Activity discovery from video employing soft computing relations

Abstract : The present work presents a novel approach for activity extraction and knowledge discovery from video. Spatial and temporal properties from detected mobile objects are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows finding spatio-temporal patterns of activity. We employ trajectory-based analysis of mobiles in the video to discover the points of entry and exit of mobiles appearing in the scene and ultimately deduce the different areas of activity in the scene. These areas can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix of the mobile fuzzy spatial relations. Discovered activity zones and spatio-temporal patterns of activity can be labeled in a human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.
Type de document :
Communication dans un congrès
2010 IEEE International Joint Conference on Neural Networks, Jul 2010, Barcelone, Spain. 2010
Liste complète des métadonnées

https://hal.inria.fr/inria-00503047
Contributeur : Jose Luis Patino Vilchis <>
Soumis le : vendredi 16 juillet 2010 - 14:25:43
Dernière modification le : jeudi 9 juillet 2015 - 14:42:45
Document(s) archivé(s) le : vendredi 22 octobre 2010 - 14:44:33

Fichier

PID1283001.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00503047, version 1

Collections

Citation

Jose Luis Patino Vilchis, François Bremond, Monique Thonnat. Activity discovery from video employing soft computing relations. 2010 IEEE International Joint Conference on Neural Networks, Jul 2010, Barcelone, Spain. 2010. 〈inria-00503047〉

Partager

Métriques

Consultations de
la notice

229

Téléchargements du document

111