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Abstract—The nodes in wireless sensor networks often collect
correlated measurements. Not taking into account this information
redundancy is detrimental to the network lifetime, since commu-
nication is often the most energy consuming task for a sensor
node. This paper tackles this issue by proposing an approach
based on Distributed Source Coding (DSC), in which the rate
assignments are adapted over time. The distinctive feature of
the DSC technique is to make the compression independent of
the routing. We rely on this feature to design two algorithms
applicable to multi-hop routing trees to optimize the network
lifetime. The first algorithm is the Updated CMAX (UCMAX)
which improves the centralized CMAX routing algorithm, by
considering the energy loss due to packet forwarding in multi-hop
networks. The second algorithm is called Adaptive Compression
Rate (ACR), and aims at maximizing the network lifetime by
better balancing the energy losses in the network. Experimental
results show that the proposed approach is easy to tune, and may
significantly extend the network lifetime, particularly for dense,
multi-hop networks.

Index Terms—Distributed Source Coding, Network Lifetime,
Wireless Sensor Network.

I. INTRODUCTION

Wireless Sensor Networks (WSNss) are composed of low cost
sensor nodes, which can be used for a wide range of applica-
tions. WSNs can be deployed for event detection, e.g. fire or
intruders detection or for monitoring physical phenomena in
an environment such as temperature, humidity, sound or light
intensity. In particular, the technology of WSNs is envisioned
to be of major importance interest in applications related to
defense and disaster monitoring, such as battlefield monitoring
and enemy detection.

The sensor nodes in a WSN have typically short battery
life. Most WSN applications are however expected to run
autonomously for months or years. Conserving battery energy
is therefore of primary importance [1], and a large body of
research has focused in the recent years on the design of
techniques for reducing the energy consumption in WSNs.

In some applications, like environmental or battlefield mon-
itoring, the nodes are typically tasked to periodically report
their measurements to a centralized node referred to as base
station (BS). The base station usually benefits from higher
computational and energy resources (e.g. a desktop PC), and
allows to monitor the variations of the measurements over the
whole field. The sensor nodes transmit their data to the BS by

means of their on-board radio. The data of the nodes which
are not in radio range of the BS is relayed by intermediary
nodes in a multi-hop fashion. The role of the nodes in a sensor
network is therefore twofold: they not only act as measurement
systems, but also as routers for the measurements collected by
the more distant nodes.

The sensor nodes in a WSN monitor a common phenomenon,
and therefore the data of adjacent nodes is very often corre-
lated. Since radio transmission is the most energy consuming
component of a sensor nodes, a number of research efforts
have recently been targeted at the design of compression
techniques to suppress the redundancies in the correlated data.
Compressing the data of adjacent nodes can save the sensor
node’s energy, reducing the amount of data transmitted in
the network. The design of compression techniques for sensor
networks is however challenging, as it requires optimization of
both routing and coding of the data in the network.

Since routing and coding are difficult optimization problems,
their optimization has been mainly studied separately in litera-
ture. The design of an optimal routing structure for maximizing
network lifetime is shown to be NP-hard in [10]. The design
of routing algorithms must therefore rely on heuristics, such as
those included in CMAX [7]. CMAX is a centralized power
aware routing algorithm which takes into account the residual
energy of the sensing nodes while searching the optimal routing
path.

For the source coding problem, two main approaches were
introduced in literature: Explicit Communication (EC) and Dis-
tributed Source Coding (DSC) [2], [4]. In Explicit Communica-
tions [2], each node compresses its data using incoming flows
as explicit side information, and can also compress incoming
data from other nodes. For example, if a node receives data
from two correlated nodes, it can use one of the node’s flow as
side information to encode the other node’s data. The coding
relies on side information, which must be available both at the
encoder and the decoder. The use of EC techniques is however
computationally challenging, particularly as the number of
data sources increases. Besides the complexity of compression,
finding the optimum solution for the joint problems of routing
and compression has been shown to be NP-hard [2]. This
moved the attention to an alternative coding approach called
Distributed Source Coding DSC [4].

In DSC [4], the encoding takes place at the sensing node,

252



Full

Battery
level .

