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Abstract—Wireless local area networks, in particular the
ones based in the IEEE 802.11 standard, are nowadays used
around the world to deliver Internet access, and are becoming
increasingly prevalent. One of the crucial performance issues that
these networks introduce is the possibility of having multiple
transmission rates in the physical layer.

In this paper, we use the Network Utility Maximization
framework to characterize the cross-layer interaction between
the transport protocols such as TCP and the underlying MAC
level rate adaptation. We describe the resource allocation imposed
by current wireless networks in this framework, and characterize
its equilibrium. Moreover, we propose alternative resource alloca-
tions that overcome the inefficiencies found in current protocols,
and show simple mechanisms to impose more efficient equilibria
in single cell scenarios. We also present simulations of these
mechanisms in action, and discuss further generalizations to more
complex networks.

I. INTRODUCTION

The Network Utility Maximization (NUM) framework orig-

inating in the work of Kelly [1], has been extensively ap-

plied in recent years for cross-layer optimization in wire-

less networks, (see [2], [3] and references therein). We can

roughly classify this literature in terms of the multiple access

technology considered. For the case of a scheduled MAC,

the cross-layer optimization can be tackled through a dual

decomposition approach, although the scheduling component

is difficult. In the case of a random MAC, much of the effort

has gone into modelling collisions; while this leads to non-

convexities (see [2]), recent results [4], [5] have shown how

to cast the problem in appropriate variables to approach the

performance of the scheduled case.

We argue, however, that when considering wireless LAN

technologies that are now prevalent in the world, the emphasis

on collisions is misplaced. In recent versions of the IEEE

802.11 [6] wireless LAN standard, the loss of performance

due to collisions is not as important as one might expect,

due to two main reasons: on one hand, most of the traffic

is downlink, and the Access Point (AP) does not collide with

itself; secondly, with the 802.11 default parameters, collision

probabilities and resolution time are low when compared with

data transmission, whenever the number of stations is not

too large. These conclusions follow from detailed models of

the IEEE 802.11 Distributed Coordination Function (DCF),

pioneered by [7]. Other aspects of the technology have a

much larger impact, in particular the adaptation of physical

layer modulation rates (ARF [8]), as studied recently in [9].

Understanding cross-layer issues in this context is the main

focus of this paper.

We begin in Section II by analyzing the effective rates

the TCP layer can achieve when operating above a wireless

MAC layer, specifically 802.11. This provides us with a

characterization of the data rates offered by the MAC layer to

the TCP layer, which is the basis for the rest of the analysis.

Secondly, in Section III we analyze the joint effect of using

TCP above the multiple rates offered by the MAC layer. A

first contribution of this paper is to pose this problem in the

NUM framework, by taking into account the TCP behavior

and the losses incurred in the AP buffer, in a single cell

scenario. In our model, we exhibit the inefficiency that results

from this arrangement, where users with high PHY rates are

severely penalized, with minimal benefit for the slow users.

This generalizes previous results ([9]) to fully take into account

the TCP behavior.

In a second step in the analysis, we interpret the behavior

in terms of a NUM problem with a natural constraint, but

where the user utilities are inversely scaled with capacity.

Based on this model, in Section IV we find ways of removing

this bias, in particular we find a suitable price scaling that

achieves global convergence to the unbiased NUM problem.

We also explore ways to implement price scaling at a packet

level, and we develop a new algorithm based on an appropriate

Active Queue Management scheme. In Section V we present

extensions of the analysis to a general network, involving

possibly wired and wireless links. In Section VI we exhibit the

performance of the proposed algorithms through simulations.

Conclusions are given in Section VII.

II. IMPACT OF OVERHEADS IN TCP OVER 802.11.

The purpose of this section is to quantify the impact

of protocol overheads when using TCP over 802.11. Using

802.11 implies that, when transmitting a packet of length L
and due to the use of the Distributed Coordination Function,

the Access Point (AP) must comply with a series of backoff

and waiting times, as well as headers included by the PHY

layer.

This means that the MAC layer offers a service to the upper

layer consisting of a tranmission rate Ci 6 PHYi. This has
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been analyzed before [7], [9], [10] and we will recall and

extend this analysis here.

The time it takes to send this packet has a fixed component

given by

T 0
i := DIFS + H +

L

PHYi

+ SIFS + MAC ACKi, (1)

that includes the time in the air and all overheads, plus a ran-

dom number of time slots Kσ, where K ∼ U{0, . . . , CW}.
In Table I we show typical values of these parameters for

802.11g.

