M. Abdul-karim, B. Roysam, N. M. Dowell-mesfin, A. Jeromin, M. Yuksel et al., Automatic selection of parameters for vessel/neurite segmentation algorithms, IEEE Transactions on Image Processing, vol.14, issue.9, pp.1338-1350, 2005.
DOI : 10.1109/TIP.2005.852462

A. Moya, J. P. Lee, S. Das, and S. , Segmentation of color images for interactive 3d object retrieval Adaptive image segmentation using genetic and hybrid search methods, Trans. on Aerospace and Electronic Systems, vol.31, issue.4, pp.1268-1291, 1995.

A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence, vol.97, issue.1-2, pp.245-271, 1997.
DOI : 10.1016/S0004-3702(97)00063-5

E. Borenstein and J. Malik, Shape Guided Object Segmentation, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), pp.969-976, 2006.
DOI : 10.1109/CVPR.2006.276

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

Y. Chen and J. Z. Wang, Image categorization by learning and reasoning with regions, Journal of Machine Learning Research, vol.5, pp.913-939, 2004.

L. Cinque, F. Corzani, S. Levialdi, R. Cucchiara, and G. Pignalberi, Improvement in range segmentation parameters tuning, Proc. of the Int. Conf. on Pattern Recognition, p.10176, 2002.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proc. of the Int. Conf. on Knowledge Discovery and Data Mining, pp.226-231, 1996.

M. Everingham, H. Muller, and B. Thomas, Evaluating Image Segmentation Algorithms Using the Pareto Front, Proc. of the Eur. Conf. Computer Vision, pp.34-38, 2002.
DOI : 10.1007/3-540-47979-1_3

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Graph-Based Image Segmentation, International Journal of Computer Vision, vol.59, issue.2, pp.167-181, 2004.
DOI : 10.1023/B:VISI.0000022288.19776.77

C. Fowlkes and D. Martin, The berkeley segmentation dataset and benchmark, 2007.

E. Gelasca, E. Salvador, and T. Ebrahimi, Intuitive strategy for parameter setting in video segmentation, Visual Communications and Image Processing, pp.998-1008, 2003.

D. E. Goldberg, Genetic Algorithms in Search, Machine Learning, 1989.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res, vol.3, pp.1157-1182, 2003.

R. Haralick, Statistical and structural approaches to texture, Proc. of the IEEE, 1979.
DOI : 10.1109/PROC.1979.11328

F. J. Huang and Y. Lecun, Large-scale learning with svm and convolutional nets for generic object categorization, Proc. of the Int. Conf. on Computer Vision and Pattern Recognition, pp.284-291, 2006.

A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol.24, issue.12, pp.1167-1186, 1991.
DOI : 10.1016/0031-3203(91)90143-S

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

K. L. Laws and S. Mitra, Textured image segmentation Color image segmentation : A state-of-the-art survey, Indian National Science Academy, vol.67, pp.207-221, 1980.

S. Mao and T. Kanungo, Automatic training of page segmentation algorithms : An optimizatin approach, Proc. of the Int. Conf. on Pattern Recognition, pp.531-534, 2000.

C. R. Maurer, R. Qi, and V. Raghavan, A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.2, pp.265-270, 2003.
DOI : 10.1109/TPAMI.2003.1177156

V. Mezaris, I. Kompatsiaris, and M. Strintzis, Still image objective segmentation evaluation using ground truth, Proc. of the Workshop on Information and Knowledge Management for Integrated Media Communication, pp.9-14, 2003.

L. C. Molina, L. Belanche, and A. Nebot, Feature selection algorithms: a survey and experimental evaluation, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.306-313, 2002.
DOI : 10.1109/ICDM.2002.1183917

J. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.1162-1173, 1965.
DOI : 10.1093/comjnl/7.4.308

R. Nock and F. Nielsen, Statistical region merging, Pattern Analysis and Machine Intelligence, pp.1452-1458, 2004.

N. R. Pal and S. K. Pal, A review on image segmentation techniques, Pattern Recognition, vol.26, issue.9, pp.1277-1294, 1993.
DOI : 10.1016/0031-3203(93)90135-J

J. Peng and B. Bahnu, Delayed reinforcement learning for adaptive image segmentation and feature extraction, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.28, issue.3, pp.482-488, 1998.
DOI : 10.1109/5326.704593

G. Pignalberi, R. Cucchiara, L. Cinque, and S. Levialdi, Tuning Range Image Segmentation by Genetic Algorithm, EURASIP Journal on Advances in Signal Processing, vol.2003, issue.8, pp.780-790, 2003.
DOI : 10.1155/S1110865703303087

H. Prehn and G. Sommer, An Adaptive Classification Algorithm Using Robust Incremental Clustering, 18th International Conference on Pattern Recognition (ICPR'06), pp.896-899, 2006.
DOI : 10.1109/ICPR.2006.231

V. Priese, L. Rehrmann, and P. Sturm, Color structure code, 2002.

T. R. Reed and J. M. Du-buf, A review of recent texture segmentation and feature extraction techniques, CVGIP: Image Underst, vol.57, issue.3, pp.359-372, 1993.

C. Rosenberger, S. Chabrier, H. Laurent, and B. Emile, Unsupervised and Supervised Segmentation evaluation, in book: Advances in Image and Video Segmentation Inducing semantic segmentation from an example, pp.393-384, 2005.

W. Skarbek and A. Koschan, Colour image sementation -a survey, 1994.

T. Wu, C. Lin, and R. Weng, Probability estimates for multi-class classification by pairwise coupling, The Journal of Machine Learning Research, vol.5, pp.975-1005, 2004.

Y. Xia, D. Feng, Z. Rongchun, and M. Petrou, Learning-based algorithm selection for image segmentation, Pattern Recognition Letters, vol.26, issue.8, pp.1059-1068, 2005.

W. Yasnoff, J. Mui, and J. Bacus, Error measures for scene segmentation, Pattern Recognition, vol.9, issue.4, pp.217-231, 1977.
DOI : 10.1016/0031-3203(77)90006-1

Y. Zhang, A survey on evaluation methods for image segmentation, Pattern Recognition, vol.29, issue.8, pp.1335-1346, 1996.
DOI : 10.1016/0031-3203(95)00169-7

Y. Zhang and H. Luo, Optimal selection of segmentation algorithms based on performance evaluation, Optical Engineering, vol.39, pp.1450-1456, 2000.

H. Zhang, J. E. Fritts, and S. A. Goldman, Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding, vol.110, issue.2, pp.260-280, 2008.
DOI : 10.1016/j.cviu.2007.08.003