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A Cooperative Reinforcement Learning Approach

for Inter-Cell Interference Coordination in OFDMA

Cellular Networks

Mariana Dirani∗ and Zwi Altman†

∗Altran, 58 Boulevard Gouvion St Cyr - 75017 Paris, France

†Orange Labs, 38/40 rue du General Leclerc,92794 Issy-les-Moulineaux

Abstract—Inter-Cell Interference Coordination (ICIC) is com-
monly identified as a key radio resource management mechanism
to enhance system performance of 4G networks. This paper ad-
dresses the problem of ICIC in the downlink of cellular OFDMA
(LTE and WiMAX) systems in the context of Self-Organizing
Networks (SON). The problem is posed as a cooperative Multi-
Agent control problem. Each base station is an agent that
dynamically changes power masks on a subset of its bandwidth
to control interference it produces to its neighbouring cells. The
agent learns the optimal coordinated power allocation strategy
using information from its own and its neighbouring cells. A
Fuzzy Inference System (FIS) is used to handle continuous state
space defined by the input quality indicators to the controller
performing the ICIC. The FIS is optimized using Reinforcement
Learning (RL) with a Fuzzy Q-Learning (FQL) implementation.
Simulation results illustrate the important performance gain
brought about by the proposed ICIC scheme.

Index Terms—Inter-Cell Interference Coordination, OFDMA,
LTE, Reinforcement Learning, Fuzzy Q-Learning, SON.
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I. INTRODUCTION

Emerging standards for B3G and 4G networks have am-

bitious performance targets [1]) that aim at providing better

experience for end users. Orthogonal Frequency Division

Multiple Access (OFDMA) technology has been selected for

LTE and 4G networks, namely LTE advanced and WiMAX

802.16m ([2], [3]). In the downlink, OFDMA allows assigning

frequency subcarriers to users within each cell in an orthogonal

manner. With the use of cyclical prefix insertion, intra-cellular

interference can be eliminated. Time-frequency scheduling can

be implemented allowing to efficiently combat impairments

caused by frequency selective channels. Physical Resource

Block (PRB) is the smallest time-frequency resource unit that

can be allocated to a user. When the same PRB is allocated

to two or more neighbouring cells, a collision or interference

may occur which can degrade the Signal to Interference plus

Noise Ratio (SINR) and Quality of Service (QoS) perceived

by the user. The flexibility in assignment of resources in

OFDMA allows designing mechanisms to combat interference

1M. Dirani was with Orange Labs at Issy-les-Moulineaux.

that can improve spectral efficiency. Interference mitigation

techniques including ICIC are considered among the new

building blocks of 4G network technologies that will allow to

achieve ambitious performance targets set by IMT-Advanced

(International Mobile Telecommunications-Advanced) [4].

Different approaches to combat interference have been

studied including frequency reuse schemes such as fractional

reuse and soft reuse schemes [5]. Fractional reuse schemes

are a special case where the reuse-1 is applied to users with

good quality (close to the station) and reuse-3 (or higher

reuse factors) - to users with poorer quality (close to the cell

edge). When different power allocation for the mobile users is

associated with different portions of the frequency bandwidth,

the frequency reuse is called soft reuse scheme. The power

allocation pattern is denoted as the power mask of the cell.

The purpose of this paper is to present a solution for the

ICIC based on adaptive soft frequency reuse scheme. The ICIC

is presented as a control process that maps system states into

control actions. The time scale of the control process is of the

order to tens of seconds. The proposed solution is scalable

and can be applied to a general network configuration. A RL

[6] framework is considered with a Multi-Agent Fuzzy Q-

Learning implementation [7]. The basic ICIC control entity

comprises a cell and its neighbors. The learning (exploration)

phase is cooperative, namely information and utilities can be

shared among the base stations. The control (exploitation)

phase is fully distributed and the base stations perform local

actions in a non-synchronized manner. A recent publication

on adaptive soft frequency reuse scheme has been reported in

[8]. This work includes the interesting case where information

cannot be shared among neighbouring base stations. The

model in [8] does not need a learning phase, and requires

higher signalling load to operate with respect to the solution

proposed in this paper.

