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Insertion of 3D-primitives in mesh-based

representations: Towards compact models

preserving the details
Florent Lafarge, Renaud Keriven and Mathieu Brédif

Abstract—We propose an original hybrid modeling process
of urban scenes that represents three-dimensional (3D) models
as a combination of mesh-based surfaces and geometric 3D-
primitives. Meshes describe details such as ornaments and stat-
ues, whereas 3D-primitives code for regular shapes such as walls
and columns. Starting from an 3D-surface obtained by multi-view
stereo techniques, these primitives are inserted into the surface
after being detected. This strategy allows the introduction of
semantic knowledge, the simplification of the modeling, and even
correction of errors generated by the acquisition process. We
design a hierarchical approach exploring different scales of an
observed scene. Each level consists first in segmenting the surface
using a multi-label energy model optimized by α-expansion and
then in fitting 3D-primitives such as planes, cylinders or tori
on the obtained partition where relevant. Experiments on real
meshes, depth maps and synthetic surfaces show good potential
for the proposed approach.

Index Terms—3D reconstruction, shape extraction, urban
scenes, object based representation, graph-cut.

I. INTRODUCTION

3D-models of urban scenes are useful for many applications

such as urban planning, virtual reality, disaster recovery or

computer games. In particular, with new perspectives offered

to navigation aids by general public softwares such as Street

View (Google) or GeoSynth (Microsoft), 3D building modeling

is a topic of growing interest. The reconstruction of such

scenes is a well known computer vision problem which has

been addressed by various approaches but remains an open

issue [1], [2], [3].

A. 3D-modeling of urban scenes

Urban objects within the same scene significantly differ

in term of complexity, diversity, and density. Many works

have been proposed for reconstructing urban scenes. The most

common inputs are generally multiview stereo images and

laser scans. Three main types of 3D-representations can be

distinguished in the literature for modeling these scenes.

3D-primitive arrangements constitute the most common type

of 3D-representation in building reconstruction. The scenes

are represented as layouts of simple geometric objects such as

planes, lines or cubes which describe the urban objects well

and are interesting in terms of storage capacity. For example,
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buildings are fully reconstructed by 3D-planes in [4], [5]. More

specific works on roof reconstruction from aerial/satellite data

[6], [7], [8], [9], [10], facade modeling from terrestrial data

[11], [12] or building interior reconstruction [13] underline

the efficiency of the 3D-primitive based approaches. They are

also used to introduce semantic information in 3D building

representations by detecting and inserting various urban ob-

jects such as windows, doors or roof supertructures [14], [15],

[16], [17]. However, these parametric descriptions remain a

simplistic representation and fail to model fine details and

irregular shapes.

Depth maps allow the description of a scene as an image.

Contrary to the other representations, they offer a view depen-

dent 2.5D representation as each pixel of the map is associated

with a single depth value as we can see on Figure 1. Such

pixel based representations generally remain noisy even if

they provide interesting details on the observed scenes. They

are particularly well adapted to describe urban areas from

aerial/satellite data (also called Digital Surface Models) as

underlined in [18]. Several comparative studies [19], [20], [21]

outline the potential of the depth maps by stereo processing.

Meshes provide a description of urban structures with a

large amount of details, such as ornament, statues and other

irregular shapes. The mesh generation techniques are mainly

performed using laser scanning [22], [23] or multi-view stereo

processes [24], [25], [26]. Multi-view stereo techniques have

significantly progressed during recent years. The comparative

studies [27], [28] highlight the quality of such representations,

especially for describing details. However, man made objects

contain many regular components such as planar or cylindrical

shapes. The obtained meshes give a large amount of useless

information concerning these regular elements which could be

more relevantly described by parametric objects.

Fig. 1. Various 3D representations of an urban object - from left to right:

multiview images c©IGN, 3D-primitive modeling, depth map and mesh with
triangular facets.

In addition, other types of 3D-representations have been

proposed in more specific contexts. For example, level set

methods [29], [30], [31] have interesting properties to deform
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surfaces. They are efficient for organ modeling, face tracking

and more generally variational shape representation but are not

well adapted to urban objects.

To sum-up, two main families are used in the literature:

the implicit and explicit representations. The former allows

object based representations by describing scenes such as

3D-primitive structured arrangements (generally, by using a

Constructive Solid Geometry (CSG) principle). The latter,

composed of mesh and depth map representations, is unstruc-

tured grids which do not provide semantic knowledge on the

observed scene but are generally more accurate. Some works

have been proposed to convert an explicit representation into

an implicit one. Such methods help to extract structural knowl-

edge in a scene. Monte Carlo sampling based models have

been proposed in [32], [8] for reconstructing urban scenes as

geometric primitive layouts from range data/reflectance maps

and disparity maps respectively. It has been also addressed

in [33] by simplifying a mesh into a 3D-plane layout, and

then extended by [34], [35] for modeling with quadrics. Other

works such as [36] allow the detection of regular structures

from mesh-based models.

