Investigating the Impact of Sequential Selection in the (1,4)-CMA-ES on the Noiseless BBOB-2010 Testbed

Anne Auger, Dimo Brockhoff, Nikolaus Hansen

To cite this version:

HAL Id: inria-00502433
https://hal.inria.fr/inria-00502433
Submitted on 14 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigating the Impact of Sequential Selection in the
(1,4)-CMA-ES on the Noiseless BBOB-2010 Testbed

[Black-Box Optimization Benchmarking Workshop]

Anne Auger, Dimo Brockhoff, and Nikolaus Hansen
Projet TAO, INRIA Saclay—Île-de-France
LRI, Bât 490, Univ. Paris-Sud
91405 Orsay Cedex, France
firstname.lastname@inria.fr

ABSTRACT
This paper investigates the impact of sequential selection, a concept recently introduced for Evolution Strategies (ESs). Sequential selection performs the evaluations of the different candidate solutions sequentially and concludes the iteration immediately if one offspring is better than the parent. In this paper, the (1,4\(^{\mu}\))-CMA-ES, where sequential selection is implemented, is compared on the BBOB-2010 noiseless testbed to the (1,4)-CMA-ES. For each strategy, an independent restart mechanism is implemented. A total budget of \(10^4\)D function evaluations per trial has been used, where \(D\) is the dimension of the search space.

The experiments show for the (1,4\(^{\mu}\))-CMA-ES a statistically significant worsening compared to the (1,4)-CMA-ES only on the attractive sector function but a significant improvement by about 20\% on 5 out of the 24 BBOB-2010 functions (sphere, separable and rotated ellipsoid, discus, and sum of different powers).

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization

1. INTRODUCTION
Evolution Strategies (ESs) are robust stochastic search algorithms for numerical optimization where the function to be minimized, \(f\), maps the continuous search space \(\mathbb{R}^D\) into \(\mathbb{R}\). In ESs, a population of \(\lambda\) candidate solutions is sampled at each iteration by adding to a current solution \(\lambda\) random vectors following a multivariate normal distribution. In the local search (1,\(\lambda\))-ES we are interested in, the best of the \(\lambda\) solutions, i.e., the solution having the smallest objective function value, is selected to become the new current solution. Recently, a new selection called sequential selection has been introduced to enhance the performance of (1,\(\lambda\))-ESs [1]. Sequential selection consists in performing the \(\lambda\) offspring-evaluations sequentially and concluding the iteration as soon as one offspring is better than the parent.

In this paper, we assess quantitatively the possible gain that can be brought by sequential selection. To this end, we have implemented sequential selection within the well-known Covariance-Matrix-Adaptation Evolution-Strategy (CMA-ES) [9, 8, 7]. We compare on the BBOB-2010 testbed the performance of the (1,4\(^{\mu}\))-CMA-ES implementing sequential selection with the performance of the (1,4)-CMA-ES.

2. THE ALGORITHMS TESTED
The algorithms tested are derived from the standard CMA-ES algorithm where at each iteration \(n\), \(\lambda\) new solutions, or offspring, are generated by sampling independently \(\lambda\) random vectors \((N_i(0,C_n))_{1 \leq i \leq \lambda}\) following a multivariate normal distribution with mean vector \(0\) and covariance matrix \(C_n\). The vectors are added to the current solution \(X_n\) to create the \(\lambda\) new solutions \(X_n^\lambda = X_n + \sigma_n N_i(0,C_n)\) where \(\sigma_n\) is a strictly positive parameter called step-size [8].

We benchmark two variants of the CMA-ES algorithm where \(\lambda\) equals 4, namely the (1,4)-CMA-ES and the (1,4\(^{\mu}\))-CMA-ES. Both algorithms differ in the way \(X_{n+1}\) is updated:

1. in the (1,4)-CMA-ES, \(X_{n+1}\) is the best among the four offspring, i.e., \(X_{n+1} = \text{argmin}\{f(X_{n}^1),\ldots,f(X_{n}^4)\}\),

2. in the (1,4\(^{\mu}\))-CMA-ES, \(X_{n+1}^1\) is first evaluated and compared to \(X_n\), if \(f(X_{n+1}^1) \leq f(X_n)\), then \(X_{n+1} = X_n^1\), else \(X_{n+1} = X_n\) is evaluated and compared to \(X_{n+1}^1\), if \(f(X_{n+1}^1) \leq f(X_n)\), then \(X_{n+1} = X_n^1\) else \(X_{n+1} = X_n\) is evaluated and the best among the four offspring is chosen, i.e., \(X_{n+1} = \text{argmin}\{f(X_{n}^1),\ldots,f(X_{n}^4)\}\).