To put this paper in perspective, we note that Packet

Scheduling (PS) can alleviate as well the impact of interfer-

ence on the system performance by taking advantage of the

channel diversity. Several contributions have been reported

on optimal subcarriers’ allocation such as [9], that operate
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on a time scale of the order of a millisecond and can be

implemented within a packet scheduler. In a real network

implementation, the ICIC solution will operate together with

a packet scheduler. An example of the use of PS in the

context of SON is described in [10]. The combination of the

two mechanisms operating at different time scales will further

enhance the system performance, however this is out of the

scope of the present work.

The control approach considered here for the interference

mitigation problem is a self-optimizing process which falls in

the domain of SON. This topic is currently receiving much

attention in both industry and academia [11], [12], and is

included in new standards [13]. Throughout the paper, the

terms eNB and base station can be used interchangeably.

Similarly, the terms mobile and mobile user have the same

meaning.

The paper is organized as follows: Section II presents

the system model based on dynamic soft reuse scheme and

describes the allocation strategy of PRBs. Section III models

the ICIC control process as a Multi-Agent Reinforcement

Learning problem which is solved using a FQL algorithm.

The components and the algorithm of the FQL are presented.

Section IV describes the simulation environment and provides

numerical results of the proposed ICIC scheme. Section V

concludes the paper.

II. SYSTEM MODEL

A. Model description

Consider an OFDMA network with base stations imple-

menting ICIC in the downlink. The ICIC performs adaptive

soft reuse-1 scheme, namely the total available bandwidth is

reused in all the cells while the transmitted power for a portion

of the bandwidth of each cell is dynamically controlled.

The PRBs are allocated to the controlled or non-controlled

subbands according to their channel quality. Fig. 1 presents

the power-frequency allocation model in a seven adjacent cell

layout. It is noted that the formulation presented hereafter is

applied to a general network layout.

The frequency band is divided into three disjoint subbands.

One subband is allocated to mobiles with the worst signal

quality and is denoted interchangeably as a protected band or

as an edge band. A user with poor radio conditions is often

situated at the cell edge, but could also be closer to the base

station and experience deep shadow fading. The remaining two

frequency subbands are denoted as centre bands. The separa-

tion into zones in Fig. 1 is a simplified representation. We use

the subscripts e and c for edge and centre respectively. The

main interference in the system originates from transmissions

on the centre band (of centre cell users) which interfere with

neighbouring cell edge users utilizing their protected band.

Denote by P the maximum transmission power per subcarrier.

When a base station strongly interferes with its neighbours,

the ICIC control process reduces the transmission power per

subcarrier in the centre band to αP . Resource block allocation

is performed based on a priority scheme for accessing the

protected subbands. Let s denote the serving base station of

P.α
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Fig. 1: System model.

the user u. A quality metric hu is calculated using the pilot

channel signal strengths

hu =
Prsu

∑

s′ 6=s

Prs′u + σ2
n

, (1)

where Prsu and Prs′u denote the mean pilot power received

by the user u of the signals transmitted by base stations s and

s′ respectively, and σ2
n is the thermal noise power correspond-

ing to the pilot channel. hu is similar to the SINR with the

difference that in the present ICIC scheme, the data channels

used to calculate the SINR are subject to power control. The

hu metric is calculated for all users which are then sorted

according to this metric. Users with the worst hu are allocated

resources from the protected band and benefit from maximal

transmission power of the base station. When the protected

subband is full, the resource block allocation continues from

the centre band. We assume here that the PRB allocation to

subbands is performed at a long time scale, namely that of

the ICIC. It is recalled that finer PRBs’ allocation at a short

time scale can be implemented by the packet scheduler and

can further improve the system performance.

Mobility is considered in the system using hard handover

and is performed following a path loss criterion. A mobile

user u will perform a handover from base station s to s′ if the

following condition is verified

Prs′u − Prsu > Thyst, (2)

Thyst is a fixed hysteresis margin for all base stations and is

set to 6 dB in this study.

B. SINR calculation

The channel model used to calculate the SINR is adapted for

implementation in a semi-dynamic network simulator that can
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assess performance of large network size with tens to hundreds

of base stations. Once calculated, the SINR is mapped into

spectral efficiency using quality tables (obtained using a link-

level simulator) incorporated within the network simulator. A

fast fading term is not included in the channel model, and is

implicitly taken into account via the quality tables. Within each

subband b, namely center (b = c) or edge (b = e) subbands

of base station s, the power allocated to the subcarriers is

identical, i.e. Psc = αsP or Pse = P respectively. The

allocation of a mobile u to a given subband depends on the

quality metric (1).

