
HAL Id: inria-00503992
https://inria.hal.science/inria-00503992

Submitted on 19 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Tuning of Infrastructure-Mode Wireless
LANs

Yigal Bejerano, Hyoung-Gyu Choi, Seung-Jae Han, Thyaga Nandagopal

To cite this version:
Yigal Bejerano, Hyoung-Gyu Choi, Seung-Jae Han, Thyaga Nandagopal. Performance Tuning of
Infrastructure-Mode Wireless LANs. WiOpt’10: Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks, May 2010, Avignon, France. pp.242-251. �inria-00503992�

https://inria.hal.science/inria-00503992
https://hal.archives-ouvertes.fr

Performance Tuning of Infrastructure-Mode

Wireless LANs

Yigal Bejerano† Hyoung-Gyu Choi‡ Seung-Jae Han‡ Thyaga Nandagopal†

† Bell-Labs, Alcatel-Lucent, NJ, USA. ‡ Yonsei University, Seoul, Korea.

Abstract—Conventional wisdom about 802.11 WLANs dictates
that as the number of active users increases, the contention
windows (CW) of all the contending users needs to increase to
prevent collision losses. However, given the increasing data rates
of 802.11 standards, the fraction of time spent not transmitting
information (as a result of back-off) is also increasing, leading to
reduced throughput when compared to the theoretical maximum.
While there appears to be an inherent conflict between reducing
collisions by increasing the CW and reducing overhead by
decreasing the CW, we demonstrate in this paper that this
conflict can be eliminated in Infrastructure-Mode wireless LANs
(I-WLAN) where downlink TCP and UDP flows dominate.
Unlike the traditional trend of WLAN performance analysis that
assumes that all the stations are greedy, we consider the case in
which only the access point (AP) is greedy while the mobile users
in the cell react to the information sent to them. This setting
captures the traffic patterns in I-WLANs more accurately as
users typically utilize their WLAN connections predominantly for
downloading information through TCP (i.e., web browsing) and
UDP (i.e., video streaming) connections. We show via analysis
and extensive experimentation that by changing the minimum
CW at the APs and the users, we can achieve 25 - 30% greater
throughput than the typically recommended 802.11 settings. We
achieve this without requiring any changes to the MAC or PHY,
and utilizing only the standard features present on current-
generation 802.11 chip-sets.

Keywords: IEEE 802.11 WLANs, Performance Analysis.

I. INTRODUCTION

Last hop wireless data networks are dominated by the IEEE

802.11 family [1] of standards, that support higher and higher

data rates. Recent proposals for the 802.11 standards aim for

600 Mbps peak data transfer rates on the PHY layer[2]. On

the surface, improvements in the PHY data rates appear to

translate directly to the end-to-end throughput experienced by

the user. However, due to the various overheads required by

the distributed nature of the 802.11 Medium Access Control

protocol, the actual throughput experienced at the transport

layer (TCP/UDP) is nearly half of the physical layer rate. For

example, when we use the default recommended settings for

802.11a/g, the throughput at the TCP layer is only 23 Mbps

(see Section III for details) for a single pair of nodes.

Many papers have focused on analyzing the performance

of 802.11 wireless networks [3], [4], [5], [6], [7], with the

most notable being the paper by Cali et.al. [3]. These papers

commonly analyze the saturated nodes case, where all the

nodes are backlogged and contend for the channel all the time.

A few other recent papers have analyzed the unsaturated node

case where every node is not greedy all the time[8]. In reality,

the most common use-case of IEEE 802.11 WLANs is the

hot-spot scenario, which does not fall in either of the above

categories considered in contemporary research. In order to see

this, consider a typical hot-spot with an Access Point (AP) and

a bunch of users. Users access web content predominantly,

with very few applications sending upstream data (e.g., file

sharing, audio/video conferencing). The traffic is primarily a

mix of TCP flows and streaming UDP flows on the downlink,

with some occasional TCP or low bit-rate UDP flows on the

uplink, as seen at the AP. We identify these hot-spot settings

as Infrastructure-mode WLANs (I-WLAN).