Empty

(c)

Figure 1. Evolution of routing. (a) A first routing tree is set up. Note that the
central node sustains the highest energy consumption due to data forwarding.
(b,c) Changing the routing tree over time allows to better balance the energy
consumption among the set of nodes.

and side information needs only to be available at the decoder
(the BS). The technique however requires the knowledge of the
joint probability distribution of the data sources’ measurements.
If this assumption is met, the advantages of the DSC technique
are twofold. Firstly, the computational cost at the encoders is
very low. Secondly, and more importantly, the compression
process is independent of the routing path, since the coding
is done at the source node without knowing other nodes’ data.
Some previous works implemented DSC with channel coding
techniques at the coding node to increase the robustness of
the network against errors. Different coding techniques have
been proposed, such as turbo codes [13], LDPC [14] or Cosset
coding [6]. These techniques were shown to provide near
optimal compression rates.

In this paper, we build on these works by considering the
optimization of routing and coding in multi-hop networks. The
routing structures and coding rates are adapted over time, which
allows to better distribute the energy consumption among the
sensor nodes. This is illustrated in Figure 1, where the routes
are changed over time in order to balance energy consumption.
Our algorithm relies on the CMAX routing algorithm and
the DSC coding technique. More precisely, we optimize the
network lifetime over two parameters: the routing path and the
coding rates, for arbitrary sensor networks with one BS. Since
the DSC is done at the source nodes, the two parameters can
be optimized separately. In our solution, we divide the lifetime
optimization into two optimization steps. First, we optimize
the routing paths, using the centralized UCMAX algorithm.
Second, we optimize the compression rates for the routing
structure found with the first algorithm.

The paper is organized as follows. Section II discusses the
network model. Section III and IV describe the UCMAX
and ACR algorithms, respectively. Section V evaluates the
performance of our algorithms on the basis of simulation
results. We conclude in Section VI.

II. SYSTEM MODELING AND PROBLEM FORMULATION

Let V;, = {v1,v2,...,v,} be a set of n sensor nodes, and let
vo denote the base station. The network is modeled as a directed
graph G(V, E), where V = V,, Uvy are the network nodes and
I is the set of edges. We further denote the initial energy of
the node v; by IFE(v;), 1 < i < n, and the current energy of
the sensor v; by CE(v;), 1 < i < n. For each (v;,v;) € E, let
erx(vi, vj) denote the energy that node v; requires to transmit
one packet to node v;, which depends on the channel quality
between the two nodes. The channel quality depends mainly on
the distance separating the nodes, but also on a number of other
environmental characteristics such as channel fading, obstacles
and interference. We consider that the channel quality between
each node and its neighboring nodes is estimated at the nodes.
Let erx further denote the energy consumed for receiving one
packet, which we assume to be the same for all nodes. Let ¢ €
{1,2,...,m} denote the update period, at which the network
optimizes the routing tree and the compression rates. m is the
total number of update periods from the beginning of the data
collection until the network is unable to deliver the network
compressed data to the BS.

At update period t, let r! be the source coding rate of the
measurements collected by sensor v;, and let rff be the coding
rate of the measurements collected by sensor vy, and forwarded
by v; to v;. The target is to maximize m (the total number of
updates) by solving the following linear optimization problem:

max {m} m
iy
i i 0, v # vk, v0
t, th _
Yievin iy T Xgeviii i =\ Th Vi=U
-, V; = Vg
Vv, € Voo, € V\ {d},Vt € {1,2,...,m}
(2)
m
> 2 X (emwuyly ©

t=1v;eV\{v;} v €V\{v;}
+erxrt}) < TE(v;),Yv; € V\ {vo}

> rt>H(Vs/Vse),Ws CVit=1,2,...,m (4

v; €EVs

Equation 1 shows that the optimization problem is twofold,
and combines a routing optimization problem with a rate as-
signment problem. The routing optimization problem depends
on the coding rates rff of the forwarded data, whereas the
rate assignment problem depends on the source coding rates
rt. Equation 2 simply states that the amount of data generated
by a node is the sum of its own amount of data and the amount
of data it forwards. Equation 3 states that the energy dissipated
in each node, in transmitting and receiving, is limited by the
residual energy of the node’s battery. Equation 4 correspond to
the Slepian-Wolf rate region for correlated data sources [15],
which states that the sum of the coding rates of a subset
of nodes Vg C V cannot be less than the entropy of the
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measurements of Vg conditioned on the knowledge of the data
generated by the complementary subset of nodes Vge = V'\ V.