Consider a mobile u attached to base station s. The average

interference perceived by u and produced by eNBs s′, s′ 6= s

is given by

Iub =
∑

s′ 6=s

Λ(s, s′)ηs′b
Ps′bG(s′, u)

L(s′, u)
. (3)

Λ(s, s′) equals one if eNBs s and s′ use the same frequency

bandwidth and zero otherwise. Ps′b is the transmitted power

per subcarrier belonging to the frequency subband b, b ∈
{c, e}. ηs′b represents the load of subband b of base station

s′ and is defined as the ratio between the number of PRBs

allocated in subband b, Nallocated
s′b , and the total number of

PRBs available in this subband, Navailable
s′b :

ηs′b =
Nallocated

s′b

Navailable
s′b

. (4)

The load coefficient (4) expresses the fact that the average

interference on a given subchannel belonging to the frequency

subband b is proportional to the portion of time the subchannel

is used. Hence ηs′b equals the probability of a collision (i.e.

interference) produced by s′. G(s′, u) is the antenna gain of

base station s′ in the direction of the mobile u. The channel

loss L(s′, u) at a distance d between s′ and mobile u is given

by

L(s′, u) = Aχ(s′, u)(
1

d(s′, u)
)ν , (5)

where A is a constant deduced from the measured path-loss at

a reference distance and ν is the path-loss exponent depending

on the propagation environment. Having the expression for the

interference one can derive the SINR per subcarrier for the

mobile u:

SINRub =
PsbG(s, u)

L(s, u)(Iub + σ2
z)
, (6)

where σ2
z is the thermal noise per subcarrier and Iub is given

by (3).

III. FUZZY Q-LEARNING CONTROL (FQLC)

This section describes the FQLC solution for the ICIC

problem. We propose a cooperative model for the learning

(exploitation) phase to accelerate the learning process, and

a distributed model for the exploitation phase which has

the advantage of being scalable. The learning model is an

approximated Markov Decision Process (MDP) and belongs

QL
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Fig. 2: Fuzzy Q-Learning Controller.
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Fig. 3: Cooperative learning of the action-value function.

to decentralized RL models [15]. The diagram of the FQLC is

presented in Fig. 2. The agent is located within a base station.

It collects information or Key Performance Indicators (KPIs)

from its own and its neighbouring cells that define the system

state xt at time t, and performs a local action at. The agent

then transits to a new state xt+1 and receives a reward rt+1.

The KPIs are filtered to remove short term fluctuations and to

stabilize the control process.

The Q-Learning (QL) algorithm is capable of learning the

optimal policy that maps states to control actions [6]. For

continuous state space (as in the present case) we propose

to use the FQL which combines fuzzy logic with the QL

algorithm [7]. In the FQL algorithm, the controlled system is

presented as a FIS [15]. The system model is considered un-

known (i.e. the transitions’ probability between states and the

rewards) and therefore the problem is solved using a Temporal

Difference (TD) solution. The cooperative learning model is

enforced by using a global reward comprising the sum of

rewards of all the learning agents. In the FQL nomenclature
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we use labels, L, which represent discrete states and, together

with actions o defining the FIS rules. The agents learn together

a common strategy by feeding a single q-table as shown Fig. 3.

In addition to a fast convergence time, this model benefits from

a diversified experience learned by the cooperating agents.

A. FQLC components

The components of the ICIC FQLC are described below.

• State: The input state vector to the FQL controller is

defined as follows:

xs = [ Psc SEs
c SE

n(s)
e ]. (7)

Psc is the transmitted power on PRBs belonging to the

center subbands of base station s. SEs
c is the mean

spectral efficiency of the users served on subcarriers

belonging to the center subbands of the controlling cell.

SE
n(s)
e is an aggregated mean spectral efficiency of users

served within the protected subbands of the neighbouring

cells. The aggregated KPI of neighbouring cells, Xn(s),

is defined as a weighted sum over the KPIs (of the same

type), Xs′ . s′ belongs to the neighbourhood of s, N (s),
namely the neighbouring cells. Xn(s) is given by:

Xn(s) =
∑

s′∈N (s)

ws′sX
s′ , (8)

ws′s are weighting coefficients satisfying
∑

s′
ws′s = 1,

and reflecting the degree of ”neighbourhood” of cell s′ ∈
N (s) with s. They are calculated once and stored in a

table. ws′s represent the normalized traffic flux between

cells s and s′ with respect to the total traffic flux between

s and all its neighbours, and can be calculated off-line.

