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Hierarchical Multiple Markov Chain Model for

Unsupervised Texture Segmentation
Giuseppe Scarpa, Raffaele Gaetano, Michal Haindl and Josiane Zerubia,Fellow, IEEE

Abstract

In this work, we present a novel multiscale texture model, and a related algorithm for the unsupervised

segmentation of color images.

Elementary textures are characterized by their spatial interactions with neighboring regions along

selected directions. Such interactions are modeled in turn by means of a set of Markov chains, one

for each direction, whose parameters are collected in a feature vector that synthetically describes the

texture. Based on the feature vectors, the texture are then recursively merged, giving rise to larger and

more complex textures, which appear at different scales of observation: accordingly, the model is named

Hierarchical Multiple Markov Chain(H-MMC).

TheTexture Fragmentation and Reconstruction(TFR) algorithm, addresses the unsupervised segmen-

tation problem based on the H-MMC model. The “fragmentation” step allows one to find the elementary

textures of the model, while the “reconstruction” step defines the hierarchical image segmentation based

on a probabilistic measure (texture score) which takes into account both region scale and inter-region

interactions.

The performance of the proposed method was assessed through the Prague segmentation benchmark,

based on mosaics of real natural textures, and also tested on real-world natural and remote sensing

images.
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I. I NTRODUCTION

Image segmentation is a low-level processing of critical importance for many applications in such

diverse domains as medical imaging, security, remote sensing, industrial automation, and many others.

Although it has been widely studied in recent decades, in many cases it still remains an open problem, as

is the case of textured images where the spatial interactions may cover long ranges, asking for complex

high order modeling. The situation is especially critical in the unsupervised case since no prior information

is given and the process is completely blind.

It is widely recognized that a visual texture, which humans can easily perceive, is very difficult to define

[17]. The difficulty results mainly from the fact that different people can define textures in application-

dependent ways or with different perceptual motivations, and there is no generally agreed-upon definition

[44]. It is not our intention to add here a new one: we simply observe that it should be as general as

possible, because a too strict definition would allow one to confine his/her work to images that better fit

with it, eventually leading to narrow-domain solutions.

Less subjective, instead, are certain categorizations made for “elementary” textures, likestructuredvs.

non-structuredtextures, andmicro- vs. macro-textures. The former classification arises from the nature

(deterministic or stochastic, respectively) of a possible model generating the texture. The latter refers to

the spatial correlation scale of the texture, which spans a continuous range whose extremes are micro-

and macro-textures. Natural textures, however, are rarely homogeneous to be considered belonging to one

category or another, as it may happen that a single texture can be regarded as composition of different

textures based on the resolution. In those cases we will generally speak of “complex” textures.

In current literature, the matter of texture segmentation is mostly regarded as the composition of two

different problems: on one side, the choice of a proper representation of textures, in order to establishwhat

is to be identified, and on the other side the definition of a framework and strategy for the actual

segmentation. Of course, though an effective separation of the problem is realized in many cases, in

general the two tasks are not treated independently, since the second can be strongly dependent from the

first.

Due to the aforementioned multiplicity of possible definitions, the problem of determining an efficient

representation for textures can be treated according to a wide variety of different approaches, from the

extraction of basic or complex features to the construction of a proper image model.

A quite classical example is the use of statistical features, for example in the form of co-occurrence

matrices [13], [23], introduced in the pioneering work of Haralick [23]. These matrices account for co-
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occurring colors in pairs of image sites whose relative positions are fixed by choosing a distance and the

orientation, which eventually parameterize the matrices. The discriminative potential of co-occurrence

matrices is higher when a few assumptions can be made about the directionality, the spatial interaction

scale and the color content of the textures involved, in order to avoid the otherwise complex selection of

the proper matrices to use.

A more complex feature extraction approach can take into account the use of geometrical features, as

presented in some works centered on fractal dimension [11], [47]. In these cases, the choice of fractal

geometry is motivated by the observation that the fractal dimension is relatively insensitive to image

scaling, and shows a strong correlation with human judgment of surface roughness. Fractal features

are sometimes not very effective for texture analysis because they may not represent sufficient texture

discriminatory information.

At present, most of the literature about texture representation via feature extraction relies on method

based on signal processing [10], [19], with Gabor [13], [24], [35] and wavelet [26], [45] filters being by far

the most used to enhance textural properties. The success of Gabor filters is mainly due to their outstanding

properties of optimal joint resolution in the space/spatial-frequency domain [35] as well as orientation

and frequency selectivity. The main drawback of Gabor filtering is the excessive computational effort to

pay due to the large number of filters that can be selected by varying spatial scale, carrier frequency

and orientation, that causes a strong parameterization. Wavelet-based methods have received a great deal

of attention in recent years [10], [26], [45] due to several appealing properties, like their multi-scale

definition and flexibility in the choice of the basis functions, that considerably help the tasks of texture

classification and discrimination. However the adaptivity of the filtering w.r.t. the application domain is

still an open issue and this somehow limits the applicability of wavelet methods in unsupervised contexts.

A different, yet very popular, approach to texture representation considers the use of a suitable texture

model [1], [20], [21], [27], [37]. Markov Random Fields (MRF) models [1], [27], [36] are very popular

due to their appealing theory: the Hammersley-Clifford theorem [4] relates the local MRF characteristics

to the global distribution, allowing the definition of a global model through the local characteristics.

Resulting robustness to noise is another qualifying point of this approach. Models that proved to work

very good on non-textured images are widespread in literature, as [4], [36], [46] just to cite a few, but due

to their locality they usually fail in capturing long range interactions, occurring very intensively in images

with structured, near-regular and/or macroscopic textures [1], [27]. For this reason, more complex causal

models like multi-resolution Hierarchical MRFs [5], [27] (where the Markov property applies causally

through the different resolution levels) or two-dimensional causal autoregressive models [21], [37], are
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often preferred, at the price of a generally higher computational complexity and/or an increased difficulty

in constructing the model and managing its parameters.

Concerning the actual segmentation methods arising from the chosen texture representation framework,

it is reasonable to refer to the classical image segmentation literature, considering the numerous techniques

belonging to theedge-basedand the region-basedfamilies. For the first category, some interesting

variational techniques for texture segmentation that rely on boundary detection have been proposed

recently [33], [38], [7], [6], where boundaries among textures are retrieved using curve evolution driven

by some energy minimization criterion. Major drawbacks of these methods are the sensitivity to initial

conditions and, in particular for textures, the difficulty to correctly locate boundaries of structured and

macro-textured areas.

In the region-based framework, besides the well known optimization procedures associated to MRF-

based modeling like in [5], [27], usually heavy in terms of computational complexity, some region growing

techniques have been recently proposed for the texture segmentation problem that are typically based on

the split-and-merge paradigm, like for example in [16] where image is first decomposed by means of

spectral and spatial clustering and then the resulting elementary regions are used as seeds for a region

growing process. Finally, some result on texture segmentation has been presented also using graph-

cuts methods over a suitably chosen textural feature space [42], [14], where no specific modification

is proposed in terms of optimization procedure to deal with textures, especially in the structured and

macro-textured case.