B. Combining implicit and explicit representations

The two families mentioned above have complementary

advantages : semantic knowledge and model compaction for

the former, detailed modeling and non-restricted use for the

latter. A natural idea, but still lightly explored, would consist

in merging both the families in order to propose a hybrid

model. Regular elements would be represented by 3D-

primitives whereas irregular structures would be described by

mesh-based surfaces. This idea has been partially addressed

by several works in specific contexts. The insertion of planar

constraints in urban aerial Digital Surface Models (DSM)

was proposed by [37]. However, this work is restricted to

a roof simplification and cannot be extended to non-planar

shapes and general depth maps easily. Both explicit and

implicit representations are jointly used in [38]. The two

types of information improve the conventional results in

human upper-body modeling by taking advantage of their

own specificity. However, the process is performed in parallel

and does not combine the representations in a hybrid model.

We aim to propose a more general process which can

substitute the regular structures from explicit representations

by geometric 3D-objects while preserving the irregular

details. This is of significant interest for several reasons:

• Semantic insertion - The introduction of semantic knowl-

edge in explicit representations provides a better under-

standing of the urban scenes. For example, 3D-primitives

as planes or cylinders give helpful information concerning

the locations of walls or columns respectively.

• Mesh simplification - Substituting the regular components

to 3D-objects strongly simplifies the size of the explicit

representations with appealing compression rates.

• Acquisition process correction - More still, it allows the

correction of some errors generated by the multi-view

stereo processes. In particular, some structures which

have been partially reconstructed due to occlusions can

be completed thank to 3D-primitives.

In addition, the process has to be general to deal with various

types of urban scenes (i.e. large urban areas, building roofs

and facades, indoor scenes, and generally speaking, the man

made creations) and different kinds of inputs (all the explicit

representations including mesh-based models and depth maps).

C. Strategy overview

In order to unify the framework, we consider the data as

three dimensional boundary meshes with triangular faces. Such

a modeling is general enough to represent the different kinds

of aforementioned inputs.

Extracting 3D-primitives from explicit representations without

a preliminary segmentation is a difficult problem [39] which

has been addressed by various works such as [33], [35].

However, such approaches cannot be efficiently adapted for

non synthetic explicit representations which contain noise,

component density variations, and errors/approximations gen-

erated by the multi-view stereo processes.

We adopt a more robust strategy consisting in fitting 3D-

primitives from a segmented surface. These two steps are

embedded into a hierarchical process which allows the explo-

ration of various object scales in the scene (See Figure 2). For

every level of the hierarchy, we obtain an hybrid representation

which contains the 3D-primitives extracted in the previous

levels.

Fig. 2. Overview of our hierarchical approach. Each level of the hierarchy
consists in first segmenting the remaining mesh-based surface of the previous
level and second extracting 3D-primitives. The hybrid model of a given level is
obtained by combining the remaining mesh-based surface of this level and the
accumulated 3D-primitives of all the previous levels. Irregular elements such
as statues are described by mesh-based surfaces whereas regular structures
such as columns or walls are modeled by 3D-primitives.

This paper extends the work we presented in [40] by detailing

the model, presenting new applications, results and comments,

as well as proposing a new general hierarchical process

which significantly improves the performances. The paper is

organized as follows. Section II presents the segmentation

process based on a curvature analysis of the surface. A multi-

label energy which takes topological smoothness constraints

into account is formulated. The optimal label configuration

which is estimated by α-expansion, provides the segmented

surface by region growing. The 3D-primitive extraction from
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the obtained partition is then described in Section III. An

error parameter controls the fitting quality and decides whether

an element of the partition has to be substituted by a plane,

sphere, cylinder, cone or torus. Section IV presents the general

hierarchical process which takes into account the object scale

problem and noise corruption in the urban scenes. Experimen-

tal results on real and synthetic data are given in Section V.

Basic conclusions are outlined in Section VI.

II. SURFACE SEGMENTATION

Let us consider a three dimensional surface S which can be

defined as a boundary mesh {V,E, F} of vertices V , edges

E and triangular faces F . We aim to segment the surface S
into patches corresponding to regions of interest.

A. Geometric attributes based on curvature analysis

Many kinds of local geometric attributes have been pro-

posed in the literature for segmenting synthetic mesh-based

surfaces such as multi-scale blowing bubbles, 3D feature

descriptors and skeleton knowledge. The comparative studies

proposed in [41], [42] present the most efficient techniques for

addressing this problem. Most of these techniques cannot be

adapted to surfaces generated by multi-view stereo processes

due to the meshing irregularities/errors and the significant

noise corruption. Such local geometric attributes have to be

embedded in a global process.

1) Principal curvatures: Local differential geometry esti-

mates constitute efficient descriptors for analyzing the surface

topology. The principal curvatures kmin and kmax and their

associated direction vectors wmin and wmax measure how

the surface bends by different amounts in different directions

(see Figure 4). In order to distinguish the various types of

shapes, this curvature information is used to label each point

of the surface according to four labels of interest: planar

(kmax = kmin = 0), developable convex (kmin = 0 < kmax),

developable concave (kmin < kmax = 0) and non developable

surfaces (kminkmax 6= 0).