The power of the controlling base station, Psc, is included

in (7) to allow the controller to deduce the cause of

degraded values of SE
n(s)
e . It helps to decorrelate the

impact of the controller from that of other interfering

base stations on the degraded signal quality of the neigh-

bouring cells. For example, a poor value of SEs
c can

result in from a low value of Psc, or conversely, from

high interference from second tier base stations.

• Actions and strategies: The action is the reduced trans-

mit power allocated by a base station to its center

subband. The strategy of base station s, πs, is a mapping

between the state of base station s, xs, and the action

as ∈ A, A being the set of possible actions (transmitted

powers in our case) for the base station s:

πs : xs → as. (9)

• Utility function: The controller of each base station aims

at optimizing a utility function defined by a long term

sum of discounted rewards. The optimization problem is

formulated as follows:

max :
πs∈Πs

Rs = Eπs
[

∞
∑

t=0

γtrs(xs,t, as,t)], (10)

Πs is the set of allowable policies for base station s,

rs(xs,t, as,t) is the instantaneous reward as seen by base

station s in state xs,t when taking the action as,t at time

t. γ is a discount factor ranging in the interval [0, 1). The

smaller γ, the greater the emphasis given by the controller

to present rewards with respect to future ones.

• Instantaneous rewards: The harmonic mean throughput

is chosen as the reward function, which reflects user’s

satisfaction in a network with data transfer applications.

It is recalled that the harmonic mean fairness is a special

case of the generalized fairness model [16] in eq. (11)

where the parameter αf defines the degree of fairness

and is chosen here as αf = 2. Th denotes a vector of

achieved rates in which the component Thk stands for

the throughput achieved by user k.

r(Th) =
∑

k

Th
1−αf

k

1− αf

. (11)

Denote by Thu,t the instantaneous throughput of a user

u belonging to U(s′), the users served by cell s′. The in-

stantaneous global reward is a sum over all the individual

rewards of the set of cooperating base stations S:

rs,t = −
∑

s′∈S

∑

u∈U(s′)

1

Thu,t

. (12)

B. FQLC algorithm

In the QL algorithm, the solution to the maximization

problem defined in (10) uses the action-value function under

the policy π that is defined as the expected sum of the

discounted rewards when starting from state x0 = x at t0,

and is given by:

Qπ(x, a) = Eπ[
∞
∑

t=0

γtr(xt, at)|x0 = x, a0 = a]. (13)

and can be solved iteratively by the following TD QL update

equation [6]

Qt+1(xt, at) =
(1− κ)Qt(xt, at) + κ(rt+1 + γmaxa′ Qt(xt+1, a

′)),
(14)

where κ is a learning rate. In the FQL the controlled system is

represented as a FIS that receives as input continuous states.

The idea of the FQL algorithm is to use a q-value function

(or q-function for brevity) defined over a discrete set of states

together with special member functions to derive (interpolate)

the Q function over the continuous state space. In the FQL,

the FIS is presented by a set of rules J with a rule j ∈ J
defined as [7]

IF (x1is L1
j ) ...AND (xnis Ln

j ) ...AND (xN is LN
j )

THEN a = oj with q(Lj , oj).

Ln
j is a fuzzy label that corresponds to a distinct fuzzy set

defined in the domain of the nth component xn of the state

vector x = [x1, ..., xn, ..., xN ], and oj is the output action

of the rule j. The vector Lj = [L1
j , ..., L

n
j , ..., L

N
j ] is called

the modal vector corresponding to the rule j. q(Lj , oj) is
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called the q-value function of state Lj an action oj of the

rule j. The dimension of the state vector and the number

of its corresponding fuzzy labels sets a tradeoff between the

accuracy of the system model and the speed of convergence

of the learning process. Three labels for each component of

the state vector have been used in the present work.