In I-WLANs, the AP is the node that is backlogged more

than any other user, and contends for the channel nearly all

the time. Users on the other hand have very few upstream

flows to send to the AP. Even when the upstream flows are

all TCP flows, the AP has to contend for the channel in order

to send the TCP acknowledgements (ACKs) to the users. This

implies that every user essentially competes with the AP. We

consider these I-WLANs in detail and describe how to improve

the overall performance on these networks, supported by an

extensive evaluation via analysis and experimentation on a

802.11a/g testbed.

Our key contributions are as follows.

1) We show that TCP flows with their inherent ack-based

self-clocking regulate the number of contending users

in the channel, regardless of the number of TCP flows

served on the downlink.

2) We show that for the case when downlink flows domi-

nate the channel, the AP can set its minimum conges-

tion window (CWmin) to a really small value that is

smaller than the current recommendations of the 802.11

standards, regardless of the number of TCP/UDP flows

on the downlink, or the number of users in the system

receiving these downlink flows.

3) We identify a very interesting phenomenon wherein if

the users send TCP ACKs faster by using a smaller

CWmin than that of the AP, the throughput of the TCP

session increases noticeably.

4) We present the ideal CWmin settings for handling a mix

of upstream and downstream TCP and UDP flows when

the AP is always backlogged and only a few users are

actively sending upstream traffic at any time. We show

that this joint transport-MAC layer optimized setting

does much better than a pure MAC layer approach.

5) We present throughput analysis that allows us to deter-

mine the optimal value of the CWmin at the AP for any

mix of downlink/uplink TCP/UDP flows, and confirm

WiOpt 2010

242

via experimentation on a 802.11 testbed that our analysis

matches with the experimental results.

Our results counter the conventional notion that the more

users in a hot-spot, the higher the average back-off window

should be[3], [9]. Thus, we are able to achieve performance

gains of up to 25 - 30% greater throughput over recommended

802.11a/g settings in a I-WLAN for the case of TCP and even

more for UDP traffic on the downlink. Our proposed changes

do not require any changes in PHY or MAC layers of IEEE

802.11 standards, and utilizes existing features of WLAN chip-

sets[10]. The work in [11] is most related to our contributions

here. They analyze the TCP throughput performance in a hot-

spot network, and show that the number of contending users

is nearly a constant in a I-WLAN. In this work, we analyze

both TCP and UDP downlink flows, and present methods

to exploit the reduced contention levels in I-WLANs. Our

analysis method is simpler and more flexible than the one

in [11], allowing us to model more complex scenarios. Our

results are also backed up by experimentation on a real testbed,

unlike the work in [11].

IEEE 802.11e[12] provides for various flow classes with

variable AIFS and CW values using EDCA. The general

understanding is that high priority flows should use lower

AIFS and CW values than lower priority flows. However,

the classification of flows is largely left to the application

which could use either TCP or UDP. In this paper, we take an

alternate approach and show how even with a set of generic

TCP flows, we can classify uplink-ACK flows as a higher

priority flow leading to improved throughput for downlink

flows. This could be used as a hint for 802.11e mechanisms.

Along these lines, Leith et. al. [13] analyze the Bianchi

model for competing TCP downlink + uplink flows in an

AP, and suggest, based on simulations that CWmin = 32 be

used everywhere, except that AIFS of 0 be used for ACKs,

and the AP send ACKs out with a CWmin = 2. However,

the analysis does not justify these AIFS values. They do not

consider UDP traffic and do not do any experiments. We show

both analytically and via actual experimentation, that, contrary

to their results, we need not worry about AIFS values, but

simply use different CWmin values for ACK traffic to achieve

optimum TCP/UDP throughput, even with a mixture of TCP

and UDP flows.

Many optimizations have been proposed as part of the IEEE

802.11n standard[2] to minimize the idle-time overhead. These

include Frame Aggregation, Multiple Block Ack and Reduced

Inter-Frame Spacing (RIFS). Combined together, they can

reduce the idle time. However, they will not help much to

reduce TCP ACK overhead, since it is a single cumulative

ACK over multiple TCP segments and is only 72 bytes in

size. This will prevent the usage of any of these features to

improve TCP performance. However, by using a small CWmin

for TCP ACKs as we show here, we can have more significant

improvements in TCP throughput in 802.11n I-WLANs.