Parameter Value

Slot time σ 9µs
SIFS 10µs
DIFS 28µs
PLCP Header H 24µs
PHYi 6Mbps . . . 54Mbps
CWmin 15 slots
MAC ACK 24µs

TABLE I
IEEE 802.11G PARAMETERS

We are interested in the average rate obtained by a station

to study the upper layer effective rate. Observing that each

packet is treated independently, the transmission times of

successive packets form a renewal process, and the renewal

reward theorem [11] tells us that in the long range the average

rate is:

C0
i =

L

EKσ + T 0
i

=
L

CWmin

2
σ + T 0

i

, (2)

where we substituted K for its mean. We also took CW =
CWmin since we are modeling downlink traffic from the

AP, which does not collide with itself. We also assume the

appropriate PHYi has been used so that one can neglect

packet transmission errors. The denominator of the preceding

expression (mean total time) is denoted by Ti.

In Table II we show the corresponding MAC level rates

C0
i for the different PHY rates allowed in 802.11g with

parameters as in Table I. Note the impact of overheads in

the highest modulation rates.

When TCP connections are taken into account, another

overhead must be considered: the TCP ACK packet. These

packets were designed to have low impact on the reverse

path, by having a length of 40 bytes. However, due to the

overheads added by the MAC layer, the TCP ACK becomes

non negligible, in particular at high modulation speeds. We

assume that one TCP ACK is sent in the uplink direction

for every TCP packet sent downlink. We will also assume

that collision probabilities are low between downlink packets

and the TCP ACKs. Under these assumptions, the TCP ACK

packet introduces another overhead time in the system. The

effective data rate then becomes:

Ci =
L

Ti + TCP ACKi

(3)

where TCP ACKi is the average time to transmit a

TCP ACK packet and is given by:

TCP ACKi := DIFS+H+
Lack

PHYi

+SIFS+MAC ACKi,

(4)

where Lack is typically 40 bytes. These effective data rates

Ci are also shown in Table II. Note the strong impact of the

TCP ACKs in the performance of the protocol, particurlarly

at high modulation rates.

PHY rates MAC rates (C0

i
) Eff. data rate (Ci)

54 31.9 22.4
48 29.7 21.2
36 24.6 18.5
24 18.4 14.6
18 14.6 12.1
12 10.4 8.9
6 5.57 5.08

TABLE II
MAC RATES FOR THE CORRESPONDING PHY RATES OF 802.11G IN

MBPS. L = 1500 BYTES.

In the following, we shall not address the impact of over-

heads and consider them given, since they are included in

the standards. We can thus, for the purpose of modelling,

concentrate in the Ci’s, which are the effective data rates

at which packets from a TCP connection are served. In the

following section we will model the behavior of the TCP

connections above this MAC layer.

III. TCP RESOURCE ALLOCATION IN A MULTIRATE

WIRELESS ENVIRONMENT

Let us consider first a single cell scenario where N users

indexed by i = 1, . . . , N are downloading data from a single

AP.

Assume that each station establishes a downlink TCP con-

nection, with sending rate xi. Packets of these connections will

be queued in the interface queue of the AP, before being put

into the shared medium to reach their destination. We want

to calculate the effective output rate yi attained by each user.

Assume that the Head of Line (HOL) probability for a packet

of user i is proportional to the input rates xi. Then, through

a renewal reward argument similar to [9] we have:

yi =
pHOL,iL

∑

j pHOL,jL/Cj

=
xi

∑

j xj/Cj

(5)

which is similar to eq. (5) of [9], but without the collision

terms.

To complete the loop, we must now model the TCP be-

havior, that determines the input rates xi. Recall (c.f. [12])

that TCP Reno-like algorithms can be modelled as a primal

controller:

ẋi = k(xi)(U
′
i(xi) − pi)

where U(x) is an increasing and concave Utility function, pi

is the link loss rate (interpreted as a price) and k(xi) > 0
a scaling factor. In the analysis, we will restrict ourselves
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to the α−fair family of utility functions introduced in [13],

which verify U ′(x) = Kx−α with α > 0 a parameter which

determines the compromise between efficiency and fairness of

the allocation.