This optimization problem requires to search for the optimum
routing tree and compression rates, and was shown to be
NP-hard in [2] for Explicit Communication coding. However,
choosing DSC for encoding the data allows separating the
coding optimization problem from the routing optimization
problem. Although this makes the problem easier to tackle, it
must be noted that the routing optimization problem is NP-hard
[8]. Different routing heuristics have therefore been designed.
We relied in this article on the CMAX algorithm, which was
introduced in [7] to approximate the optimum routing tree.
The algorithm is centralized and runs at the BS. Every update
period the BS adapts the routing structure, in such as way that
the energy consumption in the network is balanced over time.
A first contribution is adapting the algorithm by changing the
weighting functions of the links between nodes. We present
UCMAX in Section IIIL.

For the coding problem, Cristescu et al in [4] searched for
minimizing the total power losses in the network using DSC.
They proved that the minimum total power loss in the network
can be achieved using DSC when encoding rates are assigned
according to the Equation 5. They considered that the optimum
routing structure is the Shortest Path Tree (SPT) and the nodes
are numbered according to the delivery cost of one packet from
node v; to the BS through the routing tree, where the delivery
cost is the sum of all energy losses in the source and forwarding
nodes in the routing path from node v; to the BS.

For simplicity we will name this rate configuration as Mini-
mum Total Power Consumption (MTPC). This rate assignment
seeks to minimize the total network load, without taking into
account the node’s residual energy.

ry > H(v)
ro > H(va/v1) @)
Tn > H(Un/vn—la'--7vl)

Our second contribution is built on this strategy. It starts
by assigning compression rates with MTPC, but adaptively
updates the compression rates every update period. We avoid
assigning high data rates for low residual energy nodes, while
maintaining low total power consumption. This rate assignment
algorithm works on top of the optimized routing tree generated
by UCMAX algorithm. After each update period interval,
the network first updates the routing tree using the UCMAX
algorithm, then ACR compression rate algorithm searches for
the optimum rate assignment. We present our compression rate
algorithm in Section IV.

III. UCMAX ALGORITHM

In order to explain UCMAX we first introduce CMAX [7] on
which our extension UCMAX is built. The CMAX algorithm
runs at the BS after collecting nodes’ batteries energy levels
and the channels quality estimates. The CMAX algorithm runs
in two steps:

Step 1: If all network nodes’ batteries are full (i.e. CE(v;) =
IE(v;)), jump to Step 2 without modifying the graph G. Else
eliminate from G every edge (v;,v;) for which CE(v;) <
eTx(vs, v;j). Change the weight of every remaining edge (v;, v;)
to e(vi, vj) x (A —1), where a(v;) = 1-CE(v;) /I E(v;) is
the energy utilization of node v;. X is a configurable parameter,
which quantify the penalty of using a link, according to the
remaining energy in the transmitting node.

Step 2: Find the shortest path between each sensor node
and the Base Station using Dijkstra’s algorithm in the modified
graph.

CMAX does not take into account the energy needed for
receiving data when optimizing the routing tree, while the
energy used in receiving can be as high as the energy used
in transmitting. Therefore we updated the CMAX to include
the reception costs while updating the weights of the graph’s
edges. Our modified UCMAX runs the following steps:

Step 1: If all the network nodes’ batteries are full (i.e.
CE(v;) = IE(v;)), jump to Step 2 without modifying the
graph G. Else eliminate from G every edge (v;,v;) for which
CE(v;) < erx(v;,v;). Change the weight of every remaining
edge to become

e(vi,v5) = e(vi,v5) x A1) + ep, x (v —1) (6)

A and ~ are configurable parameters, which quantify the
penalty of using the link e(v;,v;) according to the remaining
energy of the transmitting node v; and the remaining energy of
the receiving node v;.

Step 2: Find the shortest path between each sensor node and
the BS using Dijkstra’s algorithm in the modified graph.

The parameter v allows to explicitly penalize the routing
paths which involve low energy nodes. As will be shown in
Section V, considering the energy used by receptions allows
UCMAX to provide better performance than CMAX.

To understand our update on the CMAX algorithm, let us
go through the example in Figure 2. The BS needs to find
the optimum routing path for the two network nodes vy, vs.
In CMAX the nodes communicate their residual energy to the
BS. Link weights er,(v;,v;) are known to the BS. CMAX
changes network link’s weights as shown in Step 1 of the
CMAX algorithm. Then run Dijkstra’s algorithm on the updated
graph. If node v, routes its data through vy, vo will lose almost
twice the energy lost in v; when forwarding v;’s data. The
energy lost in receiving at vy could be as high as the energy
lost in transmitting the data to the BS. This problem motivated
us to use the transceiver energy loss in receiving in changing the
link’s weights. Equation 6 shows our new weighting equation.