The rest of the paper is organized as follows. In Section II,

we provide an overview of the relevant parts of the 802.11

protocol, and describe why the transport layer performance is

very poor in Section III. In Section IV, we provide a modeling

approach to quantify the performance of I-WLANs. We verify

our results with data from a I-WLAN testbed in Section V

and conclude in Section VI.

II. PRELIMINARY

A. IEEE 802.11 DCF Mechanism

In this paper, we consider IEEE 802.11 Wireless LAN

(WLAN) operating in infrastructure mode with one access

point (AP). All users use the standard DCF MAC. DCF

is a distributed medium access control method that em-

ploys the exponential back-off-based Carrier Sense Multiple

Access/ Collision Avoidance (CSMA/CA) mechanism. Each

user (either an AP or an user) senses the wireless channel

before transmission by using both physical and virtual carrier

sensing mechanisms. It starts transmission only if the channel

is idle for a back-off duration, measured in time slots (or

simply slots), which is randomly chosen according to the

user’s contention window (CW) variable. If it senses a busy

channel during its back-off duration, it pauses its back-off

timer and resumes the timer again at the end of the sensed

transmission. A user transmits its packet only when its back-

off timer expires. At the end of each successful transmission,

the receiving user acknowledges the reception by sending an

ACK message. Collisions occurs as a result of more than

one user transmitting simultaneously. If a station does not

receive an ACK, it doubles its contention window size up

to a maximal CW value denoted by CWmax = 2KCWmin,

where CWmin is the minimum congestion window. The user

resets its contention window size to its initial value, CWmin,

after every successful transmission. When a user is successful

in capturing the channel, it can then choose the data rate at

which it wants to transmit the packet, preceded by a preamble

that allows the receiver to lock on to and infer the parameters

(e.g., rate, duration) of the transmission. The default values of

these parameters for the IEEE 802.11a/b/g family of standards

is given in Table I. Detailed description of the IEEE MAC

protocol can be found in [14].

Parameter 802.11 b 802.11 a 802.11 g

CWmin 32 16 16

CWmax 256 256 256

SIFS 10µs 16µs 10µs
Slot time 20µs 9µs 9µs

DIFS 50µs 34µs 28µs

Preamble 192µs 20µs 20 + 6µs†

Max data rate 11 Mbps 54 Mbps 54 Mbps

Data symbol length 8 bits 27 Bytes 27 Bytes

TABLE I
MAC AND PHY PARAMETERS FOR IEEE 802.11 A/B/G

† 802.11g adds a 6µs “signal extension time” at the end of every frame.

We consider only the 802.11a standard for the experimental

evaluation in this paper. The analysis and experimental con-

243

TailDIFS Backoff

Pre−
amble Header

MAC SNAP

header

IP

hdr

Transport

Header

TCP/UDP

Payload

MAC

SIFS

Pre−

amble

MAC

ACK

Fig. 1. 802.11 Transmit Sequence with Zero Collisions

clusions do apply for 802.11g as well, as long as the I-WLAN

operates in 802.11g-only mode.

B. Network Model

An I-WLAN is a single cell system comprising of one

AP and multiple users associated with that AP. Multiple such

cells can co-exist within range of each other as long as they

are on non-interfering channels. Within a cell, all traffic to

users in the cell is routed through the AP (i.e., there is no

direct user-user communication). Traffic is a mixture of TCP

and UDP flows, with the data transfer skewed heavily to the

downstream (≥ 90%), than the upstream. This is typical of

a hot-spot or home-network setting, where most users request

and download web content, rather than produce their own. The

upstream traffic is composed of content requests, audio/video

conferencing streams, and file sharing streams. These upstream

flows are mostly rate limited1, or are composed of only a few

packets.

Downlink TCP flows generate return traffic to the AP from

users in the form of TCP ACKs. In general, the deferred ACK

feature (set to 2, by default) in all TCP flavors ensures that

we get only far fewer TCP ACK packets as that of TCP data

packets, assuming in-order delivery. However, these TCP ACK

packets must also contend with upstream flows and TCP ACK

packets from other users in the cell, in addition to the packets

from the AP.

III. PERFORMANCE REDUCTION DUE TO IDLE CHANNEL

TIME

We first consider the ideal performance of a single IEEE

802.11 cell with zero contention losses. We look at the best-

case performance for UDP as well as TCP using the default

settings of IEEE 802.11a, and the results are similar for

802.11g as well.

