A formal study of Bernstein coefficients and polynomials

Yves Bertot 1 Frédérique Guilhot 1 Assia Mahboubi 2, 3
1 MARELLE - Mathematical, Reasoning and Software
CRISAM - Inria Sophia Antipolis - Méditerranée
2 TYPICAL - Types, Logic and computing
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : Bernstein coefficients provide a discrete approximation of the behavior of a polynomial inside an interval. This can be used for example to isolate real roots of polynomials. We prove a criterion for the existence of a single root in an interval and the correctness of the de Casteljau algorithm to compute efficiently Bernstein coefficients.
Document type :
Journal articles
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2011, 21 (04), pp.731-761. <10.1017/S0960129511000090>
Liste complète des métadonnées


https://hal.inria.fr/inria-00503017
Contributor : Assia Mahboubi <>
Submitted on : Wednesday, November 5, 2014 - 11:37:21 AM
Last modification on : Thursday, February 9, 2017 - 3:15:43 PM
Document(s) archivé(s) le : Friday, February 6, 2015 - 10:25:16 AM

File

check_version_Jan_2011.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Yves Bertot, Frédérique Guilhot, Assia Mahboubi. A formal study of Bernstein coefficients and polynomials. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2011, 21 (04), pp.731-761. <10.1017/S0960129511000090>. <inria-00503017v2>

Share

Metrics

Record views

227

Document downloads

418