Fig. 3. Representation of the principal curvatures (kmin, kmax) and their
associated direction vectors wmin and wmax.

2) Local estimator of the geometry: Let us consider L =
{1, 2, 3, 4}, the label set corresponding to the classes men-
tioned above respectively. Let l = (l1, ..., lN ) be a label
configuration in L

N , associated with the N vertices of the
surface S. By denoting Gσ(k) = exp(−k2/2σ2) the non
normalized centered Gaussian distributions with a standard
deviation σ, we can express the probability of each label at
the vertex i as a combination of the curvature distributions:

Pr(li|k
(i)
min

, k
(i)
max) =






Gσ(k
(i)
min

)Gσ(k
(i)
max) if li = 1

Gσ(k
(i)
min

)(1−Gσ(k
(i)
max)) if li = 2

(1−Gσ(k
(i)
min

))Gσ(k
(i)
max) if li = 3

(1−Gσ(k
(i)
min

))(1−Gσ(k
(i)
max)) if li = 4

(1)

Figure 4 presents the behavior of this probability in function of

the couple (kmin, kmax). The label configuration maximizing

the joint probability on the surface S constitutes an interesting

estimator, denoted by l̂P and given by :

l̂P = arg
l∈LN

max
∏

i∈V

Pr(li|k
(i)
min, k

(i)
max) (2)

This estimator is simple to compute and provides a reliable

labeling in the case of synthetic meshes as we can see with the

first two models presented on Figure 5. However, the results

obtained from non synthetic surfaces are clearly more limited

for the reasons detailed above. Additional information must

be taken into account to improve these results. An energy

minimization method is proposed in the following to address

this problem.

Fig. 4. Map of the label dominance in function of kmin and kmax (blue
sector indicates that the highest probability is obtained for the ’planar’ label,
red for ’developable convex’, green for’developable concave’ and yellow
for’non developable’).

B. Multi-label energy model

The energy of the configuration l is formulated using both

a consistency term and topological smoothness constraints,

balanced by the parameter β > 0:

U(l) =
∑

i∈V

Di(li) + β
∑

{i,j}∈E

Vij(li, lj) (3)

The function U represents the Gibbs energy of the posterior

probability distribution of a Markov Random Field (MRF)

where the site set corresponds to V (i.e. the vertex set) and

the neighborhood relationship between sites is given by the

edge set E.

a) Consistency: The consistency Di(li) which measures

the coherence of the label li at the vertex i is computed using

the probability Pr(li|k
(i)
min, k

(i)
max) (see Eq.1) such as:

Di(li) = 1− Pr(li|k
(i)
min, k

(i)
max) (4)

We have experimentally noticed that such a linear formulation

provides more relevant results compared to other functions

such as a logarithmic term. It allows us to not penalize

too much the non local optimal label in the energy. The

sensitivity of the consistency term is controlled by the standard

deviation σ of the principal curvature distributions (See Figure

4). Taking a low σ value makes the consistency term more

selective with planar and developable labels. On the contrary,

a high value must be chosen for penalizing the occurrence of

the non developable label.

b) Topological smoothness constraints: The term Vij

represents a pairwise interaction potential between adjacent

vertices i and j. Prior knowledge about the optimal labeling

are expressed by using a model derived from the generalized

Potts formulation.
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Vij(li, lj) =

{
1 if li 6= lj
min(1, a||Wi −Wj||2) otherwise

(5)

where a is a scale factor fixed proportionately to the mean edge

length ê of the surface S, and Wi and Wj are 6× 1 vectors

combining the principal direction vectors and their curvatures:

W =

(
kmin.wmin

kmax.wmax

)
(6)

Note that the vectors wmin and wmax are oriented according

to a criterion of component positiveness such that the differ-

ence between two vectors Wi and Wj (see Eq. 5) is computed

without sign ambiguity. The potential Vij introduces spatial

smoothness constraints which take into account the surface

topology. Two principles define the behavior of this term:

• Smoothness on regular patches - In order to favor the

label homogeneity in a neighborhood, adjacent vertices

with different labels are penalized. This principle corre-

sponds to a classical regularization procedure (See Figure

5-2nd and 4th rows).

• Edge preservation - The boundaries are preserved

by taking into account the principal direction vector

variations of adjacent vertices with similar labels. The

surface is then partitioned according to changes in local

differential geometry. For example, it allows the separa-

tion of two connected planes with different normals (See

Figure 5-Corner model).

Fig. 5. Surface labeling - from top to down: original mesh-based surface,

l̂P estimator (blue=’planar’, red=’developable convex’, green=’developable

concave’ and yellow=’non developable’), edge term of the regularizing part of
the energy (||Wi−Wj||2) (red=high values, black=low values), our labeling
result after energy minimization.

C. Optimization by α-expansion

Finding the label configuration that minimizes the energy

U requires advanced optimization techniques since U is a

non convex function defined in a multi-label space. The α-

expansion algorithm [43] based on the Graph-cuts theory is

used. One can easily check that our energy fits the require-

ments for this method. This algorithm allows us to quickly

reach an approximate solution close to the global optimum. To

accelerate the convergence, l̂P is chosen as the initialization.