Figure 1 shows the sequence of events at the MAC layer

assuming that there are no collisions in the cell. The 802.11

MAC header has 28 bytes and the SNAP encapsulation header

has an additional 8 bytes. Maximum throughput is achieved

when the packet size is the maximum. Since the Ethernet

payload size is limited to 1500 bytes, we will use that number

as the size of the MAC payload even if 802.11 MAC allows

for a larger frame size. For an UDP packet, the maximum

UDP payload length is 1472 bytes, and for TCP, it is 1460

bytes out of the maximum MAC frame size of 1536 bytes.

The TCP ACK frame is 76 bytes in length. Each data symbol

in 802.11a carries 27 bytes at the 54 Mbps data rate, and 3

bytes at the lowest 6 Mbps data rate.

1The default configurations in file sharing applications typically limit the
uplink bandwidth[15] in order to increase download speeds.

The average number of the back-off slots is half of the CW
variable. In the ideal case, CW = CWmin, and hence, the av-

erage back-off duration is 802.11a is Slot time∗CWmin/2 =
72µs. The preamble duration is 20 µs. Thus, the total time

needed to transmit a packet is

DIFS + Back-off + Preamble + Frame Duration + SIFS

+ Preamble + MAC ACK Duration

= 162 + 4 (Data Symbols+MAC ACK Symbols)µs

Ideal max UDP throughput: In case of UDP, the packet

duration of the maximum sized frame is

162 + 4(⌈
1536

27
⌉+ ⌈

14

27
⌉) = 394µs

This implies that the maximum UDP throughput is 1472×8
394 =

29.9 Mbps. It is important to note that the channel is idle for

DIFS + Back-off + SIFS . With the average back-off time

around 72µs, the channel is idle for 122µs, nearly 31 % of

the time it takes to transmit one UDP frame.

Ideal max TCP throughput: In case of TCP, we have to

account for the transmission duration of the TCP ACK packets

as well. The only difference in case of the TCP ACK packet

is that we do not have to account for back-off for the TCP

ACK since both the AP and the user will be counting down

the back-off counter. Since we already count the AP’s back-

off, we do not have to count it again. In addition, since TCP

uses deferred ACKs, typically set to once every 2 packets, we

compute the total duration of transmission of two TCP data

packets and one TCP ACK packet as follows:

2{394}+ {90 + 4(⌈
76

27
⌉+ ⌈

14

27
⌉)} = 894µs (1)

Thus, the expected duration of a TCP data frame is 894/2 =
447µs, resulting in a maximum TCP throughput of 1460×8

447 =
26.1 Mbps. In this set of three packet exchanges, the channel

is idle for 294 µs = 33% of the time. Note that the above

computation does not take into account any potential collisions

between the AP and the user sending a TCP ACK. The real

throughput is therefore lower than 26 Mbps.

The above effects can be observed experimentally as well.

We evaluate the throughput of users in a WLAN in infrastruc-

ture mode with only downlink flows, and compare the UDP

and TCP throughput obtained with the above analytical results.

The results are summarized in Table II. Throughput is in

Mbps.

TABLE II
SINGLE USER EXPERIMENT: 54MBPS & 6 MBPS MODE

TCP UDP

CWmin 54Mbps 6Mbps 54Mbps 6Mbps

16
throughput 22.90 4.66 27.20 5.16

(succ. prob) (0.98) (0.97) (1.00) (1.00)

32
throughput 20.50 4.60 23.10 4.97

(succ. prob) (0.99) (0.98) (1.00) (1.00)

244

As is evident, even for the simplest case of a cell with only

one user, after accounting for all data headers, the channel is

idle for nearly one-third of the time. Out of this, back-offs

account for 60% of the idle time, even when CWmin = 16.

When the CWmin = 32, the channel is idle for 42% of

the time, with back-offs accounting for 75% of the channel

idle time. Conventional wisdom has been to use higher values

of CWmin to resolve collisions that are likely when a large

number of users contend for the channel[3], [9]. While this

definitely will reduce the impact of collisions, it also increases

the amount of idle time on the channel, especially with high

data-rate WLANs, and will be further exacerbated in 802.11n

WLANs. At low data rates, the channel idle time is less

pronounced (< 5%). However, the biggest benefit of using

the high-rate WLAN standards is the availability of high-data

rates, and their impact is dulled by the overhead of back-

offs and channel idle time. Moreover, when there are multiple

flows, there can be additional contention among users and with

the AP as well, which will lead to collisions, doubling of the

back-off window and subsequent loss in throughput.