Note that when sequential selection is applied, the number of offspring evaluated is a random variable, ranging here from 1 to \(\lambda = 4\).
Covariance matrix and step-size are updated using the selected steps [8, 1].

2.1 Independent Restarts

Similar to [2], we independently restarted the (1,4)-CMA-ES and the (1,4a)-CMA-ES as long as function evaluations were left, where \(10^4 \cdot D\) has been used as the maximal number of function evaluations.

2.2 Parameter Settings

We used the default parameter and termination settings (cf. [1, 4, 7]) found in the source code on the WWW1 with two exceptions. We rectified the learning rate of the rank-one update of the covariance matrix for small values of \(\lambda\), setting \(c_1 = \min(2, \lambda/3)/(\(D + 1.3\)^2 + \mu_{\text{eff}})\). The original value was not designed to work for \(\lambda < 5\). We modified the damping parameter for the step-size to \(d_s = 0.3 + 2\mu_{\text{eff}}/\lambda + c_s\). The setting was found by performing experiments on the sphere function. \(f_1\) with \(d_s\) was set as large as possible while still showing close to optimal performance, but, at least as large such that decreasing it by a factor of two did not lead to unacceptable performance. For \(\mu_{\text{eff}}/\lambda = 0.35\) and \(\mu_{\text{eff}} \leq D + 2\) the former setting of \(d_s\) is recovered. For a smaller ratio of \(\mu_{\text{eff}}/\lambda\) or for \(\mu_{\text{eff}} > D + 2\), the new setting allows larger (i.e. faster) changes of \(\sigma\). Here, \(\mu_{\text{eff}} = 1\). For \(\lambda \geq 3\), the new setting might be harmful in a noisy or too rugged landscape. Finally, the step-size multiplier was clamped from above at \(\exp(1)\), while we do not believe this had any effect in the presented experiments. Each initial solution \(X_0\) was uniformly sampled in \([-4, 4]^D\) and the step-size \(c_0\) was initialized to 2. The source code used for the experiments is available at2.

As the same parameter setting has been used in all experiments for all test functions, the crafting effort \(\text{CrE}\) of all function evaluation was \(3.3; 3.3; 3.0; 3.1; 3.4; 4.0\times10^{-4}\) times \(10\). The source code used for the experiments is available at3.

3. CPU TIMING EXPERIMENTS

For the timing experiment, all three algorithms were run on \(f_8\) with a maximum of \(10^4 \cdot D\) function evaluations and restarted until at least 30 seconds have passed (according to Figure 2 in [5]). The experiments have been conducted with an 8 core Intel Xeon E5520 machine with 2.27 GHz under Ubuntu 9.1 linux and Matlab R2008a. The time per function evaluation was \(3.3; 3.3; 3.0; 3.1; 3.4; 4.0\times10^{-4}\) seconds for (1,4)-CMA-ES and \(7.7; 7.4; 7.5; 7.9; 7.3; 8.1\times10^{-4}\) seconds for (1,4a)-CMA-ES in dimensions 2; 3; 5; 10; 20; 40 respectively. Note that MATLAB distributes the computations over all 8 cores only for 20D and 40D.

4. COMPARING THE (1,4) AND THE (1,4a)-CMA-ES

Results from experiments comparing (1,4)-CMA-ES and (1,4a)-CMA-ES according to [5] on the benchmark functions given in [3, 6] are presented in Figures 1, 2 and 3 and in Table 1. The expected running time (ERT), used in the figures and table, depends on a given target function value, \(f_t = f_0/\Delta f\), and is computed over all relevant trials as the number of function evaluations executed during each trial

\[\text{ERT} = \text{number of function evaluations} / \text{number of trials} \times \Delta f / f_0\]

while the best function value did not reach \(f_t\), summed over all trials and divided by the number of trials that actually reached \(f_t\) [5, 10]. Statistical significance is tested with the rank-sum test for a given target \(\Delta f\) using, for each trial, either the number of needed function evaluations to reach \(\Delta f\) (inverted and multiplied by \(-1\)), or, if the target was not reached, the best \(\Delta f\)-value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration.