IV. ADAPTIVE COMPRESSION RATE ALGORITHM (ACR)

The minimum total power consumption rates with DSC
compression in sensor networks are achieved with MTPC [4].
MTPC optimizes the network rates to minimize network total
power, while not considering the per node residual energy
or per node forwarding load. MTPC can indeed assign high
transmitting rate for a node that has high data flow from other
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Figure 2. UCMAX optimum routing example, with two nodes and the BS.

nodes in the routing tree, which can cause a fast disconnectivity
in the network. Our algorithm seeks the minimum total power
consumption, but on the other hand protects low energy nodes
by assigning low rates to them. Every time an update is
required, the ACR algorithm is run at the BS, using the routing
tree returned by UCMAX. ACR also uses the residual energy
of the nodes for assigning low rates to low energy nodes.

ACR algorithm performs as follows. After optimizing the
network routing tree with the UCMAX and learning the cor-
relation structure between the nodes’ data, the BS assigns the
data compression rates according to MTPC rate assignment as
derived in equation 5. After each update period, the UCMAX
calculates the new routing tree and the ACR adaptively changes
the data rates of the nodes such that nodes with higher residual
energy and lower forwarding load send at higher rates than the
nodes with less residual energy or high forwarding duty. The
algorithm keeps the total network rate to be at least the joint
entropy of all nodes.

The Rate Optimization Algorithm executes the following
steps:

Step 1: Assign compressing rates according to equation 5
where nodes are numbered according to the nodes weights, so
that w(vy) < w(ve) < ... < w(vy,), where w(v;) is the total
energy to transmit one bit of data from node ¢ to the BS through
the UCMAX optimum route tree. Let the total delivery power
parameter be Py, = > w(v;)r;.

Step 2: Find the node with minimum residual energy v,,n,
and search in all nodes for one with lower data rate, lower
forwarding rate and higher residual energy. This node should
not be one of v,,,;,,’s children on the routing tree. Let the elected
node be v,.

Step 3: Swap v, and v,,,;,,’S compression rates so that if node
Umin Was transmitting at rate r,,;, and v, was transmitting
at rate 7, < Tmin, the new rate for v,,;, will be r,;, >
H(vpmin/v1,v2, .. .) while node v, will transmit at rate
Ty > H(vgp/v1,v2,...).

Step 4: Calculate the total delivery power, let it be Pcqp.
If all rate switching possibilities are tested, choose the rate
switching that leads to the minimum total delivery power P,cq,

Vg -

Full

Battery
level
@ Empty
H(v3/v1,v2) @ H(v3/v1,v2)
H(v2/v1) H(v2)
(a) (b)

Figure 3. ACR Algorithm. (a) Rates at start-up of the network. (b) Rates
obtained with the ACR Algorithm after update period

and let it be P4, else return to step 3.

Step S: If all minimum residual energy nodes are tested move
to step 6. Else back to Step 2 to search for other minimum
residual energy nodes.

Step 6: If Py, is less than z Py, where z > 1 is a constant,
accept the new rates. Else, do not change the compression rates.

The worst case happens when each node in the network
is selected in Step 2 as minimum residual energy node and
it checks all other nodes for possible rate switching between
them. The ACR algorithm complexity is bound by O(|V|?).

An example for ACR algorithm is shown in Figure 3, where
three nodes network is depicted. The network starts up with
UCMAX route tree and MTPC rate assignment as shown in
Figure 3 (a) (for simplicity we neglect the training period).
After the network runs for one update period delivering packets
to the BS, nodes transmit their residual energy to the BS. The
new optimum route is calculated with UCMAX. The ACR
first calculates the MTPC rates and then searches for the node
with minimum energy. It will be v;, since it was sending at
full entropy rate and forwarding vs’s compressed data for the
previous update period. The algorithm searches for a node that
has higher battery level and less data flow through it, which is
vg. If 7o is less than r; the algorithm swaps the rates so that
vy will transmit at rate ro > H(v2) while v; will transmit at
rate r{ > H(Ul/vg).