Note that faster algorithms such as Logcut [44] could be used.

However, the time savings would be minor since the number

of labels we use remains reasonable.

D. Comments

Figure 5 shows results of the labeling process. The proposed

multi-label energy significantly improves the results compared

to the l̂P estimator for the non synthetic meshes. The various

parts are correctly identified: walls, roofs or stairs are asso-

ciated with the planar label - columns, corners and vaultings

with developable convex or developable concave labels - and

ornaments and statues with the non developable one. The

edges are accurately localized due to the detection of principal

direction vector variations (See 5-3rdrow). It allows us to

extract these components easily with a region growing process

as we can see on Figure 6. Nevertheless, this labeling process

does not take into account the different object scales of the

scenes since σ is a constant value. Thus, the partitioning is not

optimal for complex urban surfaces. This problem is addressed

in Section IV by proposing a hierarchical approach. In the

sequel, we define as cluster a connected region of same label

extracted by region growing.

Fig. 6. Segmentation results on real and synthetic mesh-based surfaces. Each
color represents a cluster.

III. GEOMETRIC SHAPE EXTRACTION

Each cluster of the segmented surface is then compared to

a set of 3D-primitives composed of planes, spheres, cylinders,

cones and tori. They represent the most common regular

shapes which can be found in urban landscapes and more

generally in scenes containing man made objects.

A. 3D-primitive fitting

Several works such as [45], [46], [47] have been proposed to

detect shapes in point clouds containing outliers. Mesh-based

surfaces have generally less outliers compared to point clouds

and exhibit useful topological information. Outlier rejection

based techniques such as the RANSAC algorithm are not

required for our problem due to our preliminary segmentation.

Plane fitting can be performed easily using a Principal Com-

ponent Analysis (PCA). However, fitting spheres, cylinders,

cones and tori has no closed-form solution when the dataset
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only represents an unknown portion of the whole shape. Thus,

it requires an iterative non-linear minimization, typically using

a Levenberg-Marquardt optimization.

We base our fitting algorithm on the work of [48] which

proposes a first order approximation d̃ of the true Euclidean

distance d from points to spheres, cylinders, cones and tori,

that is both easier to compute and better behaved with respect

to singularities. The error ǫ between the 3D-primitive based

surface denoted by s and the vertex set (vk)k∈[1,N ] of the

original mesh-based surface is then given by Eq. 7.

ǫ(s) =

√√√√ 1

N

N∑

k=1

d̃(s, vk)2 (7)

We also use the parametrizations of the various primitives

introduced in [48], that behave well as their curvatures vanish.

As shown on Figure 7, this allows numerically stable fittings

of more complex shapes on a dataset close to a simpler shape

(sphere, cone, cylinder or torus fitting of an almost planar

patch, cone fitting of an almost cylindrical patch, torus fitting

of a spherical or a conical patch...). However, this method

fails in a significant number of cases due to the non-linear

optimization procedure which depends on the initialization

quality. Thus, we propose some improvements which are

detailed in the following.

Fig. 7. 3D-primitive fitting on a planar/spherical surface corrupted by noise -
from left to right: segmented surface, extracted primitives, and overlaid results.

B. Improving the local optimization by a multi-initialization

strategy

Relying on a local optimization, the quality of the fitting

process strongly depends on its initialization. One could use

a global optimization technique such as stochastic relax-

ation based methods [49], but the computing time would

be extremely high and the global configuration would not

necessarily be reached. The most relevant solution consists

in improving the initialization of the primitive parameters.

[48] proposes to estimate a single initialization using a single

3D point and its local differential estimates. For a more robust

appreciation, we propose to let multiple such initializations

based on various local estimates compete and keep the overall

best fit, i.e. the primitive minimizing the error ǫ. Differential

geometry estimates have already been computed for each

vertex to drive the segmentation. Considering a small set of

seed vertices covering the whole patch, we initialize a non-

linear optimization for each seed vertex position using its

differential geometry estimates. The parameterizations in [48]

use an arbitrary point on the shape to parametrize the whole

shape using its local differential geometry (normal vector,

principal curvatures and directions). Spheres and cylinders are

completely parameterized using the local estimates of a seed

vertex. Cones, which are generalized cylinders with a center

at infinity, are initialized using the locally estimated cylinder.

Turning to tori, they contain an inner and an outer circle, where

the normals are orthogonal to the axis of revolution. Supposing

a seed vertex is on such a circle then yields two possible

torus initializations which are optimized independently. Such

a process requires higher computation times but gives superior

fitting rates than the original procedure [48].

Fig. 8. Shape extraction on some examples (purple=plane, pink=cylinder,

blue=cone, yellow=sphere, green=torus) with the associated segmented sur-
faces.

C. Using labeling information for accelerating the extraction

procedure

The labeling information obtained in the segmentation stage

is used to drive the shape extraction. This knowledge is

particularly useful since it avoids an exhaustive comparison

between a cluster and all the types of 3D-primitives.