The membership function maps a continuous state compo-

nent into the degree of membership to a fuzzy set correspond-

ing to a given label. Triangular fuzzy sets are used here, as

depicted in Figure 4.

n
jL

E n
jL

E
'

n
x

1

n

jL'
n

jL n

jL"

n
jL

µ

n
jL'

µ

Fig. 4: Three fuzzy sets.

Let Jx denote the set of all rules for which the state x has

a positive member function value for each component of the

state vector. The membership of a vector x, or the degree of

truth in the fuzzy logic terminology, with respect to the rule j,

j ∈ Jx is defined as the product of the corresponding member

functions of the rule:

αj(x) =

N
∏

n=1

µLn
j
(xn). (15)

The q-values are initially set to zero. In the FQL algorithm,

the actions are chosen from the set of permissible actions

according to an Exploration/Exploitation Policy (EEP). The

ǫ-greedy method is used as the EEP policy for choosing the

actions:






with prob. ǫ : ∀j ∈ Jx: oj = argmax
k∈K

q(Lj , ok)

with prob. 1− ǫ : ∀j ∈ Jx: oj = random
k∈K

(ok)

(16)

where ǫ determines the tradeoff between exploration and

exploitation, and is typically chosen close to and below 1.

K is the set of action indices and is assumed to be the same

for all eNBs.

The relation between the inferred action for an input vector

x and the applied rule actions oj , j ∈ Jx is given by the

following equation

a(x) =
∑

j∈Jx

αj(x)oj . (17)

Q(x, a) for any input vector x is calculated as an interpolation

of the q-value function at the modal points of the activated

rules:

Q(x, a(x)) =
∑

j∈Jx

αj(x) · q(Lj , oj). (18)

We use the value function for the state x which is defined here

as

V (x) =
∑

j∈Jx

αj(x) ·max
k

q(Lj , ok). (19)

To update the q function, the quantity ∆Q is defined as the

difference between the old and the new value of Q(x, a(x)).
Denote by y the new state after taking the action a(x) in the

state x and receiving the reward r. ∆Q is calculated by:

∆Q = r + γ · V (y)−Q(x, a(x)). (20)

The update equation for the q function is given by eq. (21).

The subscript t is added to highlight the time dependency in

the update equation.

qt+1(Lj , oj) = qt(Lj , oj)
+κ · αj(xt) · (rt+1 + γ · Vt(xt+1)−Qt(xt, a(xt))),

(21)

where κ is a learning rate. Table I presents the FQL algorithm.

TABLE I: Fuzzy Q-Learning Algorithm

1. Initialize q(Lj , ok) for all j ∈ J and k ∈ K.

2. Calculate the degree of truth of the initial state

αj(x0) for all j ∈ Jx0
(Eq. (15)).

Repeat (at each time t):

3. For each activated rule Lj , j ∈ Jxt
select an

action oj with the EEP policy (Eq. (16)).

4. Calculate the inferred action a(xt) corre-

sponding to xt and oj , j ∈ Jxt
(Eq. (17)).

5. Calculate the corresponding quality

Q(xt, a(xt)) (Eq. (18)).

6. Execute the action a(xt) and observe new

state xt+1 and reinforcement rt+1.

7. Calculate the membership functions αj(xt+1)
for j ∈ Jxt+1

(Eq. (15)).

8. Calculate the value function of the new state

(Eq. (19)).

9. Calculate the variation of the quality ∆Q (Eq.

(20)).

10. Update the elementary quality q(Lj , oj) for

each activated rule j, j ∈ Jxt
(Eq. (21)).

11. t← t+ 1
If convergence is attained then stop learning.

IV. NUMERICAL RESULTS

A. Simulation environment

The results presented in this section have been obtained

using a semi-dynamic network simulator. The simulator per-

forms correlated snapshots to account for the time evolution

of the network with a time resolution of the order of a second.

FTP-type data traffic is considered. During a time interval

between two consecutive snapshots, the following operations

are performed: users’ arrivals and departures and update of
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base station loads; admission control algorithm is executed for

each new arrival; the user arrival follows a Poisson process,

and the data volume for download is fixed to 5 Megabits.

After download completion the user leaves the network and

the QoS is calculated for the terminating call. At the end of

each time interval, the simulator computes the new positions,

radio conditions and handovers of the users. More details on

the semi-dynamic network simulator can be found in [17].