V. EVALUATION

The main goal of our experiments is to evaluate the gains
which can be obtained in terms of network lifetime. After
presenting in Section V-A the setup used for the experimental
evaluation, we compare in Section V-B the UCMAX to the
CMAX algorithm. Section V-C then provides an analysis of
ACR algorithm, combined with UCMAX. Finally, Section V-D
discusses the network overhead caused by the compression rate
algorithm.
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A. Experimental setup

In order to evaluate the performance of the UCMAX and
ACR algorithms, we rely on a simulated environment of
100 x 100 m?2 area, and consider two network configurations.
In the first one, nine nodes are located on a 3 x 3 grid, and
in the second one, the set of nodes is extended to twenty-five,
arranged in a 5 x 5 grid. In both cases, the BS is located at the
center of the area. These configurations allow to compare the
performance of the algorithms in function of node density.

The energy consumption of the nodes is estimated by the
energy consumed by the radio transceiver, which is widely
considered as the dominant source of energy consumption in the
wireless node [12]. For the sake of our analysis, we consider
that the network nodes are time synchronized, and therefore
only consider the energy required to transmit or receive a
packet.

As stated in Section II, the receiving energy ery is the same
for all nodes. The transmitting energy erx(v;,v;) depends on
the distance separating the two nodes v; and v;, we rely on the
common model

6TX(’[)¢,UJ') = [Oéd(l)i, Uj)n —+ ,D} X TT:c

where «, k, and p are constants that depend on the radio
chip characteristics and the environmental conditions. T,
is the packet transmission period. For our experiments we
depend on [12] to calculate these parameters. Table I shows
the parameter’s values used in our experiment.
The correlation between the sensor’s measurements is repre-
sented by a Gaussian model
F@) = —— 1 GEewKT X)) (g
V27 det(K)z

where K is the covariance matrix and p is the vector of the
measurement’s average. The matrix K actually represents the
spatial correlations between the measurements, and is created
by assuming that these correlations are changing according
to distance between the nodes. More precisely, the following
model

Kij = o*eap(—cld(vi,v;)[*)

is used to define this relationship. K; ; and d(v;,v;) respec-
tively represent the correlation and the distance between node
v; and vj. 02 is the variance of the nodes’ measurements (we
consider all nodes’ measurements have the same variance) and
c is the attenuation factor of the correlation [4]. The output of
each node is quantized with a uniform quantizer whose step
level A = 0.01.

In our simulations, a training period is first carried out
in order to learn the correlation model and the entropy of
the sources. During this training period, only the UCMAX
algorithm is running, and the packets are sent uncompressed
to the BS. In a second stage, the BS starts running the joint
optimization algorithms by broadcasting the compression rates
with the routing tree structure to all the nodes. We consider the
correlation structure is being constant.

Table T
EXPERIMENT PARAMETERS

a=5219 x 10~ % o=1
K = 3.5 c = 0.001
p=12x10"7 Bit rate = 250 kb/s

Transmission range = 100 m
IE(v;) = 10 Joule
ers = 59.1 x 1073 x Ty, Joule

maximum packet size = 128 bytes
maximum 717, = 4.1 ms

B. CMAX versus UCMAX

The proposed UCMAX algorithm extends CMAX by includ-
ing, in the weights of the network graph, the energy cost related
to packet reception (Equation 6). This cost is parameterized
by the user defined constant v, and is the counterpart of the
constant A used for penalizing the transmission costs in both
CMAX and UCMAX.

The role of A was studied in [7], and we summarize here
their analysis. From the weight update equation in CMAX (see
Section III), we see that link weights are updated with \ to
the power of the energy utilization. Therefore, increasing the
value of A\ allows to avoid the use of nodes whose remaining
energy is low. Given that the relationship is of a power type,
the routes algorithm becomes insensitive to changes in A when
it is larger than or equal to 100. We found similar results, and
therefore A is fixed to 100 in the following.

In Figure 4, we evaluate how ~, the new parameter intro-
duced by UCMAX, can extend the network lifetime. The figure
shows the lifetime of the network configurations, in number of
update periods, as a function of -, for values ranging from 0 to
30. Note that if v = 0, UCMAX behaves as CMAX, since the
energy consumption related to packet reception is not taken
into account. As v increases however, we see that UCMAX
allows to significantly extend the lifetime, particularly for the
5 x & network. The figure shows that the optimum value for v
is 10 for both the 3x3 and 5x5 grid networks.