A cluster labeled as a planar component is then compared to a

plane, developable convex and developable concave clusters to

cylinders and cones, and non developable clusters to spheres

and tori. An fitting quality threshold ξ controls the choice

between 3D-primitive and mesh-based surface. If the quadratic

error ǫ(s) of the optimal found primitive s is lower than

ξ, the cluster is substituted by the detected primitive whose

border is computed by projecting the cluster border on the

primitive surface. Otherwise, the rejected cluster is compared

to the other types of 3D-primitives. This second fitting test

prevents incorrect labellings generated by scale ambiguities.

For example, the large vaultings on Figure 5 are mistakenly

labeled as planar clusters due to the low values of their

principal curvatures. The additional test correctly fits these

vaultings to cylinders (See Figure 12). Finally, if the cluster

is still rejected during this second test, it keeps its original

mesh-based representation.

By Performing this shape extraction procedure on all the

clusters resulting from the segmentation step, we can obtain a

first hybrid model which combines 3D-primitives and mesh-

based surfaces as illustrated in Figure 8-two right examples.

IV. HIERARCHICAL APPROACH

A. Object scale and noise corruption

The successive performing of the segmentation and shape

extraction processes (see Sections II and III respectively) has

been realized in [40]. Such an approach gives good results

but the number of found 3D-primitives remains limited. In

many locations the segmentation is not optimal. Some clusters
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contain multiple shapes and fail to be modeled by one single

3D-primitive. As we can see in Figure 9, a high radius

cylindrical shape continuously connected to a plane structure is

segmented as one unique cluster if the value of σ is too high, as

well as a spherical surface connected to a corrupted-by-noise

structure if σ is too low. To sum-up, performing an approach

with a constant σ value does not give an optimal partitioning

of the surface in complex urban scenes since the various scales

of the objects and the noise generated by acquisition process

are not taken into account in the segmentation.

Fig. 9. Examples of non optimal partitionings which generate the primitive
extraction failure.

A local estimation of σ could be a solution in order to get

a variable σ value on the surface. However, the extraction of

object scale information from urban scenes is complex with-

out semantic knowledge and makes the estimation especially

difficult to perform. We adopt a hierarchical process which

consists in exploring various object scales of the scene; each

exploration being realized using a bidirectional segmentation

with two σ values. This process is detailed in the following.

B. Bidirectional segmentation

The bidirectional segmentation allows a better partitioning

of the corrupted-by-noise patches and so a better extraction

of the 3D-primitives. It consists in successively partitioning

twice the surface by using the segmentation process proposed

in Section II.

Fig. 10. Bidirectional segmentation from a surface corrupted by noise
and comparison with the procedure used in [40]. Blue and yellow segments
indicate that shape extraction procedure achieves the fitting of developable
and non developable patches respectively.

The first segmentation is performed using a high σ value

(called σ+) in order to be both selective with the non de-

velopable patches and tolerant with those that are noisy and

developable (See Figure 10). 3D-primitives are extracted from

the obtained partition by the shape extraction proposed in

Section III. Then, a second segmentation is performed from the

remaining mesh-based surfaces. This time, the segmentation

is lead with a low σ value (called σ−) to be both selective

with the developable patches and tolerant with the noisy non

developable patches. Finally, we proceed to a second shape

extraction from the obtained partition. In the following, we

call S2D(S, σ+, σ−, β), the bidirectional segmentation of the

overall surface S by using the parameter set (σ+, σ−, β).

C. Hierarchical exploration of the geometry

The bidirectional segmentation is embedded into a hierar-

chical approach which allows the exploration of the various

scales of the scenes. At each iteration, we try to extract

geometric shapes from the previously rejected patches by

exploring a new object scale. To do so, a bidirectional segmen-

tation is performed using new σ+ and σ− values. In addition,

the smoothness constraints of the segmentation process are

relaxed by decreasing the value of β in order to refine the

surface partitioning.

Fig. 11. Illustration of the hierarchical process on the Calvary model - (first
row) multiview images, mesh-based surface by [26], final hybrid representa-
tion, (second and third rows) segmented surface and hybrid representation at
different levels.

Let H0 = (S0, P0) be the initial hybrid model with S0 = M ,

the original mesh-based surface, and P0 = ∅. Let σ+
0 , σ−

0 and

β0 be the initial parameters of the bidirectional segmentation

with σ+
0 = σ−

0 = σ0. Then the hierarchical exploration can

be formulated as follow:

