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Abstract. We propose a new variational model to locate points in 2-dimensional biological images.

To this purpose we introduce a suitable functional whose minimizers are given by the points we want

to detect. In order to provide numerical experiments we replace this energy with a sequence of a more

treatable functionals by means of the notion of Γ-convergence

AMS 2000 subject Classification: 65K05 65k010 49M99

Keywords: points detection, curvature-depending functionals, divergence-measure fields, Γ-convergence,

biological 2-D images.

1. Introduction

Detecting fine structures, like points or curves in two or three dimensional images respectively, is an

important issue in image analysis. In biological images a point may represent a viral particle whose

visibility is compromised by the presence of other structures like cell membranes or some noise.

From a variational point of view, the problem of point detection is a difficult task, since it is not

clear how these singularities must be classified in terms of some differential operator. Indeed, since

these are usually defined as discontinuity without jump, we cannot use the gradient operator as in the

classical problem of contour detection. As a consequence the functional framework may be not clear.

1The research of Daniele Graziani was supported by ANR under the research project ”Detectfine” (Labora-
tory I3S, Université de Nice Sophia antipolis.)
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One possible strategy to overcome this obstacle is considering this kind of pathology as a k-

codimension object, meaning that they should be regarded as a singularity of a map U : Rk+m → Rk

(see [7] for a complete survey on this subject) with k ≥ 2 and m ≥ 0, where k + m is the dimension

of the ambient space and k is the codimension of the singularity to detect. The detecting points case

corresponds to the case k = 2 and m = 0.

In this direction the authors in [5] have suggested a variational approach based on the theory

of Ginzburg-Landau systems. In their work the isolated points in 2-D images are regarded as the

topological singularities of a map U : R2 → S1, where S1 is a unit sphere of R2. So that it is crucial

to construct, starting from the initial image I : R
2 → R, an initial vector field U0 : R

2 → S
1 with a

topological singularity of degree 1, where the intensity of the initial image I is high. How to do this in

a rigorous way, it is still unclear.

Therefore here our purpose is to provide a lighter variational formulation, in which the singular

points in the image is directly given in terms of a proper differential operator defined on vector fields.

Another important difference is that in [5] points and curves are detected both as singularities, while

in the present paper our aim is to isolate from the initial image points and at same time remove any

other singularities.

In order to detect the singularities of the image, we have to find a functional space whose elements

generate, in a suitable sense, a measure concentrated on points. Such a space is DMp(Ω) introduced

in [4], where 1 < p < 2 and Ω is an open set which represents the image domain. DMp(Ω) is the space

of vector fields U : Ω → R2 whose distributional divergence is a Radon measure (see subsection 2.2 for

definitions and examples). The restriction 1 < p < 2 is due to the fact for p ≥ 2 the distributional

divergence of U cannot charge isolated points (see [6]).

Unfortunately, even if we are capable of constructing an initial vector field U0 (see below for such

a construction) belonging to the space DMp(Ω), its singular set could contains several structures we

want to remove from the original image, like, for instance, curve or some noise. Hence, after the

initialization we have to remove all the structures we are not interested in by building up, starting

from the initial data U0, a new vector field U whose singularities are given by the points of the image

I we want to isolate.

Thus, from one hand, we have to force the concentration set of the distributional divergence of U0

to contain only the points we want to catch, and, on the other hand, we have to regularize the initial

data U0 outside the points of singularities. To this end, we propose to minimize an energy involving

a competition between a divergence term and the counting Hausdorff measure H0. More precisely the

energy is the following

(1.1) F (U, P ) =

∫

Ω\P

|divU |2dxdy + λ

∫

Ω

|U − U0|
pdxdy + H0(P ),

where U ∈ Lp,2(div; Ω \ P ) is the space of Lp-vector fields whose distributional divergence belongs to

L2(Ω \P ), P is the atomic set we want to target and λ is a positive weight. The first integral forces U
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to be regular outside P , while the term H0(P ) penalizes the presence of singular curves in the image

and limits the number of points detected, to avoid false detection due to noise.

From a practical point of view, this choice allows us to work with a first order differential operator

and permits to formulate the minimization problem in a common functional framework.