Our goal is to show that for the traditional and most

common single-cell WLAN setting, it is possible to achieve

better throughput by reducing the back-off window without

increasing the risk of collisions. Having said that, the answer

is obviously not to eliminate back-off, but to find the right

balance between improved contention resolution and reduced

channel idle times. We seek to find this balance by means of

analysis, and then use our analytical results in experiments to

validate our conclusions.

IV. PERFORMANCE ANALYSIS

In this section, we present our analytical model evaluating

the performance of a single AP that provides multiple TCP and

UDP downstream flows to its associated users. We introduce

a new Markov model that evaluates the system performance

from the AP’s point of view and use this model for computing

the AP’s success probability and its overall throughput. Since

the stations’ behavior in WLANs is not generally Markov in

nature, we make several simplifying assumptions that enable

us to provide a tractable model. Yet, our extensive experiments

show that in spite of its simplicity, our model predicts quite

accurately the performance of the system.

A. Simplifying Assumptions

We consider a WLAN with N downstream TCP and UDP

flows, each flow is sent to a different user. For TCP flows

we assume that the users apply delayed TCP ACK (TACK)

strategy and TACK are sent only after reception of several TCP

messages, typically this value is D = 2. In order to preserve

the Markov model, we assume that after reception of a correct

TCP frame, a user decides with probability of 1/D whether

to send a TACK. Thus, while at any given time there may

be at most N users that have TACK messages to send to the

AP, this number may actually be significantly smaller. Once

a user successfully sends its TACK message to the AP, it no

longer competes for the channel until it gets at least one new

TCP message and the number of users with pending TACK

messages is increased by one. We assume that the only cause

of getting a corrupted TCP frame is due to packet collision at

the WLAN DCF layer.

Since, our main focus is the AP performance, we assume

that all the users have a fixed contention window denoted

by U that does not change even in case of a collision. Our

experiments support this assumption and show that moderate

variation of U does not have significant impact on the system

performance. Thus in our Markov model, we assume that after

each transmission, the probability that a user is contending in

slot j ≤ U is 1/U , which is comparable to the assumption

made by Bianchi in [16]. For the sake of clarity, we present

the notations used in Table III.

Symbol Semantics

W The minimal contention window (CW) of the AP.

U The contention window of the users.

D The ratio of TCP frames to TCP ACKs.

K Num. of CW duplications, i.e., CWmax = CWmin · 2K .

Si A state at the Markov Chain, where ni is the number of
(ni, ki) TACKs and ki is number of AP CW duplications.

P (ni, ki) the probability of state Si = (ni, ki).
T (Si;Sj) The transition probability from state Si to Sj .

m(Si, r) The probability of transmitting r successful TACKs before
the AP transmitted its message in state Si.

A(Si) The probability of successful AP transmission in state Si.

TABLE III
NOTATION

B. Markov Model

In the IEEE 802.11 back-off model, when the AP does not

receive an acknowledgement for its transmission, it doubles its

back-off window, up to a maximum value, CWmax = 2KW ,

for some K . Upon a successful transmission, indicated by

an ACK, it resets its back-off window to W . We model the

transmission of the AP by a two-dimensional Markov chain in

which each state is defined by a pair (n, k). Here, n denotes

the number of users that have pending TACKs to send, while

k represents the AP CW after i consecutive collisions, i.e.,

the AP CW is W · 2k. Thus, the Markov chain represents the

system state from the AP point of view immediately after it

has sent a message.

We denote the states of the Markov chain by a pair

S = (n, k) and the probability that the AP is in state (n, k) is

given by P (n, k). The state transition probabilities from state

Si = (ni, ki) to Sj = (nj , kj) are denoted by T (Si;Sj). Each

state transition probability takes into account two probabilities:

(i) The probability that the message sent by the AP has been

received correctly and acknowledged by the users. This proba-

bility is denoted by A(si) and it is calculated in Section IV-C.