At the hierarchical level i > 0,

1: Updating the parameter set such as σ+
i = σ+

i−1γ1, σ−
i =

σ−
i−1γ

−1
1 and βi = βi−1γ

−1
2

2: Performing the bidirectional segmentation

S2D(Si−1, σ
+
i , σ

−
i , βi) in order to obtain the couple

(Si, Pi)
3: Collecting the corresponding hybrid representation Hi =

(Si,
⋃

0≤k≤i

Pk)
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γ1 and γ2 are the hierarchical parameters which define how

different are the exploring scales. In our experiments, we fix

γ1 = γ2 = 3
2 . Figure 11 describes the hierarchical process

on the Calvary model and presents hybrid representations at

different levels. The first levels allow the extraction of the

biggest regular components such as columns, planar back-

ground behind statues and wall sides whereas the last levels

explore smaller more irregular patches in order to extract

spherical shapes such as statue heads or conical elements as the

statue dresses. This hierarchical process efficiently tackles the

object scale and noise corruption problems presented on Figure

9. For instance, the high radius cylindrical shape continuously

connected to a plane structure in the foreground is segmented

as one unique cluster in the first hierarchy level and so cannot

be properly fitted. Such a problem is solved in the second level

where the high radius cylindrical shape and the plane structure

are successfully separated.

V. EXPERIMENTS

Our approach is tested on both real surfaces generated by

the multi-view stereo techniques and synthetic models. To

our knowledge, there is no other method proposing hybrid

representations. However, we evaluate our results qualitatively

and quantitatively with a visual appreciation, a compression

rate study and an accuracy improvement experiment. We also

underline the interest of our method by proposing subsequent

processes for semantic identification. These experiments have

been lead with the error parameter ξ fixed to 0.5ê and with four

hierarchy levels in order to allows the extraction of both major

structures and smaller components. This value constitutes an

interesting compromise between good compression rates and

visually convincing results. Note that the presented algorithm

was implemented in C++ and relies on the CGAL library

(www.cgal.org) for the computation of the geometric attributes.

A. Real surfaces from multiview stereo

Figure 12 shows the potential of the method on mesh-

based surfaces whereas Figure 13 presents results on depth

maps corresponding to aerial urban scenes (i.e. Digital Surface

Models). The obtained hybrid representations are promising

and provide simplified modelings of the original surfaces

while preserving details. The overall rough components of

buildings are reconstructed by 3D-primitive layouts with an

accuracy controlled by ξ. Such object layouts are useful

because they allow the introduction of semantic information

in the modeling. Structural components such as walls, roofs,

windows and dormer windows can be identified easily from

the obtained primitives by a subsequent basic analysis as we

will see on Section V-D. The results reveal the reconstruction

of interesting details such as thin pipes located at the vaultings

on Herz-Jesu-P25 or small statue heads on Calvary.

As we can see on Table I, the hybrid models are mainly

composed of 3D-primitives. The unfitted patches are negligible

for scenes containing many regular components such as the

Church or Herz-Jesu-P25 models. To the contrary, the scenes

with few man made structures such as the Aiguille du Midi

model remain more limited in terms of extracted primitives.

Nevertheless, the process gives promising results on natural

elements such as pieces of rock or snow. Note that the number

of 3D-primitives could be reduced by merging the neighboring

primitives which are similar. However such a subsequent

process is of limited interest with respect to our aims.

Fig. 12. Results on large scenes- from left to right: some multiview
images, mesh-based surfaces from [26], our hybrid models and the associ-
ated 3D-primitives (purple=plane, pink=cylinder, blue=cone, yellow=sphere,

green=torus). From top to bottom: Herz-Jesu-P25, Castle-P10, Fountain-P11,
Church, Aiguille du Midi.

TABLE I
ADDITIONAL INFORMATION ON THE TESTS PRESENTED ON FIGURE 12.
FOR EACH TEST, WE SPECIFY THE NUMBERS OF VERTEX AND FACET IN

BOTH THE INITIAL AND HYBRID MODELS AS WELL AS THE NUMBER OF

EXTRACTED PRIMITIVES.

initial model number of remaining mesh
(vertex/facets) primitives (vertex/facets)

Herz-Jesu-P25 0.72M / 1.41M 346 0.15M / 0.26M
Castle-P10 0.99M / 1.99M 649 0.27M / 0.46M

Fountain-P11 0.59M / 1.17M 509 0.12M / 0.22M
Church 0.16M / 0.33M 173 31K / 60K

Aiguille Midi 2.27M / 4.56M 2157 0.81M / 0.22M
Calvary 0.79M / 1.56M 612 1.45M / 0.38M

Figure 13 presents some results on building reconstruction

from Digital Surface Models. These depth maps are generally

of low quality due to the restricted number of multiview

aerial images which are available (in our case, no more than

three), and the low value of the base to height ratio which

generates a poor altimetric accuracy (in our case, the altimetric

accuracy is five times more than the planimetric one). Thus,

such surfaces are especially noisy and irregular. The proposed

results are promising and allow us to significantly regularize

and correct the initial Digital Surface Models which have

been obtained by an algorithm based on [50]. Our hybrid
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models are mainly composed of planes which fit well to the

various roof sides of buildings. The models remain limited in

terms of superstructure reconstruction (e.g. chimneys, dormer-

windows, glass roofs) because these elements are too small

and irregular to be properly extracted. A more complex shape

library including plane-parallel primitives such as in [8] or

[15] is required in this case. Even if our representation

is less compact and accurate than the specialized building

reconstruction approach proposed by [8], our method is more

general and can successfully represent curved 2D-footprints as

we can see on the third example. The structural approach [8],

which is restricted to rectilinear 2D-footprints, cannot provide

such details.