For initializing the minimization process, we need to construct, from the initial image, a vector field

U0 belonging to DMp(Ω). Such a vector field can be provided by the gradient of weak solution of the

classical Dirichlet problem with measure data.

(1.2)

{

∆f = I on Ω

f = 0 on ∂Ω.

This initialization is presented in section 6.2. Then functional (1.1) must be minimized which is a

difficult task due to presence of the variable P which is a 0-dimensional object. In order to provide nu-

merical minimization, we must approximate functional (1.1) by means of a sequence of more convenient

functionals. The approximation, we suggest in this paper, is based on the so called Γ-convergence, the

notion of variational convergence introduced by De Giorgi (see [13, 14]). This theory is designed to

approximate a variational problem by a sequence of different variational problems with more regularity.

The most important feature of the Γ-convergence relies on the fact that it implies the convergence of

minimizers of the approximating functionals to those of the limiting functional. So far variational ap-

proximation techniques such as Γ-convergence or continuation method (see [2, 3] and [20] respectively)

have been successfully employed in image and signal processing. For instance in ([2, 3]) Ambrosio

and Tortorelli have proven that the classical Mumford-Shah’s functional for detecting 1-dimensional

smooth boundaries, can be approximated by a sequence of elliptic functionals that are numerically more

treatable. In this work we suggest a possible Γ-convergence approach for the detection of points. By

the way we stress out that the Γ-convergence result is only conjectured in this paper, whose purpose

is to test a new variational method from an experimental point of view. For a rigorous variational

approximation in a particular case, we refer the reader to [6].

The main difficulty here is related to the presence of a codimension 2 object, which is not a contour:

the set P . In order to obtain a variational approximation close to the one provided in ([2, 3]), the

crucial step is then to replace the term H0(P ) of functional (1.1) by a more regular, from a variational

point of view, functional involving a smooth boundary and his perimeter given by the 1-dimensional

Hausdorff measure H1. Following some suggestion from [9, 10] such a functional is given by:

Gβε
(D) =

1

4π

∫

∂D

( 1

βε

+ βεκ
2(x, y)

)

dH1(x, y),

where D is a proper regular set containing the atomic set P , κ is the curvature of its boundary, the

constant 1
4π

is a normalization factor, and βε infinitesimal as ε → 0. Roughly speaking the minima of

this functional are achieved on the union of balls of small radius, so that when βε → 0 the functional

shrinks to the atomic measure H0(P ). On the other hand the introduction of a curvature term requires

a non trivial and convenient, for a numerical point of view, approximation of the curvature-dependent

functional. Such an approximation is based on a celebrated conjecture due to De Giorgi (see [12]). By
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means of this argument it is possible to substitute the curvature-depending functional with an integral

functional involving the Laplacian operator of smooth functions. Then it remains to approximate the

H1-measure and this can be done by retrieving a classical gradient approach used in [15, 16]. This

strategy allows to deal with a functional whose Euler-Lagrange equations can be discretized. A simple

and intuitive explanation of the construction of the complete approximating functionals will be given

in section 3.

The paper is organized as follows: section 2 contains some mathematical tools, which are used in

the following. In section 3 we address the existence result for the functional F (U, P ) defined in (1.1).

In section 4 we state the two well-known Γ-convergence results we need in the sequel. In section 5 we

build in a formal way the approximating sequence. In section 6 we present the discrete model and the

whole point detection procedure. Finally the last section is devoted to some computer examples.

2. Preliminaries

2.1. Convergence for a set of points. For our purpose it will be crucial dealing with a notion of

convergence for finite sets of points introduced in [10].

Definition 2.1. We say that a sequence of a finite set of points {Ph} ⊂ Ω converges to a set P ⊂ Ω

if each of the sets Ph contains a number N of points {x1
h, ..., xN

h }, with N independent of h, such that

xi
h → xi for any i = 1, ..., n and

⋃N
i=1{xi} = P.

Lemma 2.1. Let {Ph} be a sequence of a finite set of points such that H0(Ph) ≤ N0 for every h with

N0 ∈ N. Then there exists a subsequence {Phk
} ⊂ {Ph} and a set of points P ⊂ Ω such that Phk

converges with respect to the convergence 2.1 to the set P .

Proof. Since H0(Ph) ≤ N0, we may find N1 ≤ N0 such that every set Ph contains at least N1 points.