We can model the link loss rate as:

pi =

(

xi − yi

xi

)+

=

(

1 −
1

∑

j xj/Cj

)+

= p

which is simply the proportion of packets that exceed the

current service rate, where (·)+ = max(·, 0) as usual. With

this model the packet loss rate of each flow is the same and

the complete dynamics follow:

ẋi = k(xi)(U
′
i(xi) − p), (6a)

p =

(

1 −
1

∑

j xj/Cj

)+

. (6b)

We would like to characterize the equilibrium of this dy-

namics in terms of a NUM problem. For this purpose, consider

the following function:

Φ(x) =
∑

i

xi

Ci

− 1 − log

(

∑

i

xi

Ci

)

,

whenever
∑

i
xi

Ci

> 1 and 0 otherwise.

Lemma 1: Φ is a convex function of x.
Proof: Φ(x) can be written as Φ(x) = g(f(x)) where

f(x) =
∑

i xi/Ci is a linear function of x and g(u) = (u −
1− log(u))1{u>1}, where 1 represents the indicator function.

It is easy to see that, for u > 0, g′(u) = max{0, 1 − 1/u}
which is nonnegative and increasing function of u. Therefore,
g is increasing and convex and thus Φ is convex [14].

Consider now the following convex optimization problem:

Problem 1:

max
x

∑

i

1

Ci

Ui(xi) − Φ(x) (7)

We have the following:

Theorem 2: The equilibrium of the dynamics (6) is the

unique optimum of Problem 1.

Let V (x) denote the objective function in equation (7). The

proof of the Theorem depends on the following lemma for

V (x), proved in the Appendix:

Lemma 3: The upper level sets of V , {x : V (x) > γ} are

compact and cover the positive orthant as γ → −∞.

Proof of Theorem 2: By Lemma 3 and the concavity of

the objective function, there is a unique optimum for Problem

1, and it must satisfy the optimality conditions, namely:

1

Ci

U ′
i(xi) −

∂

∂xi

Φ(x) = 0 ∀i

By substituting Φ we have:

1

Ci



U ′
i(xi) −

(

1 −
1

∑

j xj/Cj

)+


 = 0

Identifying the last term as p = p(x) in (6), the optimality

conditions become:

U ′
i(xi) − p = 0 ∀i

which is the equilibrium condition of (6).

Theorem 4: The equilibrium of the dynamics (6) is globally

asymptotically stable.

Proof: Consider V (x) as a Lyapunov function of the

system. Differentiating along trajectories:

V̇ = ∇V · ẋ =
∑

i

k(xi)

Ci

(U ′
i(xi) − p)

2
> 0

So V is increasing along the trajectories. Moreover, V̇ = 0
only when x = x∗ the solution of Problem 1. Therefore,

the upper level sets of V are forward invariant and since by

Lemma 3, they cover the positive orthant, this equilibrium is

globally asymptotically stable.

The function Φ in Problem 1 plays the role of a penalty

function, and thus Problem 1 can be sen as an approximation

of the following problem:

Problem 2 (Modified Network Problem):

max
x

∑

i

1

Ci

Ui(xi)

subject to the constraint:
∑

i

xi

Ci

6 1

which is the equivalent to the Network problem of [1], with

two variants. The first one is that the constraint is rewritten in

terms of xi/Ci, the “time proportion” the shared medium is

used by connection i. The sum of the allocated time propor-

tions must be less than one and this is a natural constraint1.

The second main difference with [1] is the scaling factor

Ci for the user utility. This implies a negative bias to users

with higher rates, since they would have less weight in the

net utility. This bias leads to a radical equalization of rates to

approximately the one of the slowest station, a well known

effect in 802.11 environments (c.f. [9]).

Remark 1: In the case where all users share a common

utility function (e.g. equal RTT TCP/Reno connections), the

solution of problem Problem 2 reduces to

x∗
i =

1
∑

j 1/Cj

,

which is the harmonic mean of the data rates. This is in

accordance with [9] where this rate is obtained as an upper

bound on the realistic rate permanent connections experiment,

and collisions are considered. As compared with [9], in our

result the behavior of TCP is fully taken into account. As

we mentioned before, we are disregarding collisions in the

downlink traffic, and focusing on the issue of the multiple

1This set can also be interpreted as the convex hull of the rates obtained
by assigning all capacity to each of the nodes, which is equivalent to models
used in scheduled networks [3].
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rates. Moreover, note that this result is independent of the

TCP flavor in use, so the MAC layer is actually determining

the allocation.