Fig. 13. Aerial building reconstruction results- from left to right:

aerial stereo image, associated Digital Surface Model c©IGN, our hybrid
model (purple=plane, pink=cylinder, blue=cone, yellow=sphere, green=torus,

white=mesh), parametric model by [8].

B. Synthetic surfaces

Tests from synthetic surfaces have also been realized. The

interest of such experiments is more limited than previous

tests. However, it can be useful for the simplification and

the denoising of mesh-based surfaces. In addition, performing

tests on simulated surfaces allows us to evaluate the correct-

ness of our method and to validate it.

Figure 14 presents some hybrid models from synthetic meshes.

The results are globally convincing as our hybrid models are

mainly composed of 3D-primitives which correspond well to

the different object scales of the initial surface. The various

primitive types are correctly detected on the Thai Statue and

no type is favored with respect to the others. We can note that

the planar shape occurrence is lower in such non urban scenes.

The remaining surface rate of the Asian Dragon is higher than

the mechanical object example because it varies according to

the level of the surface regularity.

Tests on noise corruption impact have also been realized (see

Figure 15). If a low level of noise has almost no consequences

on the result, our method loses robustness when the noise

becomes very significant and impedes the visual description

of the scene. Some details are lost such as the grid pattern

on the Stanford Armadillo tigh which is then modeled by a

toroidal shape. In addition, the noise makes the extraction of

Fig. 14. Synthetic mesh simplification- original synthetic meshes and
our associated hybrid models (purple=plane, pink=cylinder, blue=cone, yel-

low=sphere, green=torus, white=mesh). From top to bottom, and from left to

right: Stanford Thai Statue, Stanford Armadillo, Stanford Asian Dragon and
a mechanical object.

the correct shape difficult without a Ransac based algorithm.

For example, the inside conical part of the Carter model is

mistakenly identified as a spherical object. Even if the result

remains correct, our method is not optimal when the meshes

are too strongly corrupted.

Fig. 15. Noise corruption impact - synthetic meshes corrupted by noise (top:

Stanford Armadillo, bottom: Carter) and the associated hybrid models.

C. Performances

Compression rate- The compression rate, defined as the

ratio between the file sizes of the original mesh-based surface

and the hybrid representation, is function of the error parame-

ter ξ. Table II shows that it indeed also depends on the scene:

a scene containing many regular components (e.g. Church) has

a better factor than one composed of many irregular shapes

(e.g. Fountain-P11). The compression rates are significantly

better than those obtained in [40]: the hierarchical approach

allows a finer exploration of the surface and thus a better

extraction of 3D-primitives. For example, the compression rate

of the Herz-Jesu-P25 model is 4.48 with an error parameter
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ξ = 0.5 whereas the rate obtained in [40] is only 3.57. Figure

16 compares our method with a state-of-the-art decimation

method (the one in CGAL library. For a given compression

rate, our representation gives a better description than the

decimated mesh which is uniformly degraded with no semantic

awareness. Indeed, taking the geometric regularity of the scene

into account is relevant for buildings: on this detail, planes and

cylinders are clearly identified.

TABLE II
COMPRESSION RATES ON SOME MODELS IN FUNCTION OF THE

PARAMETER ξ.

ξ = 0.1ê ξ = 0.5ê ξ = ê ξ = 5ê
Church 1.31 4.57 6.4 32.11

Herz-Jesu-P25 1.19 4.48 14.63 48.93

Fountain-P11 1.14 4.09 10.32 23.6

Stanford Armadillo 1.18 3.69 7.4 18.45

Accuracy improvement- In order to quantify to what extent

our representation improves the original surface, we evaluate

the error with respect to the (range scanned) ground truth. As

we can see on Figure 16, some details are lost in the hybrid

representation due to the simplification by 3D-primitives (e.g.

walls are transformed to planes and lose their small asperities).

However, this drawback remains negligible with respect to the

multiview stereo error corrections which are realized in terms

of surface denoising and structure completion. For instance,

the noisy balls and waveform ornaments are regularized by

half a sphere and a set of toroidal patches respectively in

Figure 8. The partial structures can also be completed as we

can see on Figure 16 where a partial column is integrally

reconstructed. The error occupancy histogram, measured with

respect to the standard deviation Σ of the ground truth ac-

curacy (see [28]), quantifies this improvement. On the Herz-

Jesu-P25 histogram, we note for example that close to 3% of

the global error occupancy is transfered from the 3 and 4Σ
bins to the 1 and 2Σ ones. This is indeed a first step toward

a more extensive evaluation, as this improvement seems to

concern subsets of the surface which have to be identified

in detail and closely analyzed. Yet the benchmark website of

[28] only outputs global statistics and does not easily allow

this investigation.

