Mirrored Variants of the (1,2)-CMA-ES Compared on the Noiseless BBOB-2010 Testbed
Anne Auger, Dimo Brockhoff, Nikolaus Hansen

To cite this version:

HAL Id: inria-00502435
https://hal.inria.fr/inria-00502435
Submitted on 14 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mirrored Variants of the (1,2)-CMA-ES Compared on the Noisy BBOB-2010 Testbed

[Black-Box Optimization Benchmarking Workshop]

Anne Auger, Dimo Brockhoff, and Nikolaus Hansen
Projet TAO, INRIA Saclay—Île-de-France
LRI, Bât 490, Univ. Paris-Sud
91405 Orsay Cedex, France
firstname.lastname@inria.fr

ABSTRACT

Derandomization by means of mirroring has been recently introduced to enhance the performances of (1, λ)-Evolution-Strategies (ESs) with the aim of designing fast robust local search stochastic algorithms. This paper compares on the BBOB-2010 noiseless benchmark testbed two variants of the (1,2)-CMA-ES where the mirroring method is implemented. Independent restarts are conducted till a total budget of $10^7 D$ function evaluations per trial is reached, where D is the dimension of the search space. The results show that the improved variants increase the success probability on 9 (10) functions in 20D by a factor of about 2–3 (2–4) for a target value of 10^{-7} while in no case, the baseline (1,2)-CMA-ES is significantly faster on any tested target function value in 5D and 20D.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

1. INTRODUCTION

Evolution Strategies (ESs) are robust stochastic search algorithms for numerical optimization where the function to be minimized, f, maps the continuous search space \mathbb{R}^D into \mathbb{R}. Recently, a new derandomization technique replacing the independent sampling of new solutions by mirrored sampling has been introduced to enhance the performances of ESs [1]. While mirrored samples were introduced with the aim of designing fast robust local search algorithms, investigation of convergence speed was mainly carried out on the sphere function [1]. In this paper, we want to assess quantitatively the improvements that can be brought with the mirroring method on a wider range of problems. To do so, we compare on the BBOB-2010 noiseless testbed the (1,2)-CMA-ES with two variants implementing the mirrored samples: first the $(1,2_0)$-CMA-ES where every second mutation step is derandomized, and second the $(1,2_\infty)$-CMA-ES that in addition to the mirroring idea implements sequential selection [1]. Both variants are described in Sec. 2.

2. THE ALGORITHMS TESTED

The three algorithms tested are variants of the well-known CMA-ES [8] where at each iteration n, λ new solutions are generated by sampling independently λ random vectors $(N_i(0, C_n))_{1 \leq i \leq \lambda}$ following a multivariate normal distribution with mean vector 0 and covariance matrix C_n. The vectors are added to the current solution X_n to create the λ new solutions or offspring $X_n = X_n + \sigma_n N_i(0, C_n)$, where σ_n is the strictly positive step-size. In the standard (1,2)-CMA-ES, the number of offspring λ equals 2 and X_{n+1} is set to the best solution among X_n^1 and X_n^2, i.e., $X_{n+1} = \text{argmin}(f(X_n^1), f(X_n^2))$.

In the mirrored variant, denoted $(1,2_\text{m})$-CMA-ES, the second offspring is symmetric to the first offspring with respect to X_n, namely $X_n^2 = X_n - \sigma_n N_i(0, C_n)$, where $\sigma_n N_i(0, C_n)$ is the random vector added to X_n to create X_n^1. We see that the first and second added vector are negatively correlated (with correlation coefficient one). The update of X_{n+1} is then identical to the (1,2)-CMA-ES, namely $X_{n+1} = \text{argmin}(f(X_n^1), f(X_n^2))$.

In the (1,2∞)-CMA-ES, sequential selection is implemented. The offspring solutions are generated with mirrored sampling. Evaluations are carried out in a sequential manner. After evaluating X_n^1, it is compared to X_n and if $f(X_n^1) \leq f(X_n)$, the sequence of evaluations is stopped and $X_{n+1} = X_n^1$. In case both offspring are worse than X_n, $X_{n+1} = \text{argmin}(f(X_n^1), f(X_n^2))$ according to the comma selection. The number of offspring evaluated is a random variable ranging from 1 to 2—reducing the number of offspring adaptively as long as improvements are easy to achieve [1].