Example 1: To see the biasing effect of Problem 2 consider

the following example. Assume 3 users are downloading data

from a single AP, and they have common utilities U(x) =
− 1

τ2x
which model the TCP/Reno response, while their MAC

layer rates are Ci = 10. In this case x∗
i = 3.333 for all three

users. If user 3 for instance changes its radio conditions to

C3 = 1, the new allocation results:

x∗
1 = x∗

2 = x∗
3 = 0.8333.

Note that the fastest destinations are heavily penalized due to

the user 3 inefficiency2.

Remark 2: We can analyze the system also from a

connection-level perspective. If connections of rate Ci are not

permanent but they arrive as a Poisson Process of intensity

λi and have exponentially distributed workloads, in the case

where all the utilities are the same, the system becomes a

Discriminatory Processor Sharing queue [15]. In particular,

jobs with effective rate Ci have weight 1/Ci. This has been

noted before in [10], [16]. The results of this section therefore

generalize these previous results to the case where the utility

functions are not equal for each connection. Note that in this

case the queue is not a DPS queue anymore.

The previous remarks and examples suggest that ways to

remove the bias in Problem 2 must be explored. In the

following sections we propose alternative resource allocations

for the single cell networks.

IV. A MORE EFFICIENT RESOURCE ALLOCATION FOR A

SINGLE CELL

Based on the preceding discussion, it would seem natural

to remove the bias in Problem 2 by considering:

Problem 3 (Wireless Network Problem):

max
x

∑

i

Ui(xi)

subject to the constraint:
∑

i

xi

Ci

6 1,

Observe that the constraint here is similar to the ones discussed

in [3], where the schedulable region of the system is defined in

terms of the convex hull of the transmission rates. The purpose

of this section is to analyze how to achieve the solution

of Problem 3 without resorting to a complicated scheduling

mechanism in the AP.

To see the difference with Problem 2, consider the following

interesting property:

Proposition 5: If U(x) = K log(x) for all connections,

then the equilibrium of Problem 3 is x∗
i = Ci/n. In particular,

the allocated rate for user i depends only on its own effective

rate and the total number of users.

2The result from Problem 1 would be x∗

1
= x∗

2
= x∗

3
= 0.89, which

shows that the barrier function approximation is very close.

This shows that imposing proportional fairness between users

protects the fastest users from the lower rate ones. For instance,

in Example 1, high rate users would be unaffected by the

change in C3. When TCP Reno is in use, we do not have

such protection but the situation is nevertheless better, as the

following example shows.

Example 2: Assume we have the same situation of Example

1. When all three users have Ci = 10, the equilibirium of

Problem 3 is the same as before, x∗
i = 3.33. When user

3 changes its radio conditions and Ci = 1, the equilibrium

changes to x∗
1 = x∗

2 = 1.93, x∗
3 = 0.61. We see then that in

this case we can increase total network throughput by ≈ 80%
with respect to Example 1, and fastest users are not as heavily

penalized.

We would like to drive the network to the equilibrium of

Problem 3. For this purpose, consider the Lagrangian:

L(x, p) =
∑

i

Ui(xi) − p

(

∑

i

xi

Ci

− 1

)

.

A simple primal-dual gradient algorithm to solve this opti-

mization problem is:

ẋi = k(xi)

(

U ′(xi) −
p

Ci

)

, (8a)

ṗ =

(

∑

i

xi

Ci

− 1

)+

p

, (8b)

where k(xi) > 0 as before and (·)+p is the usual positive

projection. It is well known [17], [18] that the trajectories of

the dynamics given by (8) converge globally to the optimum

of Problem 3.

In the wired case, dual algorithms have interpreted the price

variable as the queueing delay [19], [20]. This is also the case

here in this modified version. By integrating ṗ we see that p
tracks the amount of time the shared medium is not capable

of coping with the demands, and thus accumulating as delay

in the queue.

More formally, let bi denote the amount of data of connec-

tion i in the buffer (assume it is non empty). Then

ḃi = xi − yi

and the delay d is given by:

d =
∑

i

bi

Ci

.

Therefore, recalling equation (5) we have:

ḋ =
∑

i

ḃi

Ci

=
∑

i

xi

Ci

− 1.

Observe further that when all capacities are equal Ci = C we

recover the delay based model of [19], [20].