The solution presented here, relying on a model-based texture representation, starts from two main

observations. First, a pixel-level texture description, no matter which model is used, is very limited when

the object image contains macro textural features, i.e. large textons [48]. The use of multiple scales [2],

[19] is certainly a first step to mitigate this problem, but an additional gain can be achieved if one moves to

a region-level description, where textons can be handled as atomic components. Second, in unsupervised

segmentation the cluster validation is very often an ill-posed problem and the only reasonable solution

is a hierarchical segmentation [2], [24], [30] (sequence of nested segmentations) where the number of

texture segments is not explicitly singled out.

The proposedTexture Fragmentation and Reconstruction(TFR) algorithm, whose preliminary study

we presented in [39], [40], [41], follows the paradigm of splitting and merging where a first (over-

)segmentation step provides the elementary regions that are processed (essentially merged) in the subse-

quent step. The TFR algorithm is based on a hierarchical region-level description, where inter-region

interactions are modeled through simultaneous Markov chains whose states are recursively merged
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according to their mutual interaction, providing the desired hierarchical texture segmentation. A similar

approach can be found in [30].

The experiments carried out on the Prague benchmark [32] data set allow a comparison with other

methods [9], [12], [16], [19], [20], [21], [22] using the same benchmark, and prove the potential of the

proposed technique which has been also successfully applied to many natural images from the Berkeley

Segmentation Dataset [29] and a remotely sensed image.

In next Section the proposed texture modeling is presented, while Section III deals with the TFR

segmentation algorithm. The experiments on the Prague Benchmark are discussed in Section IV, while

the applications to real word images are shown in Section V, and finally Section VI draws conclusions

and outlines future research.

II. H IERARCHICAL TEXTURE MODELING

A complex scenario can be usually segmented in different, equally reasonable, ways depending on the

scale of observation. As an example, consider the front of a building with an array of windows. At a

very fine scale one is likely to distinguish theglasses, the framesof the windows, and thewalls. Then,

at a coarser scale, frames and glasses can be considered as a unique texture (window), since they are

strongly related spatially, while at the coarsest scale window and walls, which also relate to each other

but with longer range spatial interactions, merge into thebuilding texture. In other words, the cluster

validation problem becomes anill-posedproblem, if the scale is not fixed somehow. The ill-positioning

of the cluster validation problem is very common in many computer vision applications, and, in the case

of the textures, it arises directly from their intrinsic multi-scale definition. Based on this observation, we

propose here a method which provides a hierarchical segmentation, rather than a single segmentation

with an estimated (somewhat unreliable) number of regions. By doing so, we get a scale-dependent

interpretation of the image, represented by a set of nested segmentations which can be associated with a

tree structure where each of its prunings corresponds to a possible segmentation.

In order to achieve this goal, we resort to ahierarchical and discretemodeling of the textures. To

do this, a discretization in the color domain is therefore needed. Such a process is just a color partition

applied either directly to the original image or, more generally, to a transformed image, like pixel-wise

feature planes properly extracted from the original one.
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Fig. 1. H-MMC model:urban areasample (a);3-state(b) and2-state(c) maps; states hierarchy (d);3-state(e) and2-state

(f) Markov chains for the north direction.

A. Hierarchical Multiple Markov Chain Model

The proposed modeling provides region-wise features which carry information about region shape and

contextual region interaction.

The starting point for the construction of the image model is an appropriate image partition in which

each segment corresponds to an “elementary texture”, or simply “elementary state”1, that will be a

collection of connected regions which are close both in their color response and in their contextual

model features (defined below) which account for region shape and interactions among neighboring

regions. A complete hierarchical description of the image is then obtained by pairwise associating and

merging together the so defined elementary states, implicitly providing a set of progressively coarser

resolution textures, from the initial partition to the final single full-image state.

In order to detail the model, let us assume that an image partition in elementary states is available.

Consider the eight main spatial directions (north, northeast, east, etc...) and for each of them focus on

the pixel-wise state evolution along it. These processes can be modeled throughMultiple Markov Chains

(MMC). Fig.1 clarifies the idea on a simple (urban) texture (a). In (b) the partition in three states is

shown while in (e) is represented a corresponding chain on a fixed direction (north). According to the

1“Texture” in the sense suggested by the proposed model. In the following, the terms state, texture or class are to be meant

as interchangeable.
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idea of hierarchical interpretation, the next step is the selection of two, out of three, states to merge.

In this simple example it is easily justified, intuitively, the choice ofgreen spotsand buildings, see the

2-state map (c) and the hierarchy tree (d), which are spatially strongly related (how do we automatically

address this issue will be explained later). After merging all chains will be reduced by one state, as graph

(e) reduces to (f) for the northern direction, and the 3-state MMC reduce to a 2-state MMC as well. In

general we would start from aL-state partition (corresponding to the finest scale texture segmentation) to

reach a single global state (no segmentation at all) afterL− 1 merging steps, while collectingL MMC’s

corresponding to different scales.

The so obtainedHierarchical MMC (H-MMC) stack can be formally defined as follows. LetΩ(n) be

the state set at a given “scale”n (n is also the cardinality ofΩ(n)), the transition probability matrix

for any chain (direction)j = 1, . . . , 8 (describing both intra- and inter-state transitions) is defined as

P(n)
j = {p(n)

j (ω′|ω) : ω′, ω ∈ Ω(n)} where

p
(n)
j (ω′|ω)

4
= Pr(xs+1 = ω′|xs = ω, chain= j) (1)

∀ω, ω′ ∈ Ω(n), xs represents the state of a generic sites ∈ S, and s + 1 is the site next tos along

direction j. These probabilities are easily estimated as

p
(n)
j (ω′|ω) =

|Sω−→j ω′ |
|Sω|

(2)

whereSω is the set of pixels labeledω andSω−→j ω′ = {s ∈ Sω : s+1 ∈ Sω′ , chain= j}. The H-MMC

model is consequently associated with the transition probability set

P = {P(n)
j : 1 ≤ j ≤ 8, 1 ≤ n ≤ L}, (3)

andP(n) = {P(n)
j : 1 ≤ j ≤ 8} is just then-th MMC model component.

The transition probabilities indicated on the graphs (e)-(f) of Fig.1 give an idea of their relationship

with the visual appearance of the texture. First, note that, for each fixed scalen, the intra-state transition

probabilities of a given state account for the shape of its region components. As an example for theroad

networkwe expect rather large values for the north direction w.r.t. other directions. On the other hand,

the remaininginter-state transition probabilities provide a statistical description of the context, that is

the spatial interaction between states, accounting for the relative occurrence and mutual positioning of

adjacent regions.