For every i = 1, ..., N1 and there exists a subsequence xi
hk

⊂ xi
h converging to xi ∈ Ω.

Then by setting Phk
=

⋃N1

i=1 xi
hk

and P =
⋃N1

i=1 xi, the thesis is achieved.

Lemma 2.2. Let {Ph} ⊂ Ω be a sequence of finite set of points converging to a finite set of points P .

Then

(2.1) H0(P ) ≤ lim inf
h→+∞

H0(Ph)

Proof. From definition 2.1 it follows that

lim inf
h→+∞

H0(Ph) ≥ lim inf
h→+∞

H0({x1
h, ..., xN

h }) = N = H0(P ). �

2.2. Distributional divergence. In this subsection we recall the definition of the space Lp,q(div; Ω)

and DMp(Ω), introduced in [4].

Let Ω ⊂ R2 be an open set and let U : Ω ⊂ R2 → R2 be a vector field.
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Definition 2.2. We say that U ∈ Lp,q(div; Ω) if U ∈ Lp(Ω; R2) and if its distributional divergence

divU ∈ Lq(Ω). If p = q the space Lp,q(div; Ω) will be denoted by Lp(div; Ω).

Definition 2.3. For U ∈ Lp(Ω; R2), 1 ≤ p ≤ +∞, set

|divU|(Ω) := sup{

∫

Ω

U · ∇ϕdxdy : ϕ ∈ C1
0 (Ω), |ϕ| ≤ 1}.

We say that U is an Lp-divergence measure field, i.e. U ∈ DMp(Ω) if

‖U‖DMp(Ω) := ‖U‖Lp(Ω;R2) + |divU|(Ω) < +∞.

Remark 2.1. If U ∈ DMp(Ω) then via Riesz Theorem it is possible to represent the distributional

divergence of U by a Radon measure. More precisely there exists a Radon measure µ such that for

every ϕ ∈ C1
0 (Ω) the following equality holds:

∫

Ω

U · ∇ϕdxdy = −

∫

Ω

ϕdµ.

For instance the field U(x, y) = ( x
x2+y2 , y

x2+y2 ) belongs to DM1
loc(R

2) and its divergence measure is

given by −2πδ0, where δ0 is the Dirac mass.

Such a result can be proven by approximation. Let us define the following map:

Uε(x, y) :=

{

U(x, y) if |x| ≥ ε

( x
ε2 , y

ε2 ) if |x| < ε.

It is not difficult to check that uε is Lipschitz-map with divergence given by

2
ε2 χB(0,ε).

Then for every test function ϕ ∈ C1
0 (R2) we have

∫

Uε · ∇ϕdxdy = −

∫

2

ε2
χB(0,ε)ϕdxdy.

By applying the change of variables x = x1

ε
, y = y1

ε
we obtain

∫

Uε · ∇ϕdxdy = −2

∫

χB(0,1)ϕ(
x1

ε
,
y1

ε
)dx1dy1,

so that, letting ε → 0, by the dominated convergence theorem we obtain
∫

Ω

U · ∇ϕdxdy = −2πϕ(0, 0) = −2π

∫

Ω

ϕdδ0

2.3. The Dirichlet problem with measure data. For the initialization of our algorithm we must

build a vector field U0 which should be such that its divergence is singular on points of the image

I. Therefore we will use the gradient of the solution of the following Dirichlet problem (applied with

µ = I)

(2.2)

{

∆f = µ on Ω

f = 0 on ∂Ω

where µ is a Radon measure. Classical results (see [19]) guarantee the existence of a unique solution

of problem (2.2). Concerning the regularity it is known that f ∈ W 1,p(Ω) with p < 2.
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3. Existence result

In this section we show the existence of a minimizing pair (U, P ) for the functional F defined in

(1.1.)

Our argument takes two steps (see also [17] for a similar approach to minimize the classical Mumford-

Shah’s functional). The first one consists in proving the existence a minimizer of the functional (1.1)

when the set P is fixed.

To this end we adopt the following notation:

(3.1) F (U) = F (·, P ) =

∫

Ω\P

|divU |2dxdy + λ

∫

Ω

|U − U0|
pdxdy + H0(P ).

Theorem 3.1. For every set P there exists a unique minimizer UP ∈ Lp,2(div; Ω\P ) of the functional

(3.1).