From equations (8) we see that in order to appropriately

solve Problem 3, we need to scale the price to which the user

reacts by the effective rate Ci. This makes sense since connec-

tions with higher rates use the medium more efficiently, and

344



thus should be charged less whenever this resource is scarce.

Note however that this poses problems on implementation,

because it prevents from using directly the queueing delay as

the price. Moreover, the user endpoint has to be notified of

the correct MAC level rate, which is infeasible.

A. The Multirate RED algorithm

In order to drive the system to the optimum of Problem 3,

we propose to use a simple Active Queue Management policy

which we call the Multirate RED algorithm (MRED).

Instead of using queueing delay as the price, we propose to

use as a proxy the buffer length b, and to generate the price, the
AP discards packets randomly with probability pi proportional

to b
Ci

for connection i. This gives a linear Random Early

Detection (RED) algorithm, but with probabilities related

to the effective data rates. Note that less packets will be

dropped for connections with higher MAC rates. Moreover,

this mechanism can be implemented in the AP resorting only

to local information, such as destination address and current

rate for this destination.

The closed loop dynamics for the proposed system is:

ẋi = k(xi) (U ′(xi) − κb/Ci) , (9a)

ḃ =

(

∑

i

xi − yi

)+

b

=

(

∑

i

yi

)(

∑

i

xi

Ci

− 1

)+

b

.(9b)

where κ > 0 is the proportionality constant of RED. These

equations are similar to (8). In particular, in equilibrium, the

xi and p = κb will satisfy the KKT conditions of Problem

3. Stability results for these equations are harder to obtain, in

Section VI we explore its behavior by simulation.

V. EXTENSION TO GENERAL NETWORK TOPOLOGY

In this section, we will discuss how to extend the previous

analysis to the case where multirate wireless links and wired

ones are present in the system. The main purpose of this

section is to find a common price for the different type of

network capacity constraints to which users should react in

order to allocate resources properly. We identify three classes

of capacity constraints:

• The classical wired constraints,
∑

i xi 6 c.
• The wireless multirate constraints,

∑

i
xi

ci

6 1.
• The contention between cells constraints:

∑

j αj 6 1,
where αj is the proportion of time each contending node

is using the shared medium.

Consider then a network of J nodes, j = 1, . . . , J , con-
nected by links l = 1, . . . , L. These links can be wired or

wireless, and have an effective transmission rate cl. In the

case of wired links, cl is the link capacity. In the wireless

case, it is the effecive data rate. Let i = 1, . . . , n represent the

connections, with rate xi, and R the classical routing matrix:

Rli = 1 if connection i traverses link l and 0 otherwise.

To represent the contention inherent to the wireless medium,

we group the links l in contention sets: two links belong

to the same contention set if they cannot be transmitting

simultaneously and define Gkl = 1 if link l belongs to

contention set k and 0 otherwise; we call G the contention

matrix.

The network capacity constraints can then be written as

Hx 6 1 where H is given by H = GC−1R, with G, R
previously defined, C = diag(cl) and 1 a column vector of

ones.

To see how this framework enables us to model different

situations, consider the following examples:

Example 3 (Wired network): If all links are wired, the con-

tention matrix G is the Identity matrix. By taking R and C as

before we recover the classical wired constraints
∑

i∈l xi 6 cl.

Example 4 (Single wireless cell): If there is only one wire-

less AP with N users in the cell, we can take R as the

identity matrix, C as the wireless effective capacities and

G = 1
T (there is only one contention region where all

links participate). We then recover the constraints discussed

in Section IV.

Example 5 (Wireless Distribution System): To see a more

complete example, consider the network composed of wired

and wireless links shown in Figure 1. This topology appears

in outdoor wireless distribution scenarios. We can model the

capacity constraints of this network with the above framework

by taking:

G =









1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1









C = diag(c, cAP1
, cAP2

, c1, c2, c3, c4)

R =





















1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















AP1

AP2

Backhaul

Access (C)

cAP1

cAP2

c1

c2

c3

c4

Fig. 1. Topology of a mixed wired-wireless distribution system with 4 end-
users.
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We can now pose the general Network Utility Maximization

problem, which is:

Problem 4 (Wired-Wireless Network Problem):

max
x

∑

i

Ui(xi)

subjecto to:

Hx 6 1.