Covariance matrix and step-size are updated using the following update rules:

\[
\begin{align*}
\text{Covariance matrix:} & \quad C_{n+1} = C_n + \frac{1}{2n} \mathbf{X}_n \mathbf{X}_n^T - \frac{1}{n} \text{diag}(\mathbf{X}_n) \frac{1}{n} \text{diag}(\mathbf{X}_n) \\
\text{Step-size:} & \quad \sigma_{n+1}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_{n+1}^i - X_n)^2
\end{align*}
\]

©ACM, 2010. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published at GECCO'10, July 7–11, 2010, Portland, OR, USA. http://doi.acm.org/10.1145/1830761.1830772

Independent restarts: Similar to [2], we independently restarted the (1,2)-CMA-ES, $(1,2_0)$-CMA-ES and $(1,2_\infty)$-CMA-ES.

Similar to [2], we independently selected steps [8, 1].

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

©ACM, 2010. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published at GECCO'10, July 7–11, 2010, Portland, OR, USA. http://doi.acm.org/10.1145/1830761.1830772

Independent restarts: Similar to [2], we independently restarted the (1,2)-CMA-ES, $(1,2_0)$-CMA-ES and $(1,2_\infty)$-CMA-ES.
CMA-ES as long as function evaluations were left, where $10^D \cdot D$ was the maximal number of function evaluations.

2.1 Parameter setting

We used the default parameter and termination settings (cf. [1, 4, 7]) found in the source code on the WWW\(^1\) with two exceptions. We rectified the learning rate of the rank-one update of the covariance matrix for small values of λ, setting $c = \min(2/\lambda, 3)/(D + 1.3)^2 + \mu_{\text{eff}}$. The original value was not designed to work for $\lambda < 5$. We modified the damping parameter for the step-size to $d_\sigma = 0.3 + 2\mu_{\text{eff}}/\lambda + c_\sigma$. The setting was found by performing experiments on the sphere function, f_1: d_σ was set as large as possible while still showing close to optimal performance, but, at least as large such that decreasing it by a factor of two did not lead to unacceptable performance. For $\mu_{\text{eff}}/\lambda = 0.35$ and $\mu_{\text{eff}} \leq D + 2$ the former setting of d_σ is recovered. For a smaller ratio of μ_{eff}/λ or for $\mu_{\text{eff}} > D + 2$, the new setting allows larger (i.e. faster) changes of σ. Here, $\mu_{\text{eff}} = 1$. For $\lambda \geq 3$, the new setting might be harmful in a noisy or too rugged landscape. Finally, the step-size multiplier was clamped from above at $\exp(1)$, while we do not believe this had any effect in the presented experiments. Each initial solution X_0 was uniformly sampled in $[-4, 4]^D$ and the step-size σ_0 was initialized to 2. The source code used for the experiments is available at\(^2\).

As the same parameter setting has been used in all experiments for all test functions, the crafting effort CrE of all three algorithms is 0.

3. CPU TIMING EXPERIMENTS

For the timing experiment, all three algorithms were run on f_k with a maximum of 10^D function evaluations and restarted until at least 30 seconds have passed (according to Figure 2 in [5]). The experiments have been conducted with an 8 core Intel Xeon E5520 machine with 2.27 GHz under Ubuntu 9.1 Linux and Matlab R2008a. The time per function evaluation was 5.9; 5.9; 6.2; 6.1; 6.8; 9.1 times 10^{-4} seconds for (1,2)-CMA-ES, 6.6; 6.0; 5.9; 6.0; 6.8; 8.3 times 10^{-4} seconds for (1,2)-CMA-ES, and 8.4; 8.6; 8.6; 9.2; 9.2; 11 times 10^{-4} seconds for (1,2)-CMA-ES in dimensions 2; 3; 5; 10; 20; 40 respectively. Note that MATLAB distributes the computations over all 8 cores only for 20D and 40D.