Proof. Let Un be a minimizing sequence. Then we have the following bound

(3.2) F (Un) ≤ M.

From the bound (3.2) and the classical inequality:

‖Un‖
p

Lp(Ω\P ) ≤ 2p−1‖Un − U0‖
p

Lp(Ω\P ) + ‖U0‖
p

Lp(Ω\P )

it follows that

‖Un‖
p

Lp(Ω\P ) ≤ M + ‖U0‖
p

Lp(Ω\P ) := C.

Moreoveor we also have:

‖divUn‖
2
L2(Ω\P ) ≤ F (Un) ≤ M ;

so that, up to subsequences, we obtain

(3.3)

{

Un ⇀ UP in Lp(Ω \ P )

divUn ⇀ divUP in L2(Ω \ P ).

Therefore we can conclude that Un weakly converges in Lp,2(Ω \ P ; div) to a vector field UP ∈

Lp,2(Ω \ P ; div).

Then we have thanks to semicontinuity properties of the Lp-norm with respect to the weak conver-

gence:

inf
U

F (U) ≤ F (UP ) ≤ lim inf
n→+∞

F (Un) = inf
U

F (U).

Finally the strong convexity of functional (3.1) gives the uniqueness of the minimizer U. �

At once we have obtained the existence of the minimizer UP for every fixed set P , we focus on the

following functional:

(3.4) E(P ) := F (UP , P ) =

∫

Ω\P

|divUP |
2dxdy + λ

∫

Ω

|UP − U0|
pdxdy + H0(P ).
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We extend U and divU by zero on P . However we keep the integration domain of divU to be Ω \ P .

We do that in order to make clear that divU is the distributional divergence of U on Ω \P and not on

Ω.

The following semicontinuity lemma plays a key role.

Lemma 3.1. Assume that a sequence of finite sets of points {Pn} ⊂ Ω converges to a finite set of

points P ⊂ Ω . Then

E(P ) ≤ lim inf
h→∞

E(Pn)

Proof. Let us set Un = UPn
, we can assume that Un and divUn are both defined on all of Ω in the

sense explained above. The sequence Un is bounded in Lp(Ω). Indeed, by taking into account that Un

is a minimizer of the functional (3.1),

‖Un‖
p

Lp(Ω) ≤ 2p−1‖Un − U0‖
p

Lp(Ω) + ‖U0‖
p

Lp(Ω) ≤ 2p−1F (0) + ‖U0‖
p

Lp(Ω) = ‖U0‖
p

Lp(Ω)(2
p−1 + 1).

In the same way one can show that the sequence divUn is bounded in L2(Ω). So that, up to subse-

quences, we may assume

(3.5)

{

Un ⇀ U in Lp(Ω)

divUn ⇀ V in L2(Ω).

We claim that divU = V in Ω \ P . In fact, take any test function ϕ with support in Ω \ P , then since

Pn → P , we have for n large enough

supp(ϕ) ⊂ Ω \ Pn

and, consequently,
∫

supp(ϕ)

Un∇ϕdxdy = −

∫

supp(ϕ)

divUnϕdxdy.

Therefore, by taking the weak limit by (3.5) we get
∫

supp(ϕ)

U∇ϕdxdy = −

∫

supp(ϕ)

V ϕdxdy.

Then since the test function ϕ is arbitrary, we can conclude that divU = V on Ω \ P .

The thesis follows because, from the lower semicontinuity of the Lp-norm and Lemma 2.2, we have

E(P ) ≤ E(U, P ) ≤ lim inf
n

E(Un, Pn) �

We are now in position to prove the main result of this section.

Theorem 3.2. There exists a minimizer (U, P ) of the functional F , with U ∈ Lp,2(div; Ω) and P ⊂ Ω

a finite set of points.