From Fig. 2 and 3 as well as from Table 1, we observe that the expected running time of the (1,4a)-CMA-ES is by approximately 20\% smaller than the one of the (1,4)-CMA-ES. For example, the separable \((f_2)\) and rotated \((f_{10})\) ellipsoid, the discus \(f_{11}\), and the sum of different powers function \((f_{14})\), all results statistically significant. Moreover, only on the attractive sector function \((f_6)\), the (1,4a)-CMA-ES shows a statistically significant worse performance than the (1,4)-CMA-ES.

For the Gallagher functions \((f_{21}\) and \(f_{22})\), mixed results can be observed: on \(f_{21}\), the success probability of the (1,4a)-CMA-ES is slightly higher than the one of the (1,4)-CMA-ES whereas on \(f_{22}\), the success probability is lower, resulting in an expected running time that is more than twice as large as for the (1,4)-CMA-ES (both results are not statistically significant).

5. CONCLUSIONS

The idea behind the sequential selection scheme introduced in [1] is to skip function evaluations of the \(\lambda\) offspring in a (1 \(+ \lambda\))-ES as soon as an offspring is evaluated which is better than the current solution. Here, the concept of sequential selection has been integrated into a comma-strategy, the so-called (1,4a)-CMA-ES, and compared with the baseline algorithm (1,4)-CMA-ES on the BBOB-2010 testbed.

The experiments show improved results for the algorithm employing sequential selection: the (1,4a)-CMA-ES shows a significant improvement over the (1,4)-CMA-ES by about 20\% on 5 of the 24 BBOB-2010 functions. However, a statistically significant worsening on the attractive sector function in comparison to the (1,4)-CMA-ES is reported as well. Also on the Gallagher function \(f_{22}\), the (1,4a)-CMA-ES shows a lower success probability than the (1,4)-CMA-ES but the difference is not statistically significant here.

6. ACKNOWLEDGMENTS

This work received support by the French national research agency (ANR) within the SYSCOMM project ANR-08-SYSC-017 and within the COSINUS project ANR-08-COSI-007-12.

7. REFERENCES

1cmaes.m, version 3.41.b. from http://www.lri.fr/~hansen/cmaes_inmatlab.html
2http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results
3http://www.lri.fr/
Figure 1: ERT ratio of $(1,4^*)$-CMA-ES divided by $(1,4)$-CMA-ES versus $\log_{10}(\Delta f)$ for f_1–f_{24} in 2, 3, 5, 10, 20. Ratios $< 10^0$ indicate an advantage of $(1,4^*)$-CMA-ES, smaller values are always better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-evaluations for the same algorithm on this function. Symbols indicate the best achieved Δf-value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for $(1,4^*)$-CMA-ES. The line ends when no algorithm reaches Δf anymore. The number of successful trials is given, only if it was in $\{1 \ldots 9\}$ for $(1,4^*)$-CMA-ES (1st number) and non-zero for $(1,4)$-CMA-ES (2nd number). Results are significant with $p = 0.05$ for one star and $p = 10^{-9}$ otherwise, with Bonferroni correction within each figure.
Figure 2: Expected running time (ERT in log10 of number of function evaluations) of (1,4\textdegree)-CMA-ES versus (1,4)-CMA-ES for 46 target values $\Delta f \in [10^{-8}, 10]$ in each dimension for functions f_1-f_{24}. Markers on the upper or right edge indicate that the target value was never reached by (1,4\textdegree)-CMA-ES or (1,4)-CMA-ES respectively. Markers represent dimension: 2:*, 3:◇, 5:*+, 10:*, 20::.
Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension \(D \) (FEvals/D) to reach a target value \(f_{opt} + \Delta f \) with \(\Delta f = 10^k \), where \(k \in \{1, -1, -4, -8\} \) is given by the first value in the legend, for \((1,4^*)\)-CMA-ES (solid) and \((1,4)\)-CMA-ES (dashed). Light beige lines show the ECDF of FEvals for target value \(\Delta f = 10^{-8} \) of algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of \((1,4^*)\)-CMA-ES divided by \((1,4)\)-CMA-ES, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial ((1,4^*)-CMA-ES first).
Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 (given in the respective first row) for the algorithms (1,4)-CMA-ES and (1,4s)-CMA-ES for different \(\Delta f \) values for functions \(f_1-\ldots-f_{20} \). The median number of conducted function evaluations is additionally given in italics, if \(ERT(10^{-7}) = \infty \). *succ is the number of trials that reached the final target \(f_{\text{opt}} = 10^{-8} \). Bold entries are statistically significantly better compared to the other algorithm, with \(p = 0.05 \) or \(p = 10^{-k} \) where \(k > 1 \) is the number following the * symbol, with Bonferroni correction of 48.