Computation time and memory consumption- The pro-

posed method achieves reasonable computation time. For

example, the estimation of the various geometric attributes

and the surface segmentation method are performed in less

than one minute on the Castle-P10 model containing one

million vertices. The primitive fitting procedure requires longer

computation time but remains acceptable: around four minutes

are necessary to test the primitive relevancy for all the clusters

of the Castle-P10 model. Note that the computation time

decreases at each level of the hierarchical procedure thanks to

the primitive accumulation process. The memory consumption

is quite low: the algorithm just needs to store the original mesh

structure with several additional attributes on each vertex and

facet.

Limitations- Our process is not well adapted to point density

variations over the mesh-based surface. This problem can

appear on the real surfaces from multiview stereo where the

visibility from images is very weak. It mainly concerns the

Fig. 16. Comparisons on some crops- From left to right, top : details of
ground truth [28], original mesh-based surface [26], decimated surface, and
our representation (same compression rate as the decimated surface).

borders and the hidden parts of the surfaces. For instance, this

drawback is illustrated on Figure 12 where some roof parts of

the castle-P10 model which have a very low point density do

not fit 3D-primitives. To solve this problem the scale factor

a, used in the multi-label Markov Random Field formulation

(see Section II-B), should be locally estimated. a is currently

computed over the surface in a global approach so that our

multi-label energy check the requirements of the α-expansion

optimization technique. A local estimation of the scale factor a
would imply the use of alternative techniques providing higher

computing time. For example, one could imagine estimating

the scale factor a in a local spherical neighborhood along the

surface and using Monte Carlo Markov Chain based stochastic

method [51] to solve the energy minimization.

Fig. 17. Accuracy evaluation- From left to right: error of the original mesh-
based surface with respect to ground truth (white=low, black=high), error of
our representation, histogram of the errors [28].

The method is also less competitive when the surface is

strongly corrupted by noise. Several shape selection errors are
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shown on Figure 15, even from a simple mesh-based surface.

Outlier rejection algorithms have to be performed to improve

3D-primitive extraction on such highly noisy surfaces.

D. Other applications by subsequent processes

In order to underline the interest of our method, we propose

an overview of two simple subsequent processes which allow

the extraction of more semantic information from our hybrid

representation.

Fully implicit representation- We can convert a hybrid

representation into a parametric one, i.e. a model which

is strictly composed of 3D-primitives according to a CSG

principle. In other words, we transform our model into a fully

implicit representation. First, a filtering procedure is realized

in order to remove useless components of the hybrid model.

The mesh-based patches and the non significant 3D-primitives

are deleted. Then, a primitive arrangement is performed on

the remaining objects. Figure 18-top presents the results of a

preliminary version restricted to planar structure arrangements

[52]. Although this process can be used in a large range of

urban scenes such as building roof/facade reconstruction, the

plane arrangement has to be extended in the future to the other

3D-primitives (i.e. cylinder, sphere, cone and torus).

Semantic identification- We can also identify urban com-

ponents from our hybrid model. Depending on the wanted

elements, some procedural analysis can be easily proposed for

identifying 3D-primitives and mesh-based patches according

to various criteria such as the type, the size, the area, the

orientation or the repetitiveness. Figure 18-bottom shows a

result of facade classification where we have defined simple

heuristics to distinguish four types of components (i.e. walls,

roofs, windows and other). We could also propose a learning

process by defining appropriate kernels which measures the

similarity between 3D-primitives and takes into account neigh-

borhood geometrical considerations and which could improve

the existing methods [53] [54].

Fig. 18. Examples of subsequent applications from hybrid models- top:

Convertion of an hybrid representation (3rd row) into a parametric model (4th

row) by using a plane arrangement algorithm [52], associated aerial image
(1st row) and Digital Surface Model (2nd row). bottom: facade component
classification (3rd row) by procedural analysis (blue=roof, yellow=wall,
green=window and white=others), associated multiview images (1st row) and
segmented mesh-based model (2nd row).

VI. CONCLUSION

We propose an original hybrid representation of urban

scenes which combines 3D-primitives and mesh-based sur-

faces. Our approach possesses several interesting character-

istics. First, it provides high compression rates while keeping

details, introduces semantic knowledge despites noise cor-

ruption, and even improves accuracy of the original surface.

Convincing results have been obtained on various applications

including semantic insertion, surface simplification or acquisi-

tion process correction. Both the proposed multi-label Markov

Random Field formulation for surface segmentation and the

contributions for 3D-primitive fitting can be used separately

for other meshing applications. Moreover, our approach can

be used in various contexts where types of urban scenes (i.e.

large urban areas, building roofs and facades, indoor scenes)

and kinds of inputs (i.e. multiview based meshes, depth maps,

synthetic surfaces) differ. Finally, the user can control both

accuracy and level of details via ξ and the number of hierarchy

levels respectively.

In the future, the preliminary algorithms presented in Section

V-D would have to be developed. Also of interest would be to

study the simultaneous generation of mesh patches and 3D-

primitives during the multi-view stereo process. This would

allow us to take interactions between mesh-based surfaces

and primitives into account, but would require advanced 3D-

primitive samplers which strongly increase computing time.
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