEndCT event allows the automaton observing the current tool to
pass in the state Ctf. Thus we have the right tool for task F, and the controller can release F from Wait
to ActifF, by giving value true to controllable variable ok1.

This shows how mutual exclusion, and insertion of reconfiguration tasks can be obtained declaratively.

6 Conclusion and perspectives

We propose a novel technique to design discrete control loops on top of continuous control tasks, ensuring
logical safety properties of the tasks sequencings and mode changes. Its implementation integrates OR-
CCAD, a real-time control executives design environment, and the BZR reactive language, encapsulating
in a user-friendly way the formal DCS technique in its compilation. A case of a robot arm is studied.
It constitutes a concrete approach to implementing hybrid systems. Further work includes consolidating
the integration of ORCCAD and BZR beyond this case study, enriching the models with more quantita-
tive aspects [I3], defining libraries of control models and contracts, and considering the more involving
example of a Mars rover.
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