Proof. For every P let UP the minimizer of functional (3.1), whose existence is guaranteed by Theorem

3.1. Then we focus on the functional E(P ) = F (UP , P ) and we take a minimizing sequence {Pn}. Then

by Lemma 2.1 we have (up to a subsequences) that Pn → P ⊂ Ω and UPn
→ UP . By Lemma 3.1 we

get

E(P ) ≤ lim inf
n→+∞

E(Pn).
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Therefore

(3.6) inf
(U,P )

F (U, P ) ≤ F (UP , P ) ≤ lim inf
n→+∞

E(Pn) ≤ lim inf
h→+∞

F (Un, Pn) = inf
P

F (UP , P ) ≤ F (U, P ),

Now set P̃ := P \ ∂Ω. Since for every P , UP is a minimizer we get from (3.6)

F (UP , P̃ ) ≤ F (UP , P ) ≤ F (UP , P ) ≤ F (U, P ),

for every (U, P ). Hence we conclude that

F (UP , P̃ ) ≤ inf
(U,P )

F (U, P ). �

4. Γ-convergence

The key point of our strategy is to replace the functional (1.1) by means of more regular functionals

by following a formal Γ-convergence approach.

Therefore this section is devoted to a very simple presentation of the two results we need: Modica-

Mortola’s theorem (see [15, 16]) concerning the approximation of the perimeter and De Giorgi’s con-

jecture (see [12]) about the approximation of curvature depending functionals. For the definition of

the Γ-convergence and its main properties we refer the reader to [8, 11] and references therein.

4.1. Modica Mortola’s approach. Modica-Mortola theorem states that it is possible to approxi-

mate, in the Γ-convergence sense, a perimeter by means of the following sequence of functionals

F 1
ε (u) :=

{

∫

Ω

(

ε|∇u|2 + V (u)
ε

)

dxdy if u ∈ W 1,2(Ω),

+∞ otherwise,

where V (u) = u2(1− u)2 is a double well potential. Besides, since the minimizers of the functional F 1
ε

may be trivial, some constraint on the functions uε must be added. Usually a volume constraint of the

type
∫

Ω
udxdy = m, is assumed.

Let us give an intuitive explanation of such a result. Since V has two absolute minimizers at u = 0, 1,

when ε is small, a local minimizer uε is closed to 1 on a part of Ω and close to 0 on the other part,

making a rapid transition of order ε between 0 and 1. When ε → 0 the transition set shrinks to a set

of dimension 1, so that uε goes to a function taking values u into {0, 1} and the family of functionals

Γ-converges to the measure of the perimeter of the discontinuity set of u. Modica-Mortola’s Theorem

is the following.

Theorem 4.1. The functionals F 1
ε : L1(Ω) → [0, +∞] Γ−converge, with respect to the L1-convergence,

to the following functional

F 1(u) =

{

CV H1(Su) if u ∈ {0, 1}

+∞ otherwise

where, as usual, Su denotes the set of discontinuities of u and CV is a suitable constant depending on

the potential V .
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4.2. De Giorgi’s conjecture. The aim of De Giorgi was finding a variational approximation of a

curvature depending functional of the type:

F 2(D) =

∫

∂D

(1 + κ2)dH1;

where D is a regular set and κ is a curvature of its boundary ∂D.

Since ∂D can be represented as the discontinuity set of the function u0 = 1 − χD, by Modica-

Mortola’s Theorem it follows that there is a sequence of non constant local minimizers such that

uε → u0, with respect to the L1-convergence, and

lim
ε→0

F 1
ε (uε) := CV H1(∂D).

Furthermore looking at the Euler-Lagrange equation associated to a contour length term, it yields

a contour curvature term κ, while the Euler-Lagrange equations for the functional F 1
ε (u) contains the

term 2ε∆u − V
′

(u)
ε

.

Then De Giorgi suggested to approximate the functional F 2 by adding to Modica-Mortola’s approx-

imating functionals the term

F 2
ε (u) =

∫

Ω

(2ε∆u −
V

′

(u)

ε
)2(ε|∇u|2 +

V (u)

ε
)dxdy.

In [18] the authors have proven a simplified version of the De Giorgi’s conjecture, where the integral

above is replaced by the functional

F 2
ε (u) =

∫

Ω

(2ε∆u −
V

′

(u)

ε
)2dxdy.

5. The approximating functionals

In this section we present the energy we deal with and the construction of the approximating

sequence.

The energy we are interested in is given by
∫

Ω\P

|divU |2dxdy + λ

∫

Ω

|U − U0|
pdxdy + H0(P ).

where U ∈ Lp,2(div; Ω\P ), U0 ∈ DMp
loc(R

2) and finally P is an atomic set consisting of a finite number

N of points, i.e. P = {x1, ..., xN}.