The previous problem seeks an optimal allocation within

the natural constraints of the network, expressed in terms of

allocated time. These constraints are equivalent to the ones

used in the scheduling literature [3]. However, modelling the

constraints as time proportions leads to a natural way to control

the input rates of the sources without explicit scheduling for

each destination in the nodes. something that is difficult to

implement and requires significant message passing between

them. In out approach, we assume that the buffers are served

as FIFO and we control the input rates to the network to obtain

a suitable time sharing.

Consider now the Lagrangian of Problem 4:

L(x, p) =
∑

i

Ui(xi) − pT (Hx − 1) (10)

where p = (p1, . . . , pK)T is the vector of prices. We see

therefore that we have one price for each contention graph.

By denoting q = HT p, the KKT conditions of Problem 4

are U ′
i(xi) = qi where qi is given by:

qi =
∑

l:i∈l

∑

k:l∈k

pk

cl

(11)

Therefore, the connection must react to a price which is the

sum of the prices of the the contention graphs it traverses,

divided by the corresponding link capacities.

Again, to solve Problem 4, we can use a primal-dual

algorithm which gives the following dynamics:

ẋi = k(xi) (U ′(xi) − qi) (12a)

ṗ = (Hx − 1)
+

p , (12b)

q = HT p. (12c)

These dynamics are globally asymptotically stable [17], [18]

and its equilibrium is the solution of Problem 4. In this context,

the prices track again the queueing delays at each node.

The remaining issue is whether this prices can be correctly

generated and transmitted to the sources via the MRED

implementation discussed in Section IV-A. Characterizing the

topologies where decentralization is possible is, at the time

of writing, ongoing work. However, we will present now two

important examples in which this mechanism can be applied.

Example 6 (Mixed wired-wireless access network): A typ-

ical configuration for wireless access coverage is to distribute

access points in non overlapping channels across the region to

cover, and wire them to the Internet access node. This produces

the tree topology of Figure 2. There, the APs are connected to

a central switch, which is also connected to the router handling

the Internet connection. End users are then connected to the

APs via 802.11 for example. In this case, each user traverses

three contention graphs, one per link.

AP1

APn

Internet

Access (Caccess)

Distr ibution

(Cdist)

Distr ibution

(Cdist)

Fig. 2. Topology of a mixed wired-wireless access network.

Assuming the link capacities and user distributions shown

in Figure 2, the corresponding price for user i is calculated

according to equation 11 as:

qi =
paccess

caccess

+
pdist

cdist

+
pAPi

ci

where paccess, pdist and pAPi
are the queueing delays suffered

by the data packets of user i along the network, scaled by the

corresponding link capacities.

By using the Multirate RED algorithm in each link in the

network, we can therefore transmit this price to the source, and

impose the notion of fairness of Problem 4 by emulating the

dynamics of (12). We shall show that this mechanism indeed

works in Section VI.

Example 7 (Wireless distribution system): A variation of

the above example occurs when the area to cover is large,

for instance, large outdoor deployements. In this case, the

distribution links that connect each AP with the wired network

are replaced by a wireless cell that backhauls all the APs and

which is directly connected to the Internet router, as in Figure

1. The APs have 2 radio interfaces: one to connect to the

backhaul link and one for local connectivity.

In this case, the corresponding price for user i can again be

calculated according to 11 as:

qi =
paccess

caccess

+
pBH

cAPi

+
pAPi

ci

where now pBH reflects the queueing delay in the backhaul

node, and cAPi
is the MAC layer rate at which the AP of user

i connect to the backhaul node. Again, by using Multirate RED

in this tree topology we can impose the notion of fairness of

Problem 4.

VI. IMPLEMENTATION AND SIMULATIONS

As we discussed in section IV, the price to which a TCP

connection should react in order to attain the equilibrium of
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Problem 3 is the queueing delay. However, this price should be

scaled by the effective data rate Ci the connection experiments

in each link. Clearly, this is difficult to implement without

resorting to scheduling. Moreover, typical TCP connections

use loss based congestion control mechanims, such as TCP

Reno. Therefore, we propose to use the MRED algorithm

developed in Section IV-A at each node to attain the optimum

of Problem 3.

To test the proposal in a real environment, we implemented

this algorithm in the Network Simulator ns-2 [21]. Our im-

plementation is based on the library dei80211mr [22]. Two

important extensions were made to the library: the existing

ARF mechanism was updated to cope with the possibility of

a single node having different modulation rates for different

destinations, which reflects the real behavior of current APs.