4. RESULTS

4.1 Comparing (1,2)- and (1,2\(_m\))-CMA-ES

Results from experiments comparing (1,2)-CMA-ES and (1,2\(_m\))-CMA-ES according to [5] on the benchmark functions given in [3, 6] are presented in Figures 3 and 4 and in Table 2. The statistical tests and the definition of the ERT is the same as above.

The results indicate that the (1,2\(_m\))-CMA-ES is even faster than the (1,2)-CMA-ES for 11 functions in 20D of which only 6 functions show a significant outperformance ($p \leq 0.05$). The largest speedups are on the sphere function, on f_2 (on both functions approx. 10% faster), on f_6 (about a factor of 2 faster, but not significant), and on f_8 (factor of 1.6 faster). On the other hand, the (1,2\(_m\))-CMA-ES is never significantly faster (only on f_{13} and f_{21} it is slightly faster than the (1,2\(_m\))-CMA-ES which is not statistically significant). Results on 5D are similar, although the difference between the algorithms is larger in higher dimensions.

4.2 Comparing (1,2\(_m\))- and (1,2\(_n\))-CMA-ES

Regarding this comparison, we cannot show the results in the same form as above due to space limitations but can state that, in principle, the results are comparable to the first comparison above—showing an even larger improvement for the (1,2\(_n\))-CMA-ES here.

5. CONCLUSIONS

The idea behind derandomization by means of mirroring introduced in [1] is to use only one random sample from a multivariate normal distribution to create two (negatively correlated or mirrored) offspring. Thereby, the first offspring is generated by adding a random sample to the parent solution and the second offspring then equals the solution which is symmetric to the first offspring with respect to the parent (by adding the negative sample to the parent). Here, this concept of mirroring has been integrated within two variants of a simple (1,2)-CMA-ES (of which one uses se-
Figure 1: Expected running time (ERT in log10 of number of function evaluations) of (1,2m)-CMA-ES versus (1,2)-CMA-ES for 46 target values $\Delta f \in [10^{-8}, 10]$ in each dimension for functions f_1–f_{24}. Markers on the upper or right edge indicate that the target value was never reached by (1,2m)-CMA-ES or (1,2)-CMA-ES respectively. Markers represent dimension: 2:♦, 3:◆, 5:★, 10:○, 20:□.
Figure 2: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D) to reach a target value $f_{opt} + \Delta f$ with $\Delta f = 10^{-k}$, where $k \in \{1, -1, -4, -8\}$ is given by the first value in the legend, for (1,2$_{\infty}$)-CMA-ES (solid) and (1,2)-CMA-ES (dashed). Light beige lines show the ECDF of FEvals for target value $\Delta f = 10^{-8}$ of algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of (1,2$_{\infty}$)-CMA-ES divided by (1,2)-CMA-ES, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being >0 or <1. The legends indicate the number of functions that were solved in at least one trial ((1,2$_{\infty}$)-CMA-ES first).
Figure 3: Expected running time (ERT in log10 of number of function evaluations) of $(1,2^n)$-CMA-ES versus $(1,2^m)$-CMA-ES for 46 target values $\Delta f \in [10^{-8}, 10]$ in each dimension for functions f_1–f_{24}. Markers on the upper or right edge indicate that the target value was never reached by $(1,2^n)$-CMA-ES or $(1,2^m)$-CMA-ES respectively. Markers represent dimension: 2: \square, 3: \triangledown, 5: \star, 10: \circ, 20: \square.
Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 (given in the respective first row) for the algorithms (1,2)-CMA-ES and (1,2m)-CMA-ES for different Δf values for functions f_{1-24}. The median number of conducted function evaluations is additionally given in italics, if ERT(10^{-7}) = ∞. #succ is the number of trials that reached the final target $f_{\text{opt}} + 10^{-8}$. Bold entries are statistically significantly better compared to the other algorithm, with $p = 0.05$ or $p = 10^{-k}$ where $k > 1$ is the number following the * symbol, with Bonferroni correction of 48.

#succ

Acknowledgments

This work received support by the French national research agency (ANR) within the SYSCOMM project ANR-08-SYSC-007-12 and within the COSINUS project ANR-08-COSI-007-12.

REFERENCES

Table 2: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 as in Table 1 but now comparing $(1,2m)$-CMA-ES and $(1,2s)$-CMA-ES.