As pointed out in the introduction, the first step is to substitute the counting measure H0(P ) with

a more treatable term given by:

Gβε
(D) =

1

4π

∫

∂D

( 1

βε

+ βεκ
2(x, y)

)

dH1(x, y);

where D is an union of regular simply connected sets {Di} with i = 1, .., N , such that xi ∈ Di,

Di

⋂

Dj = ∅ for i 6= j, κ is the curvature of the boundary of the set D, the constant 1
4π

is a normalization

factor and βε is infinitesimal as ε → 0.
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To understand why we can approximate H0(P ) with Gβε
(D) one should note that the solution of

the following minimum problem

(5.1) min
D⊃P

Gβε
(D)

is given by D =
⋃N

i B(xi, βε), where xi are the points of P . We give an idea of a possible proof in the

case of a single point.

By the Young’s inequality we have

Gβε
(D) ≥

1

4π

∫

∂D

2κdH1

and by applying the Gauss-Bonnet Theorem

Gβε
(D) ≥

1

4π
(2)(2π) = 1 = H0(P ).

Finally a simple calculation shows that, if we evaluate the functional Gβε
on B(x1, βε), we obtain

the value 1, i.e. the number of points in P , i.e. H0(P ). The N point case can be recovered with minor

changes by the same argument.

For what follows it is convenient to split the functional Gβε
in two terms:

Gβε
(D) = G1

βε(D) + G2
βε(D)

where

G1
βε

(D) =
1

4π

∫

∂D

1

βε
dH1(x, y);

and

G2
βε

(D) :=
1

4π

∫

∂D

βεκ
2(x, y)dH1(x, y).

We can write an intermediate approximation of energy (1.1):

(5.2) Eε(U, D) = G1
βε

(D) + G2
βε

(D) +

∫

Ω

(1 − χD)|div(U)|2dxdy + λ

∫

Ω

|U − U0|
pdxdy.

The advantage of such a formulation is that we know how to provide a variational approximation of

the perimeter measure H1⌊∂D. Following Modica-Mortola’s approach such an approximation can be

obtained by using the following measure:

µε(w,∇w)dxdy =
(

ε|∇w|2 +
V (w)

ε

)

dxdy,

where V (w) = w2(1 − w)2 is a double well functional.

Next step is expressing the curvature term by means of the function w. Thanks to the simplified

version of the De Giorgi’s conjecture we can replace the term κ by the term 2ε∆w − V
′

(w)
ε

.
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So that we can formally write the complete approximating functional:

Φε(U, w) : =

∫

Ω

w2|div(U)|2dxdy +
1

4π

∫

Ω

βε(2ε∆w −
V ′(w)

ε
)2dxdy +

1

βε

∫

Ω

µε(w,∇w)dxdy

+ λ

∫

Ω

|U − U0|
pdxdy +

1

µε

∫

Ω

(1 − w)2dxdy,(5.3)

where U ∈ Lp,2(div; Ω) is equal to 0 on the ∂Ω and w is smooth function equal to 1 on the boundary,

i.e. 1 − w ∈ C∞
0 (Ω), µε → 0 when ε goes to 0. The last integral is a penalization term which prevents

wε from converging to the function constantly equal to 0 as ε → 0.

Then if (Uε, wε) is a minimizing sequence of Φε, then wε must be very close to the values 1 when ε

goes to 0, since the double well potential is positive except for wε = 0, 1 and w must be equal to 1 on

∂Ω. On the other hand, near the points where the divergence is very high wε must be close to 0.

Therefore, while the functions Uε approximate a minimizer U of the original functional, the level

set {wε = 0} approximate the original singular set P .

Remark 5.1. We point out that the Γ-convergence result is not proved in this paper, but only conjec-

tured. A complete proof of the Γ-convergence result and the equicoerciveness of the sequence Φε, in the

particular case where the vector field U is a gradient, has been provided by the first and third author in

[6].

The first variation of this functional leads to the following gradient flow system

∂U

∂t
= 2∇(w2divU) + λp|U − U0|

p−2(U − U0)

∂w

∂t
= −4

∆h

βε

+ βεh +
2

ε2

1

βε

V
′′

(w)h − 2w|divU |2 +
2

µε

(1 − w),(5.4)

where h is given by the equation

h = 2ε∆w −
1

ε
V ′(w).

