A Learning Approach for Adaptive Image Segmentation

Vincent Martin 1, * Nicolas Maillot 1 Monique Thonnat 1
* Auteur correspondant
Abstract : As mentioned in many papers, a lot of key parameters of image segmentation algorithms are manually tuned by designers. This induces a lack of flexibility of the segmentation step in many vision systems. By a dynamic control of these parameters, results of this crucial step could be drastically improved. We propose a scheme to automatically select segmentation algorithm and tune theirs key parameters thanks to a preliminary supervised learning stage. This paper details this learning approach which is composed by three steps: (1) optimal parameters extraction, (2) algorithm selection learning, and (3) generalization of parametrization learning. The major contribution is twofold: segmentation is adapted to the image to segment, and in the same time, this scheme can be used as a generic framework, independant of any application domain.
Type de document :
Communication dans un congrès
International Conference on Computer Vision Systems, Jan 2006, New York City, NJ, United States. pp.40, 2006, 〈10.1109/ICVS.2006.4〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00499629
Contributeur : Vincent Martin <>
Soumis le : dimanche 11 juillet 2010 - 13:09:30
Dernière modification le : samedi 27 janvier 2018 - 01:30:44
Document(s) archivé(s) le : mardi 12 octobre 2010 - 10:09:41

Fichier

ICVS06.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Vincent Martin, Nicolas Maillot, Monique Thonnat. A Learning Approach for Adaptive Image Segmentation. International Conference on Computer Vision Systems, Jan 2006, New York City, NJ, United States. pp.40, 2006, 〈10.1109/ICVS.2006.4〉. 〈inria-00499629〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

515