Interestingly, we also observe that with UCMAX, the net-
work lifetime of the 5 x 5 network gets even longer than the
3 x 3 network. This happened because in the 3 x 3 network
the distances between the nodes are high, so that the energy
lost in transmission is higher than the energy lost in reception.
Because of that UCMAX did not give much improvement in
CMAX performance. In the 5 x 5 grid the network is more
condense, then the energy loss in reception is comparable to
the energy loss in transmission. The aggregating nodes in the
routing tree will lose a considerable amount of their energy in
receiving data from the children nodes, which is not taken into
account in CMAX. Figure 4 shows the improved performance
of UCMAX over CMAX.

In these results, the compression rates were set by relying
on the MTPC as in [4], and the routing tree was adapted every
update period which equals to 50 packets delivery from each
node to the BS. We consider the network is time synchronized.
The influence of these parameters is studied in the following
experiments.

C. Adaptive Compression Rates

We study in the section how the proposed ACR allows
to improve the network lifetime. The main parameter of the
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algorithm is the constant z, which determines the threshold
from which the new rates are accepted or rejected. The lifetime
of the network as a function of z is reported in Figure 5, where
z 1s varied from 0.9 to 1.6, for the 3 x 3 and 5 x 5 network
configurations.

If z, is less than 1, the new rates are in all cases rejected,
and therefore the algorithm uses the compression rates as
in MTPC algorithm. If the network nodes are distributed
uniformly around the BS (nodes have equal delivery power
to the BS), small value of z (with z > 1) or even z = 1
can lead to optimum lifetime. The ACR algorithm can swap
compression rates between the nodes with equal deliver power
to the BS without changing the total deliver power. For random
distributed nodes, the values of z need to be more than 1, to
give the algorithm the flexibility to switch the rates between
the nodes with different delivery power.

25,000

20,000

15,000

10,000

5,000

560 1 ,600 1,5‘00 2,600 2,5‘00 3,600 3,5‘00 4,000
Update Period (number of delivered packets per update)

Figure 6. Network lifetime as a function of update period

D. Update rate trade-offs

Updating the network routing tree and compression rates
allows to better balance the load. It however comes at a com-
munication cost. The updating of the network routing tree and
rates requires that the nodes transmit their residual energy to the
BS. Then, the BS must broadcast the new rates and routing tree
through the network. As the network size increases, updating
the routes and the compression rates may incur significant
communication overhead. The communication overhead caused
by these updates is mainly dependent on the data sent from the
BS to the nodes. The nodes’ residual energy is indeed a small
piece of information, which can be communicated to the BS via
the data packets. When the BS broadcasts the data related to
the new routing tree and compression rates, the communication
overhead is however not negligible, as the nodes which receive
the broadcast packet must retransmit it to their neighbors until
the packet is communicated throughout the whole network.
For this broadcast, we assume that every node receives and
transmit the packet once. Each node therefore loses an amount
of energy equivalent to that of receiving and transmitting one
packet at maximum transmission power. We run the algorithm
with different update periods. The update period is changed
by changing the number of packets delivered from each node
before each update. We computed lifetime which is represented
by the total number of packets delivered from each node until
one of the nodes runs out of energy. The results are reported
in Figure 6, for the 5 x 5 network configuration. If the period
of the updates is small, the communication overhead caused
by these updates considerably reduces the network lifetime. At
the other extreme, if this period is too large, the lifetime also
decreases, as some of the nodes run out of energy although
another routing tree or rate assignment could have saved their
energy. In this experiment, the optimal period for updating the
network is of about 2900 packets delivery from each node per
update period.

VI. CONCLUSIONS

This paper presented two algorithms for WSN lifetime
maximization. The first one is the Updated CMAX algorithm
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(UCMAX), which improves CMAX by taking into account
the radio reception costs for determining routing paths. Our
experiments showed that UCMAX provides important improve-
ments in terms of lifetime. This was particularly remarkable
in the case of dense networks, where UCMAX increased
by up to 160% the network lifetime. The second proposed
algorithm, namely the Adaptive Compression Rates (ACR),
aims at balancing the energy consumption by adapting the DSC
rate assignments over time. In our experiments, the ACR further
improved the lifetime by 17%. The two algorithms form a joint
optimization solution for maximizing the lifetime of networks
collecting correlated data.
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