As the states are progressively coupled in a fine-to-coarse texture representation a sequence of state

sets is generated:Ω(L),Ω(L−1), ...,Ω(1). Observe that, once the transition probabilities are known at a

given scalen of the process, they are also automatically obtained for the coarser leveln− 1 above and,
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eventually, if the hierarchy tree is given one has just to estimate these attributes at the finest levelL.

In fact, if we either denote with(ωa, ωb) ∈ Ω(n) × Ω(n) the couple of states whose merging generated

ω ∈ Ω(n−1), i.e. (ωa, ωb) ≡ ω, or just (ωa, ωb) ≡ (ω, ∅) whenω is not the merging state associated with

stepn, then by using the total probability law it can easily be shown that2

p(ω′|ω) = Pr(ω′a ∪ ω′b|ωa ∪ ωb) =

p(ωa)
p(ω)

[p(ω′a|ωa) + p(ω′b|ωa)] +

+
p(ωb)
p(ω)

[p(ω′a|ωb) + p(ω′b|ωb)], (4)

where p(ω) = p(ωa) + p(ωb), and eventually any element ofP(n−1)
j can be obtained by a linear

combination of elements ofP(n)
j .

Thanks to the above-mentioned property,P(n) does not need to be computed for eachn < L, and the

H-MMC model is completely specified by the triple(Ω(L),P(L), T ), whereT is the binary hierarchy

tree.3

Similarly, the MMC parameters of a given state (distributed on several unconnected regions) can be

related to the parameters of the locally (to the single connected regions) defined MMCs through a simple

weighted average (5). This property which is summarized below is very useful during the segmentation

task, as it allows to characterize the image from the bottom starting with the featuring of single connected

regions, or “fragments”.

Region-wise MMC features:Suppose that a regionSω ∈ Ω(L) associated with stateω is composed of

Nω fragments{Sωk
}k∈1,...,Nω

, whereωk is the substate ofω identifying thek-th fragment:ω =
⋃Nω

k=1 ωk.

Therefore the total probability law yields

p
(L)
j (ω′|ω) =

Nω∑
k=1

p
(L)
j (ω′|ωk)p(ωk), (5)

which relates the global description of a texture to the region-wise featuresp
(L)
j (ω′|ωk) andp(ωk) given

by

p
(L)
j (ω′|ωk) =

|Sωk−→j ω′ |
|Sωk

|
4
= Aωk

(ω′, j) (6)

andp(ωk) = |Sωk
|/|S|, respectively. Eventually theL×8 feature matrixAωk

(ω′, j) defined in (6), which

characterizes each fragment in terms of shape and context, can be used to carry a fragment-level clustering

in order to define the initial statesΩ(L).

2We neglected indicesj andn for the sake of simplicity.

3Hence,Ω(L) is the set of terminals onT , while for eachn < L, Ω(n) is the set of terminals of a pruning ofT .
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Fig. 2. Image structure ambiguity. A texture mosaic (a) and several binary (d) and non-binary (b)-(c) hierarchical trees.

B. The segmentation problem

Let us now turn to the segmentation problem. Since we are assuming an unsupervised context, we do

not a priori know how many and what kind of textures may be found in the image to be segmented.

The determination of the number of textures of a given image, classically referred to as thecluster

validation problem, is strictly related to that of finding the internal structure of each single texture. Indeed,

according to the H-MMC modeling, a texture is nothing but a local visual property of a surface where

the locality has to be meant at multiple spatial scales. This definition allows to describe complex textures

but it also says that textures which seems distinct at fine spatial scale collapse in a single texture, sooner

or later, at a coarser scale, even if their spatial interaction is weak. As a consequence the application of

this model eventually allows us to circumvent the cluster validation problem, since it aims at recursively

retrieving textures which cover larger and larger areas of the image until the whole image is associated

with a single global texture. The final result is therefore a hierarchical segmentation map, that is a stack

of nested segmentations varying for number of classes: the smaller the number of classes, the coarser

the scale. In general evaluating the accuracy for such a product is quite difficult, but if one has data with

ground-truth at a single scale, then he only has to seek for the best-fitting segmentation map contained

into the stack for the comparison. The automatic recognition of the right scale (number of classes) is not

object of this work but is something that in any case can be separately addressed in a subsequent step,

possibly aware of the final application for which the segmentation is needed.

To better fix the above considerations let us discuss the example of Fig.2. The image (a) is composed

by “two” textures represented as statesw andz. According to the H-MMC modeling we must somehow

relate progressively the elementary textures until we have a unique state representing the whole image.

Assume without loss of generality that we start from only four elementary textures, denotedw, u, v,
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y, easy to localize in the image. In (b)-(d) are depicted some possible choices for the model hierarchy

which represent both intra- and inter-texture dependencies. A first observation is about the ill-positioning

of the cluster validation problem. We said we have two textures, but actually a human observer could

also guess there are four:it depends on the application4 Therefore we can expect that such data will be

even more confusing for a computer. The question is ratherhow to correctly relate the fine textures in

order for the hierarchical segmentation to contain both the 2- and the 4-class partition.

To this end the structure (b) seems to be the worst since we jump directly from a 4-class partition to

the 1-class one, by merging all 4 classes in one step. Structure (c) appears a more reasonable solution

that contains both the desired partitions. However, if we better look at the data we realize that statesu

andv are strongly related and may be merged apart fromy which only later on will be joined to form

statez, as represented bybinary structure (d). Although this is just a case, indeed there are two good

motivations to restrict our attention to “binary” structures. The former is computational: we restrict our

search when seeking the hierarchy tree. The latter is about the information conveyed by the hierarchical

segmentation: a larger number of internal nodes (the maximum is achieved with binary structures) means

more possible prunings and, therefore, a larger number of image interpretations/segmentations provided.

For these reasons we only deal with binary hierarchies in the following.

III. T HE TFR SEGMENTATION ALGORITHM

In the previous section we have introduced the H-MMC texture model and shown that it can be used

for the task of hierarchical segmentation. We have also shown that such a model is completely defined

by the triple (Ω(L),P(L), T ), and motivated the restriction onT to be abinary tree. Here we clarify

how these three items are determined by the proposedTexture Fragmentation and Reconstruction(TFR)

segmentation algorithm which follows the splitting-and-merging paradigm and whose general scheme is

shown in Fig.3.

The proposed solution is quite simple. The first two blocks, CBC (Color Based Clustering) and SBC

(Spatial Based Clustering), perform an over-partition of the image that provides the initial finest-scale

texture statesΩ(L) which are therefore progressively related in the last merging process yielding the

desired hierarchical segmentation with the associated tree structureT .

