Learning Contextual Variations for Video Segmentation

Vincent Martin 1, * Monique Thonnat 1
* Auteur correspondant
Abstract : This paper deals with video segmentation in vision systems. We focus on the maintenance of background models in long-term videos of changing environment which is still a real challenge in video surveillance. We propose an original weakly supervised method for learning contextual variations in videos. Our approach uses a clustering algorithm to automatically identify different contexts based on image content analysis. Then, state-of-the-art video segmentation algorithms (e.g. codebook, MoG) are trained on each cluster. The goal is to achieve a dynamic selection of background models. We have experimented our approach on a long video sequence (24 hours). The presented results show the segmentation improvement of our approach compared to codebook and MoG.
Type de document :
Communication dans un congrès
International Conference on Computer Vision Systems, May 2008, Patras, Greece. Springer Berlin / Heidelberg, 5008, pp.464-473, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-79547-6_45〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00499631
Contributeur : Vincent Martin <>
Soumis le : dimanche 11 juillet 2010 - 13:23:24
Dernière modification le : samedi 27 janvier 2018 - 01:30:44
Document(s) archivé(s) le : mardi 12 octobre 2010 - 10:10:55

Fichier

ICVS08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Martin, Monique Thonnat. Learning Contextual Variations for Video Segmentation. International Conference on Computer Vision Systems, May 2008, Patras, Greece. Springer Berlin / Heidelberg, 5008, pp.464-473, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-79547-6_45〉. 〈inria-00499631〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

165