6. Complete procedure for point detection

In our model the image contains an atomic Radon measure. Thus, in order to find an initial vector

field which copies the singularities of the initial image, we consider the gradient of the solution of the

following Dirichlet problem:

(6.1)

{

∆f = I on Ω

f = 0 on ∂Ω.

In this way we obtain a vector field whose divergence is singular on a proper set which contains the

points we want to detect. In general this set could contain other structures. For instance if the initial

image is a Radon measure concentrated both on points and curves, the divergence of ∇f will be

singular on points and curves. Besides if there is some noise in the image, it could be not clear how to

differentiate the singular points due to the noise, from those we want to catch. As a consequence, by

solving problem (6.1), we obtain a predetection, which must be refined. We do this by searching for
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a minimizer of the energy Φε(U, w) via solving equations (5.4), with initial data U0 given by ∇f . So

that we obtain a vector field U whose divergence is relevant only on the set P and a function w whose

zeros are given by the set P .

6.1. Discretization. The image is an array of size N2. We endowed the space RN×N with the

standard scalar product and standard norm. The gradient ∇I ∈ (RN×N) × (RN×N ) is given by:

(∇I)i,j = ((∇I)1i,j , (∇I)2i,j)

where

(∇I)1i,j =

{

Ii+1,j − Ii,j if i < N

0 if i = N,

(∇I)2i,j =

{

Ii,j+1 − Ii,j if j < N

0 if j = 0.

We also introduce the discrete version of the divergence operator simply defined as the adjoint operator

of the gradient: div = −∇∗. More in details if v ∈ (RN×N ) × (RN×N), we have

(divv)i,j =















































v1
i,j + v2

i,j if i, j = 1

v1
i,j + v2

i,j − v2
i−1,j if i = 1, 1 < j < N

v1
i,j − v1

i−1,j + v2
i,j − v2

i−1,j if 1 < i < N, 1 < j < N

−v1
i−1,j + v2

i,j − v2
i−1,j if i = N, 1 < j < N

v1
i,j − v1

i−1,j + v2
i,j if 1 < i < N, j = 1

v1
i,j − v1

i−1,j − v2
i−1,j if 1 < i < N, j = N

−(v1
i−1,j + v2

i−1,j) if i, j = N.

Then we can define the discrete version of the Laplacian operator as ∆I = div(∇I).

6.2. Discretization in time. We simply replace ∂U
∂t

and ∂w
∂t

by
Un+1

i,j
−Un

i,j

δt
and

wn+1

i,j
−wn

i,j

δt
respectively.

Then we write system (5.4) in the form (for simplicity we omit the dependence on ε)










Un+1
1 = −δtΦU1

(Un, wn)

Un+1
2 = −δtΦU2

(Un, wn)

wn+1 = −δtΦw(Un, wn).

6.3. initialization. In order to compute U(0) = U0 = ∇f , where f is the solution of problem (6.1), we

need to solve a Dirichlet problem with data measure I, therefore we regularize the image by convolution

with a Gaussian kernel Gσ with very small σ and then we solve, by a classical finite differences method,

the problem:

(6.2)

{

∆f = Iσ on Ω

f = 0 ∂Ω,

where Iσ = I ∗ Gσ.

To initialize our algorithm, we also need of an initial guess on w. We choose w(0) = 1.
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7. Computer examples

7.1. Parameter settings. Before running our algorithm all the parameters have to be fixed. The

most important are ε, βε and µε, which govern the set D approximating points we want to detect.

Those parameters are related, as in [10], by the conditions lim
ε→0

ε| log(ε)|

βε

= 0, lim
ε→0

βε

µε

= 0. Furthermore,

since the mesh grid size is 1 and βε gives the radius of a ball centered in the singular point we want to

detect, from a discrete point of view the smallest value we can take is
√

2
2 . Then we use the values 0.1

for ε, 0.7 for βε, and 0.8 for µε. As exponent p of the discrepancy term we always take p = 1.5

Concerning the parameter λ we mainly used the value λ = 0.1, in order to force the algorithm to

regularize as much as possible the initial data U0.