A LTE network comprising 45 base stations positioned on

a non-regular grid is considered. The inter-site distance varies

from 1.5 to 2 km. Each base station has a capacity of 15 PRBs

per subband, namely a total of 45 PRBs per base station. Users

requesting to initiate a file transfer are allocated 1 to 3 PRBs

according to resource availability. Users’ speed of 13.88 m/sec

is chosen. The noise power spectral density is taken as −173
dBm/Hz. The Okumura-Hata propagation model is used. The

path loss at a reference distance of 1 km and the path loss

exponent are chosen as −128 dB and 3.76 respectively. The

standard deviation of the shadowing process is 6 dB.

The periodicity of the FQLC is of 40 seconds, namely the

base stations independently apply the power masks over the

protected subbands every 40 seconds. The KPIs serving as

inputs to the FQL controller are filtered using an averaging

filter over the same duration of 40 seconds. The learning rate

κ is set to 0.1 and the discount factor γ - to 0.95. Three fuzzy

sets are used per state component and are equally spaced in

the domain of variation of the component. The transmit power

per PRB can vary from 24 to 32 dBm. Hence the q-table has

a total amount of 81 state-action pairs (entries). The control

process is carried out over a time period of 170000 iterations

(i.e. simulator seconds).

B. Simulation results

The results obtained using the ICIC FQLC approach are

compared with two reference systems, both using maximum

transmit power over the entire bandwidth: The first utilizes

a reuse-1 scheme in which the entire bandwidth is used

by each base station. The second utilizes a reuse-3 scheme

achieving a complete interference mitigation among first tier

of neighbouring cells.

Fig. 5 compares the mean file transfer time of the three

systems. Significant improvement with respect to the reuse-1

scheme is obtained. For traffic intensity up to 13.5 arrivals/sec,

the ICIC scheme outperforms the reuse-3 scheme, and then the

tendency reverses.

Fig. 6 depicts the blocking rates for the three systems as

a function of traffic intensity. The blocking rate provides an

indicator of capacity, namely the traffic intensity that can be

served by the network for a given blocking rate. The ICIC

FQLC approach offers a better system capacity with respect

to the two reference systems. The poor performance of reuse-

3 scheme is explained by the fact that only a third of the

available bandwidth resources are allocated within each cell.

Fig. 7 presents the comparison for the mean SINR per-

ceived by all users. The ICIC FQLC solution is better than

the reuse-3 solutions for moderate traffic intensity and for
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Fig. 5: Mean file transfer time as a function of

traffic intensity.

11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Traffic (Arrival/sec)

B
lo

c
k
 C

a
ll
 R

a
te

 

 

Reuse−1

FQL

Reuse−3

Fig. 6: Blocking rates in the system as a function of traffic

intensity.

acceptable blocking rates. The tendency reverses for higher

traffic intensity for which blocking rate is high. The planning

(operation) point will be selected for traffic intensity for which

the blocking rate is relatively small, e.g. below five percent or

14 arrivals per second. The reuse-1 suffers from low average

SINR due to inter-cell interference. The results for the average

throughput per PRB follow the same tendency.

Fig. 8 compares the cumulative distribution function (cdf)

of users’ file transfer time for the three systems. The ICIC

FQLC solution achieves lower values for the file transfer time,

even when compared with the system implementing the reuse-

3 scheme. This does not come as a surprise since the harmonic
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Fig. 7: Mean SINR as a function of traffic intensity.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File transfer time (sec)

 

 

Reuse−1

FQL

Reuse−3

Fig. 8: Cdf of the file transfer time.

throughput has been used as the objective that guides the

FQL process. The ICIC mechanism enforces harmonic mean

fairness and achieves joint improvement for all users. In other

words, improvement of users with bad quality does not come

at the expense of users with good quality.

V. CONCLUSION

This paper has presented a distributed solution for ICIC

in OFDMA networks based on a Reinforcement Learning

approach with a Fuzzy Q-Learning implementation. The learn-

ing phase is cooperative, i.e. the agents share their learned

experience. The exploitation phase is fully distributed and can

be implemented in a non-synchronized manner, resulting in a

scalable solution that can be implemented in a real network.

The numerical results have shown important enhancement

brought about by the ICIC FQLC in terms of system capacity

and file transfer time with respect to two reference systems

implementing reuse-1 and reuse-3 schemes.
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