Any finest resolution textureω ∈ Ω(L) is a collection of image fragments homogeneous w.r.t. both

their internal “visual appearance” (average color) and the contextual characteristics (shape and spatial

4For example, think about a region-based coding algorithm which would be more efficient on a 4-class partition.
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Fig. 3. TFR flow chart.

interaction with adjacent states) conveyed by the MMC feature set (Eq.6). In order to perform such a

classification task, the first CBC block outputs a pixel-by-pixel “color” classification (see Sec.III-A) inKc

color states, also referred to aspartial (MMC) states. At this level each group of adjacent pixels having a

same label are assigned to an image “fragment” and all subsequent TFR processing is made considering

fragments (rather than pixels) as atomic elements. All contours are therefore fixed in the CBC step, and

later, in case, they can only disappear because of region merging. Each color state is therefore further

split in Ks (full-defined) states by the SBC block (see Sec.III-B) which operates a clustering aimed at

putting together fragments with similar MMC features (Eq.6). Therefore a total ofL = Kc ×Ks states

are eventually defined.

Once the set ofL initial finest texture states,Ω(L), is completed, the last texture merging process (see

Sec.III-C/D) can recursively retrieve textures at larger and larger scale.

In order to clarify the overall process an experiment is detailed in Fig.4. In (a) is the image to be

segmented, whoseKc-color segmentation map (CBC output,Kc = 24) is shown in (b) in false colors.

Given the complexity of the image, a partial CBC map (involving only 4 out of 24 color states) is shown

in (c) for an easier interpretation of the subsequent SBC step (sinceKs = 12, the complete SBC map

would haveL = 288 states!). The 4 color states are associated with different false colors: yellow, green

and violet, spanning over two textures, and red, spanning over three textures. Focusing on these selected

states it is now easy to recognize the effect of the SBC processing on each of them (d) and, in particular

it should be evident that each of the 48 states shown in (d) practically never belong to more than one

single texture, which is fundamental for the texture discrimination.

On the other hand, it is also worth to notice that althoughKs was set much larger than the strictly
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Fig. 4. TFR process evolution.

needed (the example shows that a value of 2 or 3, depending on the case, could suffice for the selected

color states), the subsequent merging process (two snapshots of which are shown in (e)-(f)) is able to

correctly rejoin over-split states at coarser levels. The same consideration holds for the over-split present

at the CBC level as well. Nonetheless, it is also clear that there exists superior limits forKc andKs over

which the states begin to be less significative and too much localized, so that the textures may result

irreparably over-split.

Aware of this trade-off we have used heuristic rules to fixa priori both Kc and Ks (and hence

L = KcKs), as to ensure a large (but not exceeding) number of states,L, in order to avoidunder-

segmentation which could not be recovered by the merging process. If we letM be either the number

of textures expected in the image or its maximum value (depending on the information we have), on

the basis of our experimental observations, we foundKc = 2M to be a reasonable choice. This can be

intuitively justified by the fact that any non-trivial texture has at least two modes in the color space.

Hence, we are ensuring that, on average, we have at least two color states per texture. ForKs, instead, a

good compromise is to fix it equal toM . This way, each color may occur simultaneously in each texture

(but in one contextual configuration only) and the algorithm could keep working properly.

A. Color-based clustering (CBC)

The color segmentation task (CBC) is here achieved by means of thetree-structuredMRF (TS-MRF)

model-based algorithm presented in [15], [36] and briefly recalled in the following. This algorithm has

several characteristics which are attractive in this context. It uses a MRF prior modeling which helps
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to regularize elementary regions, improving the robustness with respect to the noise. Moreover, a data

likelihood description based on a multivariate Gaussian modeling helps to take into account the correlation

in the color space. Finally, its tree structured formulation speeds up the processing, ensures convergence

to the desired number of classes, and reduces large-scale effects thanks to its progressive localization.

A discrete random fieldX defined on a latticeS is said to be a MRF with respect to a given

neighborhood system if the Markovian property holds for each sites. Moreover if a MRF is positive

then its global distribution has a Gibbs form,

p(x|θ) =
1
Z

exp[−U(x, θ)], (7)

with U(x, θ) =
∑

c∈C Vc(xc, θ), wherex is the realization of the fieldX, θ is the set of parameters of

the model, theVc functions are called potentials,U denotes the energy,Z is a normalizing constant that

depends onθ, and c indicates a clique of the image. Note that each potentialVc depends only on the

values taken on the clique sitesxc = {xs, s ∈ c} and, therefore, accounts only for local interactions. As

a consequence, local dependencies inX can be easily modeled by defining suitable potentialsVc(·). In

particular the second order Potts MRF model [4] is considered in this work, where only pairwise cliques

are taken into account, that is:

Vc(xc) =

 β if xp 6= xq, p, q ∈ c

0 otherwise
(8)

whereβ > 0 is the model parameter.

Turning to the segmentation problem, such a MRFX can be used as prior for the desired segmentation

map x̂ according to the MAP criterion, that is,̂x = arg maxx p(y|x)p(x), once a likelihood model is

assigned as well: we did the common assumption of conditional independence,p(y|x) =
∏

s∈S p(ys|xs),

and multivariate Gaussian distribution for the likelihood of single pixels.

The inherent high complexity of this Bayesian formulation of the segmentation problem, indeed, is

consistently reduced if the TS-MRF model is used since it allows a faster optimization procedure [15].

The TS-MRF model defines aKc-label fieldX as a stack ofKc− 1 nested 2-label Potts MRFs (8). The

root MRF serves for splitting the image in two classes. Then,local binary MRFs are associated with

each of classes singled out in order to further split the image. Such process goes on recursively until a

suitable condition is met for each of the current classes and, ifKc − 1 binary splits have been accepted,

a Kc-class segmentation is provided. In this work, the condition we used to decide whether to proceed

in splitting or not a given class was simply that the desired (a priori fixed) number of classesKc has
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not yet reached and that its split would provide the largest decrease (w.r.t. other current candidate splits)

of overall distortion when fitting its data with two local likelihoods instead of one.

B. Spatial-based clustering (SBC)

The color segmentation provided by CBC is passed to the spatial-based clustering (SBC module)

which further splits each of the color states in order to generate the state setΩ(L), where eachω ∈ Ω(L)

is associated with a cluster of fragments{ωk} which are therefore similar (the color has been already

taken into account) also w.r.t. the contextual information carried by the MMC featuresAωk
(ω′, j), with

ω′ ∈ Ω(L), defined in Eq.6.

In principle, a joint estimation ofΩ(L) andP(L) should be provided, for example by means of some

iterative procedure which starts from an initial state set and alternates the computation ofP(L) andΩ(L)

until convergence. We have tested this solution, but the results were not satisfying because of two main

reasons: a) thecurse of dimensionality(L× 8) into the feature space, sinceL is definitively too large (in

our settingL = KcKs = 2M2 = 288, if M = 12); b) the instability of the iterative process.