The second modification was to implement the Multirate RED

(MRED) queue, where the described early packet discard takes

place.

Note that the cross-layer information needed for imple-

mentation of the mechanism is minimal: whenever a packet

for next-hop j is received, it is discarded with probability

pj = κb/Cj where κ acts as a scaling parameter, b is the

current queue length, and Cj is the corresponding effective

rate for the current modulation rate the AP maintains with

destination i (as in Table II). In the case of wired links, the

link capacity is used to scale this drop probability. The non-

dropped packets are served then on a FIFO basis.

We now present several simulation scenarios to illustrate the

behavior of the proposed algorithm.

A. Single-cell scenario

We simulate the topology shown in Figure 3, which con-

sists of a single cell 802.11g scenario in which 3 users

are connected with a modulation rate PHYi = 54Mbps,
and some time later, a fourth user is added at the lowest

possible modulation PHY5 = 6Mbps. All four connections
use TCP/Newreno and share equal Round Trip Times (RTTs),

then having similar utility functions.

802.11

AP

Coverage Area

Bad link

Fig. 3. Topology of a single-cell scenario.

For these modulation rates, the effective data rates ac-

cording to Table II are Ci ≈ 22.4Mbps, i = 1, 2, 3 and

C4 ≈ 5.1Mbps. In the first graph of Figure 4, we see that

all connections converge to the same throughput, which is

approximately x∗ = 3.0Mbps, the harmonic mean discussed

in Remark 1. In the second graph, we show the behavior of the

system under the MRED algorithm. In this case the allocation

converges approximately to x∗
i = 4.2Mbps, i = 1, 2, 3 and

x∗
4 = 2.1Mbps, which is the exact solution of Problem 3.

Note that the total throughput in the network is increased by

more than 20%.
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Fig. 4. Comparison between throughputs: without MRED (above), with
MRED (below).

B. Wired-wireless scenario

The purpose of this example is to show that Problem 2

captures the behavior of the system when the TCP connections

have different RTTs, and thus different utilities, and to show

how efficiency can also be improved in this case with the

MRED algorithm.

We consider the topology of Figure 5, where two connec-

tions with different RTTs share a wireless bottleneck link. In

this example, connection 1 has twice the RTT of connection

2, and its station is closer to the AP, having a modulation rate

PHY1 = 54Mbps. The second connection has a modulation
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AP

TCP1

TCP2

Fig. 5. Wired-wireless topology.
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Fig. 6. Wired-wireless topology simulation. Above: original allocation.
Below: MRED algorithm.

rate of PHY2 = 6Mbps. Both connections use TCP/Newreno,
which we model by the utility function U(x) = −1/(τ2x)
with τ the connection RTT.

Plugging these values into Problem 2 using the effective

data rates of Table II, the allocation results x∗
1 = 2.25Mbps

and x∗
2 = 4.5Mbps. In the first graph of Figure 6 we show

the results of the corresponding simulation, which shows that

indeed the connection throughputs converge approximately to

the values predicted by Problem 2.

By using MRED in the AP we can change the allocation to

the one proposed in Problem 3, removing the bias of Problem

2. The resulting allocation is x∗
1 ≈ x∗

2 ≈ 4.1Mbps. In the sec-

ond graph of 6 we show the corresponding simulation results.

We see that the MRED algorithm approximately drives the

system to the new equilibrium. Note that this new equilibrium

is ≈ 20% more efficient than the preceding one.

C. Tree topology

In this example, we simulate the topology of Figure 2 with

two distribution APs and two users in each AP. The access link

capacity is caccess = 20Mbps representing a typical access

capacity. The distribution links have cdist = 100Mbps and

thus are overprovisioned. The wireless cells are identical and

have each one two users, with modulation rates PHY1 =
PHY3 = 54Mbps and PHY2 = PHY4 = 6Mbps. Each user

has a single TCP connection and all connections have equal

RTTs.

Plugging these values in Problem 3 gives the following

allocation:

x∗
1 = x∗

3 = 6.5Mbps x∗
2 = x∗

4 = 3.5Mbps

By using the MRED algorithm as discussed in Section V,

we can drive the system to this allocation. Results are shown

in Figure 7, where we see that the throughputs appoximately

converge to the above equilibrium.
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Fig. 7. Throughputs of TCP connections for a wireless access scenario with
4 users. MRED is in use.

