Enhancing RRM optimization using a priori knowledge for automated troubleshooting

Abstract : The paper presents a methodology that combines statistical learning with constraint optimization by locally optimizing Radio Resource Management (RRM) or system parameters of poorly performing cells in an iterative manner. The statistical learning technique used is Logistic Regression (LR) which is applied on the data in the form of RRM-KPI (Key Performance Indicator) pairs. LR extracts closed form (functional) relations, known as the model, between KPIs and RRM parameters. This model is then processed by an optimization engine which proposes a new RRM parameter value. The RRM parameter value is reinserted in the network/simulator to generate corresponding KPI vector constituting generated RRM-KPI pair. First, only the a priori RRM-KPI pairs which are based upon the a priori model information are used for the model extraction. Then, as the optimization iterations progress, the generated pairs are given more importance in model extraction and the model is iteratively refined. The use of the a priori knowledge has the advantage of avoiding wrong initial models due to noisy data, allows much faster convergence and makes it more suitable for the off-line implementation. The proposed method is applied to troubleshoot an Inter-Cell Interference Coordination (ICIC) process in a LTE network which is based on soft-frequency reuse scheme.
Type de document :
Communication dans un congrès
WiOpt'10: Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, May 2010, Avignon, France. pp.426-434, 2010
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00498833
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 8 juillet 2010 - 16:17:07
Dernière modification le : jeudi 8 juillet 2010 - 16:20:48
Document(s) archivé(s) le : jeudi 1 décembre 2016 - 06:21:52

Fichier

p426-tiwana.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00498833, version 1

Collections

Citation

Moazzam Islam Tiwana, Zwi Altman, Berna Sayrac. Enhancing RRM optimization using a priori knowledge for automated troubleshooting. WiOpt'10: Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, May 2010, Avignon, France. pp.426-434, 2010. 〈inria-00498833〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

93