For the above reasons we decided to consider a simpler solution, where the color state setΓ(Kc)

computed in CBC is used in place ofΩ(L) to provide the needed fragment level characterization. Hence,

each color stateω ∈ Γ(Kc) is independently further split, generatingKs offspring states ofΩ(L), as

follows. For each of theNω fragments labeledω, say thek-th, the correspondingAωk
, k ∈ {1, . . . , Nω},

is computed by Eq.6 on the reduced state setΓ(Kc). Once the probabilitiesAωk
(ω′, j) = p

(Kc)
j (ω′|ωk)

are computed, we convert them in the following features, which we found experimentally more effective:

Fωk
(ω′, j)

4
=


log[1− p

(Kc)
j (ω′|ωk)], ω′ = ω

log[ p
(Kc)
j (ω′|ωk)

(1−p
(Kc)
j (ω|ωk))

], ω′ 6= ω.
(9)

Behind this solution there are two reasons. Since the original probabilities have quite different dynamics,

while being all equally important for the clustering, the logarithm helps to have more uniform dynamics.

Moveover, the normalization in the second row of (9) and the log operation help reducing the dependency

on the scale, emphasizing the importance of the context.

Finally, before performing the clustering in such a feature space, a feature reduction via PCA is

performed since the dimensionality of that space (Kc × 8) is still too large for a reliable clustering. In

particular, this task has been split in two steps. A first PCA, retaining only the first component, is applied

independently for each fixed rowω′ of Fωk
(ω′, j), as to obtain a dimensionality reduction factor 8. Then,

the resultingL-dimensional feature set is further reduced by means of a PCA which retains a number of
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meaningful components such that the 75% of the energy is kept (the same rule is used for each of the

color state to be split).

Based on these (fragment-wise) features, each color state is therefore split by clustering its fragments

by means of a simplek-means algorithm.

C. Region merging: thetexture score

The result of the sequence of steps described above (CBC and SBC) is a partition of the image in

regions corresponding to the finest-scale textures, collected asΩ(L)5. According to the H-MMC model

formulated above, these terminal states have now to be related until all collapse in the macro state

associated with the hierarchy root, i.e. with the whole image (coarsest scale), which corresponds to a

recursive region merging. The aim of this process is to collect together finer textures in order to get

larger and larger (in scale) textures and provide a nested hierarchical texture segmentation.

Since the merging process goes always on until all nodes collapse in the tree root, what we need is a

tool that indicates, at each step, which couple of nodes must be merged, that is to say, which classes are

most likely to belong to the same texture. In doing this, we should encourage the merging of strongly

interacting classes, as they are likely to belong to the same textured area, and take into account short-

range interactions before long-range ones. To fix the problem, let us come back to the example of Fig.2

and suppose we have currently four states,u, v, y andw, two of which should be selected for merging.

As already discussed structure (d) would be preferable, and so the merging ofu and v would move in

that direction. Moreover, we observe thatu (corresponding to the black regions) is the current smallest

scale texture (this makesu a good candidate), and is “spatially” strongly interacting withv.

Based on these considerations for each terminal classω we define a synthetic parameter called “Texture

Score” 6

TSω =
p(ω)

maxω′ 6=ω p(ω′|ω)
, (10)

and for each stepn = L,L − 1, . . . , 2, the state with smallest score and its “dominant neighbor” are

merged, so as to move fromΩ(n) to Ω(n−1).

The Texture Score measures the “completeness” of a texture, based on its spatial scale and the

interactions with neighboring classes: incomplete classes (small TS) will be merged first, so as to obtain

complex textures that are more and more self-consistent (large TS).

5Now L is no longer just the number of colors given by CBC but it has increased because of the splitting of each color-state

by SBC.

6Originally called “Region Gain” in [39].
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To understand why the TS measures completeness, let us rewrite it as the product of three terms

TSω = p(ω) · 1
p(ω̄|ω)

· p(ω̄|ω)
maxω′ 6=ω p(ω′|ω)

, (11)

wherep(ω̄|ω) = 1− p(ω|ω) is the probability of leaving stateω in any direction. Such terms take into

account, respectively, the size of classω, its compactness, and the presence of a dominant neighboring

class. Classes with very small TS are typically small (smallp(ω)), dispersed over a large number of even

smaller fragments (largep(ω̄|ω)), and with a single dominant neighbor (maxω′ 6=ω p(ω′|ω) ' p(ω̄|ω)),

that is, texture fragments that should be merged with some larger neighbors. On the contrary, a large,

compact class, with no dominant neighbor, and hence a large TS, is probably a complete texture that

should be considered for merging only in the last steps of the process. Notice also that the product of the

first two terms is an indicator of the spatial scale of the class, while the third one measures the interaction

between the class and its dominant neighbor.

Therefore, at each step of the merging process, the classω̂ with the smallest score is merged with its

dominant neighborω∗, singled out as

ω∗ = arg max
ω 6=ω̂

p(ω|ω̂) (12)

Transition probability matrices and scores are then computed for the merged classes and their neighbors

(a task of negligible complexity, since it is carried out at the class-level with no pixel-wise computation)

and the process goes on recursively until a single node is reached.

Once the complete sequence of merging is defined, a nested hierarchical segmentation is obtained.

Therefore, the user can select the segmentation that better serves his/her current needs. To this end a

simple rule for selecting the pruning was suggested in [39] which refers directly to the spatial scale of

the classes by defining a suitable threshold for the texture score.

D. Enhanced texture score

The texture score defined above measures how likely a region corresponds to a texture w.r.t. the

hypothesis that it is just a part of a larger one. When the score is small we let the region be absorbed

from the dominant neighbor, the one that shares the largest boundary with the given region. Although in

the most cases this criterion provides satisfactory results, there are other ones where it fails. In fact, the

presence of noise may increase the length of the boundary between two regions and make them “closer”

according to the score definition. This problem often occurs because of the boundary fragmentation

phenomena caused by color quantization during the CBC step.
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In order to reinforce the measure and to improve the robustness, we considered not only the degree

of contact between regions but also their spatial distribution similarity. To do so we have introduced an

additional term in the score, which is the Kullback-Leibler divergence (KLD) between the spatial location

distributions of the regions to be compared. The KLD between two distributions,p andq, is defined as:

D(p‖q) 4
= Ep

[
log

p(x)
q(x)

]
=

∫
p(x) log

p(x)
q(x)

dx, (13)

whereEp[·] is the statistical average according to the distributionp. SinceD(p‖q) is the average log-

likelihood ratio betweenp andq, it is a measure of the inefficiency of assumingq in place ofp. Hence

it is well adapted to describe how close two objects are w.r.t. their spatial locations. In particular, named

qω(x) the distribution of the spatial location of stateω, wherex is the 2-D spatial position, then the

modified texture scoreTSω
KL of stateω is defined by

log TSω
KL

4
= min

ω′ 6=ω

{
log

p(ω)
p(ω′|ω)

+ D(qω‖qω′)
}

, (14)

where we refer to the logarithmic formulation to properly combine the previous score with the KLD

term. Notice that by removing the KLD term the score reduces to the original one.