Since we deal with small values of ε, in order to have some stability, we must take a small discretiza-

tion time step. Practically we mainly used the value δt = 1 × 10−6.

Concerning the stopping criterion we iterate the algorithm until max
{

‖Un+1

1
−Un

1 ‖1

‖Un
1
‖1

,
‖Un+1

2
−Un

2 ‖1

‖Un
2
‖1

,
‖wn+1−wn‖1

‖wn‖1

}

≤ 1 × 10−2.

In all the computer examples the points are detected by means of the function wε, by displaying the

level-set {wε ≃ 0}.

7.2. Commentaries. The figure 1 shows how resistant to noise our model is. When the noise is large

the parameter ε must be as close as possible to the ideal value 0. More in details in the first row we

display the initial image obtained by adding a Gaussian noise to a binary image of five points. The

second row shows the behavior of wε for small values of ε and βε.

Looking at the histograms of the gray level of I and wε, one can see that it is easier fixing a threshold

value starting from the function wε than from the initial image I. In the last row we display the set

{wε ≃ 0} obtained by plotting the set {wε ≤ α} with threshold value α = 0.5.

In figure 2 we test our algorithm on curves and points at the same time. In the first row we have a

sequence of points and a curve with boundary inside Ω. In the second row we display the function wε

and the level set {wε ≃ 0} once again obtained by fixing a threshold value α = 0.5. The result is that,

as desired, our algorithm is capable of eliminating the curve from the initial image. According to the

continuous setting when ε takes values close to 0 the approximating energy (5.3) behaves similarly to

the limit energy (1.1), so that the presence of the curve is penalized in the minimization process. Then

the set {wε
∼= 0} contains nothing else but points.

Finally in figure (a),(b),(c) and (d) we deal with a biological image. Our task is catching the finest

structure present in the image. In figure (d) the isolated points are quite well detected, while the

branches of the cell are not. Nevertheless due to the small time discretization step the computation

time is quite large. To test the image in figure (a) of size 500× 500, our algorithm takes 140 iterations

and about 17mm on running on an Intel(R) Xeon(R) CPU 5120 @ 1.86GHz.

Certainly the algorithm can be accelerated by using more sophisticated techniques such as multigrid

methods. Such a faster algorithm is the subject of our current investigation.
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Original image I Noisy image PSNR= 5.5Db Noisy image PSNR= 5.5Db

The function wε (ε = 0.1, βε = 0.7) The function wε (ε = 0.1, βε = 0.7) wε ≃ 0 (ε = 0.1, βε = 0.7)

Figure 1. Synthetic image: we test our algorithm on noisy images. When the parameters ε and

βε are small as much as possible the detection is finer. The detection is refined by fixing a threshold

value α = 0.5 for the function wε. Top left: Original image. Top center: Noisy image. Top right:

the histogram of the noisy image. Bottom left: the function wε. Bottom center: the histogram of the

function wε. Bottom right: the level set wε ≃ 0 obtained by fixing a threshold value α = 0.5

.
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Original image I Noisy Image PSNR= 7.2

The function wε {wε ≃ 0} (ε = 0.1,βε = 0.7)

Figure 2. Synthetic image: curve points and noise are present in the initial image. As expected

our method is capable of removing the curve from the image. Top left: Original image with five

isolate points and a curve. Top right: Noisy image. Bottom left: The function wε. Bottom right:

the level set wε ≃ 0 obtained by fixing a threshold value α = 0.5

8. Conclusion

In this work, a new variational method for point detection in biological images has been proposed

and tested. We emphasize that, according to our knowledge, this is the first method which makes

possible isolating the spots from a filament in the observed image. Moreover it also permits in a

noisy image to fix a threshold value in a simple and direct way. Moreover we believe that a suitable

generalization of this method for the detection of spots and even filaments in 3-D biological images

can be provided. This is a subject of our current investigation. Certainly there are many rooms for

improvement both from a theoretical and numerical point of view such as a deep investigation of the

Γ-convergence approximation, as a well as a significant acceleration of the algorithm.
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continuous. Ann. Inst. Fourier (Grenoble), 15 (1965), 180-258.
[20] A.Witkin, D.Terzopoulos, M.Kass. Signal mathcing trough scale space International Journal of Computer

Vision 1 2 (1987), 133-144.