VII. CONCLUSIONS

Throughout this paper, we applied the Network Utility Max-

imization framework to characterize the cross-layer interaction

between the TCP transport protocol with an underlying MAC

where multiple modulation rates coexist. This situation is

present in typical IEEE 802.11 deployment scenarios. We

analyzed the impact of overheads in the throughput of TCP

connections, and then we described the resource allocation
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imposed by current wireless networks in this framework, char-

acterizing its equilibrium through a suitable NUM problem.

In the second part of the paper, we proposed an alternative

resource allocation that generalized the fairness and efficiency

notions of TCP in wired networks to this context. This

new resource allocation overcomes the inefficiencies found

in current protocols. We also showed a simple mechanism to

impose these more efficient equilibria in single cell scenarios

and also showed possible generalizations of this procedure

to more complex topologies. Finally we validated the results

by simulations that show that the proposed algorithm indeed

drives the system to the desired allocations.

In future work, we plan to extend the proposed mechanisms

to the new 802.11 additions, where these issues may become

more important due to the higher data rates involved, and due

to packet aggregation mechanisms.

APPENDIX

Proof of Lemma 3: Denote by V (x) =
∑

i
1

Ci

Ui(xi) −
Φ(x) the objective function of Problem 1. We analyze the case

0 < α < 1, where we have the following bound:

∑

i

1

Ci

Ui(xi) =
∑

i

Kix
1−α
i

Ci(1 − α)

=
∑

i

KiC
−α
i

1 − α

(

xi

Ci

)1−α

6 K

(

max
i

xi

Ci

)1−α

6 K

(

∑

i

xi

Ci

)1−α

.

Here K = maxi{
KiC

−α

i

1−α
}. Let y =

∑

i xi/Ci and assume

y > 1. Using the previous bound we have:

V (x) 6 Ky1−α − y + 1 + log(y) = h(y)

and since α > 0, the function h(y) → −∞ when y → ∞
so for any given γ we can find yγ such that g(y) < γ for

all y > yγ . Therefore, for all x ∈ Eγ = {
∑

i xi/Ci > yγ}
we have that V (x) < γ. This proves that the level sets of

V , {V > γ}, are contained in the complement of the set

Eγ , which is compact. Since γ is arbitrary, we also have that

V (x) → −∞ when ||x|| → ∞.

The case with α = 1 can be proven analogously. For α >
1, the utilities are upper bounded and Φ(x) → ∞ whenever

||x|| → ∞ so the result is trivial.

ACKNOWLEDGMENTS

This work was partially supported by LATU/Ceibal, CSIC

I+D (Universidad de la República), ANII-FCE and AFOSR-

US.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal

of the Operational Research Society, vol. 39, pp. 237–252, 1998.
[2] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering

as optimization decomposition: A mathematical theory of network
architectures,” in Proceedings of the IEEE, vol. 95, no. 1, Jan 2007,
pp. 255–312.

[3] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer op-
timization in wireless networks,” IEEE Journal on Selected Areas in

Communication, pp. 1452–1463, Aug. 2006.
[4] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput

and utility maximization in wireless networks,” in Proceedings of the

Forty-Sixth Annual Allerton Conference on Communication, Control,

and Computing, Sep. 2008.
[5] A. Proutière, Y. Yi, and M. Chiang, “Throughput of random access

without message passing,” in Proceedings of the 44th Conference on

Information Science and Systems (CISS 08), Apr. 2008.
[6] “IEEE 802.11-2007, Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications,”
http://www.ieee802.org/11/, Jun. 2007.

[7] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coor-
dination function.” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 3, pp. 535–547, Mar. 2000.

[8] A. Kamerman and L. Monteban, “Wavelan-II: a high performance
wireless lan for the unlicensed band,” Bell Labs Technical Journal,
vol. 2, no. 3, pp. 118–133, Aug. 1997.

[9] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New insights from
a fixed-point analysis of single cell IEEE 802.11 WLANs,” IEEE/ACM

Transactions on Networking, vol. 15, no. 3, pp. 588–601, Jun. 2007.
[10] A. Ferragut and F. Paganini, “A connection level model of IEEE 802.11

cells,” in Latin American Networking Conference, Sep. 2009.
[11] W. Feller, An Introduction to Probability Theory and Its Applications.

New York: John Wiley & Sons, 1965.
[12] R. Srikant, The Mathematics of Internet Congestion Control. Boston,
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