The computation of the KLD is in general quite difficult for most of the distributions, and admits a

closed form only in a few cases. One such case is that of two Gaussian distributionsp andq for which

the divergenceD(p‖q) is given by [34]:

D(p‖q) =
1
2
(log

|Σq|
|Σp|

+ tr(Σ−1
q Σp) + (µp − µq)T Σ−1

q (µp − µq)− d) (15)

wherep ∼ N (µp,Σp), q ∼ N (µq,Σq) andd = 2 is the distribution dimensionality. Due to its simplicity,

the above modeling has been considered here.

IV. EXPERIMENTING WITH THE PRAGUE BENCHMARK

The Prague segmentation benchmark [32], developed by UTIA Institute of the Czech Academy of

Sciences, has a two fold objective: to mutually compare and rank different texture segmenters and to

support the development of new segmentation and classification methods.

The benchmark server provides a comparative analysis of all the results uploaded by users according

to several accuracy indicators (see [25], [29], [32] for additional details) which are grouped in the three

following categories.

• Region-based criteria:CS, correct (region) detection;OS, over-segmentation;US, under-segmentation;

ME, missed regions;NE, noise region.
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• Pixel-wise criteria: O, omission error;C, commission error;CA, class accuracy;CO, recall;CC,

precision;I, type I error;II, type II error;EA, mean class accuracy estimate;MS, mapping score;

RM , root mean square proportion estimation error;CI, comparison index.

• Consistency measures:GCE andLCE, global and local consistency error, respectively.

A. Reference segmentation algorithms

The different algorithms which have been run on the same benchmark data sets are listed and briefly

described below:

1) GMRF/EM (Gaussian MRF model with EM) [20]:Single decorrelated monospectral texture factors

are assumed to be represented by a set of local Gaussian Markov random field (GMRF) models, each

centered on a pixel and limited by a sliding window of fixed size. The segmentation algorithm, based on

the underlying Gaussian mixture (GM) model, operates in the decorrelated GMRF space of parameters.

The algorithm starts with an over-segmented initial estimation which is adaptively modified until the

optimal number of homogeneous texture segments is reached.

2) AR3D/EM (3-D Auto Regressive model with EM) [22]:This algorithm is similar to the previous

one, but the GMRF model is replaced by a 3-D auto-regressive model, thus spectral space correlations

can be modeled without approximating the spectral information.

3) JSEG [16]: The method consists of two independent steps, color quantization and spatial segmen-

tation. In the first step, colors in the image are quantized to several representative classes that can be used

to differentiate regions in the image. The image pixels are then replaced by their corresponding color

class labels, thus forming a class-map of the image. The subsequent spatial segmentation step applies to

the class-map, so as to obtain the so-called “J-image”, where high and low values correspond to likely

boundaries and interiors, respectively, of color-texture regions. A region growing method is then used to

provide the final segmentation on the basis of a multi-scaleJ-images.

4) SWA (Segmentation by Weighted Aggregation) [19]:The SWA algorithm uses a bottom-up ag-

gregation framework that combines structural characteristics of texture elements with filter responses.

The texture shapes are adaptively identified and characterized by their size, aspect ratio, orientation,

brightness, etc. Then, various statistics of these properties are used to discriminate the different textures.

In this process the shape measures and the responses of filters applied to the image crosstalk extensively.

Finally, a top-down cleaning process is applied to avoid mixing the statistics of neighboring segments.

5) Blobworld [3], [9]: This is the basic segmentation tool used in the content-based image retrieval

systemblobworld [9]. Each image is segmented into regions by fitting a mixture of Gaussians to the
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data in a joint color-texture-position feature space by means of an EM algorithm. Each region (“blob”) is

then associated with color and texture descriptors, where the textural features taken into consideration are

contrast, anisotropy and polarity. Finally, the optimal number of Gaussian components is automatically

selected by means of the Minimum Description Length (MDL) criterion.

6) EDISON (Edge Detection and Image SegmentatiON system) [12]:This algorithm is based on the

fusion of two basic vision operations, that is, image segmentation and edge detection; the former is

based on global evidence, while the latter focused on local information. This integration is realized by

embedding the discontinuity (edge) information into the region formation process, and then using it

again to control a post-processing region fusion. In particular EDISON combines themean shiftbased

segmentation with a generalization of the traditional Canny edge detection procedure [8], which employs

the confidence in the presence of an edge [31].

B. Segmentation results

Two versions of the proposed segmentation method were tested on the data set, referred to as TFR and

TFR+, which are associated with the two definitions of texture score, see Eq.10 and Eq.14 respectively.

The benchmark data set is composed of twenty different512 × 512 texture mosaics, seven of which

are shown in Figure 5 together with the associated ground-truth and the corresponding segmentations

performed by some reference techniques mentioned above and by the TFR method. The numerical results

(averaged over the whole benchmark data set) are shown in Tab.I. As for the tuning parameters, we simply

observed that all mosaic images never contains more thanM = 12 different textures, and consequently

we haveKc = 2 M = 24 and Ks = M = 12, according to the heuristic rule discussed in section III.

Indeed, we have run some tests with different values ofM and obtained only slightly different results.

Observe that our segmenter is hierarchical, and hence it provides a stack of nested segmentation maps,

among which one can pick the one that best matches the source data. This further selection step is by

no means trivial, and simple rules, like the one proposed in [39] based on the region scale, perform

poorly on such an heterogeneous data set. Here, we skip this problem, that goes beyond the scope of

this work, andmanuallyselect the map that better fits visually the original mosaic. In other words, we

keep separate the tasks of producing a good segmentation, and of selecting it amid the whole stack. Of

course, this puts the proposed technique at an advantage w.r.t. the reference techniques. However, the

reader should be aware that, for such complex images, producing even justonegood map in the hierarchy

is a remarkable result, and most reference techniques do not offer any easy option how to correct their

wrong segmentation map, as can be seen from visual and numerical results.
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Texture mosaics (top) with ground-truth (bottom).

Segmentations provided by some reference algorithms: J-SEG (top), EDISON, and AR3D/EM (bottom).

Segmentations provided by proposed TFR (top) and TFR+ (bottom) algorithms.

1

Fig. 5. Benchmark segmentation results. Data sets: 1, 2, 3, 4, 12, 14 and 19, from the left to the right.
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Benchmark – Colour
TFR+ TFR AR3D/EM GMRF/EM JSEG SWA Blobworld EDISON

↑ CS 51.25 46.13 37.42 31.93 27.47 27.06 21.01 12.68
↓ OS 5.84 2.37 59.53 53.27 38.62 50.21 7.33 86.91
↓ US 7.16 23.99 8.86 11.24 5.04 4.53∗ 9.30 0.00
↓ ME 31.64 26.70 12.54∗ 14.97 35.00 25.76 59.55 2.48
↓ NE 31.38 25.23 13.14∗ 16.91 35.50 27.50 61.68 4.68
↓ O 23.60 27.00 35.19 36.49 38.19 33.01 43.96 68.45
↓ C 22.42 26.47 11.85∗ 12.18 13.35 85.19 31.38 0.86
↑ CA 67.45 61.32 59.46 57.91 55.29 54.84 46.23 31.19
↑ CO 76.40 73.00 64.81 63.51 61.81 60.67 56.04 31.55
↑ CC 81.12 68.91 91.79∗ 89.26 87.70 88.17 73.62 98.09
↓ I. 23.60 27.00 35.19 36.49 38.19 39.33 43.96 68.45
↓ II. 4.09 8.56 3.39 3.14 3.66 2.11∗ 6.72 0.24
↑ EA 75.80 68.62 69.60 68.41 66.74 66.94 58.37 41.29
↑ MS 65.19 59.76 58.89 57.42 55.14 53.71 40.36 31.13
↓ RM 6.87 7.57 4.66 4.56∗ 4.62 6.11 7.52 3.09
↑ CI 77.21 69.73 73.15 71.80 70.27 70.32 61.31 50.29
↓ GCE 20.35 15.52 12.13∗ 16.03 18.45 17.27 31.16 3.55
↓ LCE 14.36 12.03 6.69∗ 7.31 11.64 11.49 23.19 3.44

1

TABLE I

PRAGUE TEXTURE SEGMENTATION BENCHMARK RESULTS. UP [DOWN] ARROWS INDICATE THAT LARGER [SMALLER]

VALUES ARE BETTERBOLD NUMBERS INDICATE THE BEST TECHNIQUE, WHILE ∗ MARKS A REPLACING BEST WHEN

EDISON IS IGNORED.

The visual inspection of the segmentation maps shown in Fig. 5 is quite eloquent. For these images,

in fact, TFR and TFR+ algorithms provide better results, and succeed in identifying very low frequency

(macro) textures. This is well shown by data sets 14 and 19 (last two columns) for which TFR and TFR+

work properly, J-SEG has an almost acceptable over-segmentation, while other techniques excessively

fragment the mosaics. In general, the reference algorithms seem to be able to model mainly micro textural

features, which is likely the reason for this over-segmentation, confirmed numerically by the benchmark

through the over-segmentation indexOS (see Tab. I).

To be more precise, a common weakness of the reference techniques is that they either do not really

classify the textures, but mainly detect contours among different neighboring textures, or they use single

resolution texture representation. Therefore in most cases when the same texture occurs in different

unconnectedregions, each single region is differently labeled. As a typical example, see Fig.5, consider

the 6th mosaic, where the green blocks on a black background are separated by all reference methods.7

This last observation should make clear that a large gap exists between the proposed and the reference

methods, which is not due to our manual selection.

Moving on the numerical results shown in Tab. I, it is interesting to notice the extremal behavior of

EDISON which does not under-segment at all (US = 0.0), but almost always over-segments (OS =

7This holds also for the other methods not shown in figure for the sake of brevity.
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86.91). Actually this is due to the fact that this algorithm was developed for very low order texture

images, and can be viewed in this context almost as a color-based segmenter. For this reason the reader

should not be surprised by its very good performance w.r.t. certain accuracy indicators, since they are all

(directly or inversely) correlated with the degree of over-/under-segmentation.

Based on the above considerations, it would be legitimate to exclude EDISON from the analysis;

nonetheless, we preferred to report its performance as well, since it represents in a sense an ideal case (the

color-based segmenter). This allows us to recognize the indicators favored in case of over-segmentation,

and for which EDISON scores serve as bounds for the other algorithms that do not over-segment.

On the opposite side, we have TFR which has the highest under-segmentation indexUS = 23.99 (see

also the texture mosaic nr. 14, Fig. 5, 6th column, where only 4 out of 6 regions are recognized) while

the modified version, TFR+, seems to reach the best tradeoff among all the algorithms, by keeping both

indices very small (OS = 5.84, US = 7.16).

In Tab. I some of the indicators are to be minimized while the remaining are to be maximized (see

arrows on the left-hand side). In any case the best method is emphasized with boldface numbers. Moreover,

when EDISON is ignored the corresponding best points move on to other methods which are marked by

∗. As can be seen, all indices which are not optimized by EDISON are favorable to TFR+, except for

OS which is minimized by TFR. The remaining parameters, when EDISON is not considered, mainly

indicate AR3D/EM, except a few cases, as the best one. However, this is not very surprising if we look

at the correspondingOS rate, which is rather high (59.53), and in any case, TFR+ provides quite good

results even w.r.t. these indicators.

V. EXPERIMENTAL RESULT ON REAL IMAGES

In order to provide a more solid assessment for the proposed technique and show its potential also

w.r.t. different real life applications, this section discusses segmentation results obtained on natural and

remote sensing images.

A. Application to the Berkeley Segmentation Dataset

Here we briefly discuss the application of the proposed algorithm to the domain of natural images,

using a set of several color images taken from the Berkeley Segmentation Dataset [29].

For such images, we observed in general the presence of no more thanM = 6 different textures, and

consequently, according with the heuristic rule defined in Section III, we setKc = 12 andKs = 6.
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Experimental results for some test images are reported in Fig.6. For each image we show the original

on the left, the TFR segmentation map in the middle, and on the right the map obtained by SWA which is

itself a hierarchical segmentation technique. As for the final segmentation result, the best matching maps

are manually picked from the hierarchical stacks provided by the algorithms. For each segmentation map,

the Local and Global Consistency Errors (LCE and GCE) indicators are evaluated w.r.t. each available

ground truth, averaged and reported below the corresponding image. Moreover, by further processing

the TFR maps with some simple morphological tools, we obtain smooth region contours which are

superimposed on the original image to enable an easy interpretation.

Segmentation results are quite promising in many cases, with image textures and textured objects

correctly identified in general: notably, the most accurate results have been obtained on images with

at least one macro-textured object, such as the trivial foreground/background of the first two (top-left)

images and thewooden shoesimage. Here, large and regularly shaped fragments are gathered together to

form quite well-defined states, whose interactions are consequently very well described by the H-MMCs.

Besides, also in images characterized by the presence of areas of different nature (homogeneous, micro-

and macro-textural), like thezebras, woman, andbuildings images, results show all the potential of the

method. Here, some problems occur in the presence of quasi-flat or gradient areas, that are more likely

to be over-split, like the sky in thebuildings image, and sometimes partially merged with unrelated

textures, as occurs for the piece of background fused with the subject’s hair in thewoman image. A

slightly lower accuracy is finally obtained with images that are mainly micro-textured and with loosely

structured areas, above all because of the presence of over-fragmented elements or continuous regions

whose characterization ends up to be less reliable. Nonetheless, even in these cases the main textures

and objects are well identified in general.

The promising nature of the presented results is confirmed by numerical comparison with SWA. The

TFR algorithm always outperforms the reference technique, except for a few cases where a better LCE

is obtained by SWA, typically due to the presence of one or more refinement contours for which this

indicator is more tolerant, as stated in [29].

B. Application to Multiresolution remotely-sensed data

We present here the results of a segmentation experiment carried out on a two-resolution remotely-

sensed Ikonos image, of the city of San Diego (USA), containing both dense and residential urban areas,

as well as a significant area covered with vegetation. In Fig.7(a) we show a false color representation of

the image, that enhances the difference between urban areas and vegetation. In this case no ground-truth
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LCE = 0.131, GCE = 0.164 LCE = 0.158, GCE = 0.205
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LCE = 0.114, GCE = 0.273 LCE = 0.302, GCE = 0.443

LCE = 0.148, GCE = 0.152 LCE = 0.108, GCE = 0.171

LCE = 0.079, GCE = 0.087 LCE = 0.047, GCE = 0.144

LCE = 0.124, GCE = 0.179 LCE = 0.2,GCE = 0.282

LCE = 0.242, GCE = 0.269 LCE = 0.178, GCE = 0.256

1

Fig. 6. Segmentation of natural images: some results obtained using the TFR algorithm on several color images taken from the

Berkeley Segmentation Dataset. Below each image the meanLocal andGlobal Consistency Errors(LCE and GCE) are reported

(in bold, the best values for each experiment).

is available and hence we limit our analysis to the visual inspection of the segmentation results.

For these data we needed to adapt the CBC block to account for the multiple resolutions and the

presence of a multispectral component. A detailed description of this algorithm can be found in [18].

In Fig.7(b) we show the top part of the tree representing the merging process, pruned at an especially

significant level, when only 5 nodes remain. By visual inspection of the corresponding segmentation

map, shown in Fig.7(c), the nodes can be easily associated with classes of obvious significance for

an observer, that is, the “small buildings”, “large buildings” and “roads” classes on one side of the

tree and the “trees” and “grass” classes on the other side. With this compelling identification, image

classification is rather accurate, considering that the segmentation process is totally unsupervised. Here,

the aforementioned separation between “large buildings” and “small buildings” classes, with the latter
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generated by the fusion, at lower levels of the tree, of different clusters recognized as part of a more

complex texture, is even more evident. Something similar happen for the “trees” and “grass” classes on

the other branch. It is also worth underlining that the formulation of the texture score preserved the wide

road network area from being fused with other smaller clusters in former stages of the process despite

its strong interaction with other classes.

Going on with the merging process, we obtain eventually the two-class segmentation associated with the

two top-level nodes, corresponding to the “urban” and “vegetation” macro-textures. The aforementioned

binary segmentation is shown in Fig.7(d), where the urban area has been highlighted in red and the

vegetation part in green. The detection of the two macro-textures is quite accurate, especially if one

considers that some complex subtextures of the image, like the residential area in the lower right part,

have been uniformly included in the “urban” class, as clear in Fig.7(d), although they include many large

patches of vegetation. The key for this association seems to be the presence of a regular road network in

this area, which acts as a collector of interacting classes: an information that a human interpreter would

have certainly exploited to correctly classify this image, but that is taken into account automatically, here,

by means of a fully unsupervised process.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we have presented a hierarchical model (H-MMC) for texture representation, particularly

suited for unsupervised segmentation, and a related algorithm (TFR). In order to apply the model, the

first step of the algorithm is a color-based segmentation, realized by TS-MRF, which provides a rough

discrete approximation of the original data to be fitted with the texture model at the region level. The

fitting is performed in two steps, the first (SBC) singles out the individual states of the model, the second

relates them hierarchically according to the scale of the corresponding regions and their mutual spatial

interaction. The bottom-up growth of the structure is controlled by atexture scoreparameter.

The performance of the proposed segmentation algorithm was assessed by experimenting with the

texture mosaics of the Prague benchmark [32], that scores segmentation algorithms by means of several

accuracy indicators. Moreover, the algorithm was also tested on the natural images of the Berkeley dataset,

and on a multiresolution satellite image. Both numerical evidence and visual inspection show that the

TFR outperforms all reference algorithms, mostly because of its ability to capture spatial correlations

at multiple scales. On the contrary, all the methods using pixel-based texture modeling present serious

limitations in representing macro-textural features, which is the case for most of the texture models found

in the current literature. The experimental results also show that the performance of TFR improves when
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(a) (b)

(c) (d)

1

Fig. 7. IKONOS image segmentation: 4m-resolution multispecral image, size501 × 501, false color representation of the

original image (a); 5-class pruning of the retrieved tree structure (b); 5-class segmentation (c); top-level classes: urban areas and

vegetation (d).

the texture score includes the Kullback-Leibler divergence between the spatial distribution of the regions,

since under-segmentation phenomena are reduced.

The main advantages of the proposed technique can be summarized as follows.

• Robust. Due to its region-based formulation and contrary to pixel-based models, the one proposed

here is able to represent spatial interactions at multiple scales, leading to a nested hierarchical

segmentation. Therefore, it does not require the choice of a specific observation scale, whose selection

is left to the user, and the resulting algorithm is quite robust.

• Fast. Another consequence of modeling the image at a region level is the strong reduction of

computational load, since the image processing involves regions, instead of pixels. Both TFR versions

have about the same computational complexity (about 20 seconds of CPU time on a notebook with

a 1.66 GHz processor for each512×512 color image of the Prague benchmark), almost entirely due

to the pixel-based processing of TS-MRF. Indeed the TS-MRF is not strictly needed and it could

be replaced by much simpler color segmenters in all those applications where the definition of the
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color classes can be easily provided. Think of video sequences, for example, where in most cases

the color states may not change between subsequent frames, and a real-time video segmentation

could be likely realized by means of TFR.

• Blind . The algorithm can be considered unsupervised because it does not require prior learning of

involved textures, in spite of few non critical tuning parameters.

Although the TFR algorithm has provided encouraging results in several different applications, a few

drawbacks need to be mentioned as well, mainly due to some of the simplifying assumptions both in

the modeling and the optimization part. Discrimination of micro-textural features, for example, is often

incorrect, since the small size of component regions (sometimes approaching a single pixel) makes their

region-wise characterization unreliable. A possible solution is to identify small micro-textured regions at

the CBC level, or even introduce a new layer with this specific aim.

As for spatial clustering, the presence of fragments whose characterization is loose can lead to the

definition of unreliable states, that incorrectly include many “outliers” whose presence can significantly

alter adjacency statistics w.r.t. neighboring states. The automatic detection and processing of such critical

elements is certainly another point of our future research.

Finally, another peculiar problem of TFR is the processing of “continuous” connected regions, which

typically occurs for textures containing background constant-colors. In this case, when two neighboring

textures have a common color state which presents such continuous elements, due to their large scale they

serve mostly as collectors during the region merging, attracting regions from the two different textures and

eventually making their separation impossible. In order to overcome this last problem we are currently

investigating the possibility of fragmenting continuous regions.
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[20] M. Haindl and S. Mikěs. Model-based texture segmentation. In A. Campilho and M. Kamel, editors,Image Analysis and

Recognition, Lecture Notes in Computer Science 3212, pages 306–313, Porto, Portugal, 2004.

October 7, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. , NO. , MONTH YEAR 29
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