In the case of successful transmission, the AP resets its CW to

W and it moves to state Sj = (nj , 0), with kj = 0. Otherwise,

in case of a collision, the AP doubles its CW and moves to

state Sj = (nj , ki +1), i.e., kj = ki +1. If ki = K (maximal

contention window), then kj is the same as ki = K .

(ii) The probability that the number of users with pending

245

TACK messages has changed from ni to nj . This depends on

the successful delivery of data from the AP (which increases

the pending users) and the number of users that transmitted

TACK messages successfully prior to the AP transmission

(which decreases the number of pending users). We denote

by m(Si, r) = m(ni, ki, r) the probability that r users

have successfully sent their TACK messages before the AP

transmitted its message.

Given a state (ni, ki) its transition probability can be

calculated as follows. In case of an AP transmission failure,

kj = min(ki+1,K) and the probability of nj = ni− r users

with pending TACK messages is m(Si, r) = m(ni, ki, r).
From this, the transition probability for unsuccessful trans-

mission is given by

T (ni, ki;nj, kj) = [1−A(ni, ki)] ·m(ni, ki, ni − nj)

0 ≤ nj < ni, kj = min(ki + 1,K)

Recall that in such a situation, 1 ≤ nj ≤ ni, since the AP

has collided with at least one user and also since no new

TACK was generated (i.e., the downlink TCP data transmission

failed).

The case when the AP successfully transmits is slightly

more complicated, since the receiving user generates a new

TACK only with probability of 1/D. We distinguish between

three possible scenarios.

The first is where nj = ni + 1. Here, a new TACK is

generated and none of the users successfully sent any pending

TACK message. The probability for such case is;

T (ni, ki;ni + 1, 0) = A(ni, ki) ·
1

D
·m(ni, ki, 0)

The second case is the transition to the state (0, 0). In this

case, all the pending TACK are successfully transmitted and

no new TACK is generated. The probability of this case is

T (ni, ki; 0, 0) = A(ni, ki) ·
D − 1

D
·m(ni, ki, ni)

Finally, the third case is when nj ∈ {1, · · · , ni}. In such case

the transition probability is,

T (ni, ki;nj, 0) = A(ni, ki) ·

[

D − 1

D
·m(ni, ki, ni − nj)

+
1

D
·m(ni, ki, ni + 1− nj)

]

Inside the parenthesis, the first component considers the case

that the receiving user did not generate a new TACK. The

second component evaluates the probability that new TACKs

were generated. Here, the system shifts to state (nj , 0) only

if ni − nj + 1 TACK messages have been successfully sent.

Figure 2 provides a diagram of our Markov model that shows

all possible out-going transitions from state (n, k).

n,k

0,0
 1,0
 n,0
 n+1,0

1,k+1
 2,k+1

2,0

n,k+1

Success

Failure

Fig. 2. An example of the out going transitions from the state (n, k).

C. Probability of Successful AP Transmission - A(Si)

We now calculate the probability of successful AP transmis-

sion in state Si = (ni, ki). Denote Ŵ = W ·2ki . We consider

two cases.

Case I: Ŵ ≤ U . The probability that the given user selects

a different slot from the one selected by the AP is U−1
U

. Thus,

with ni pending users, the success probability is given by

A(ni, ki) =

(

U − 1

U

)ni

Case II: U < Ŵ . If the AP selects a slot with index

s > U then there is no collision, since all the TACKs have

already been transmitted. The probability of such event is
Ŵ−U

Ŵ
. Collision may occur only if the AP selects a slot s ≤ U ,

with the probability of collision being 1/U . Thus the success

probability is;

A(ni, ki) =
Ŵ − U

Ŵ
+

U

Ŵ
·

(

U − 1

U

)ni

D. Probability of Successful TACK Transmissions -

m(ni, ki, r)

Given a state Si = (ni, ki), we first calculate the probability

of r users transmitting their TACK before the AP transmits

its message and then use this probability to estimate the

number of successful TACK transmissions. This simplifying

assumption is reasonable since the the number of collisions

between TACKs is relatively small. On one hand, when the

user CW, U , is small relative to W , then the users attempt

to transmit their TACKs before the AP transmits. Thus, the

number of contending users is very small and it is typically no

more than one. For example, for the case of W = 8 and U = 4
(a relatively worst-case scenario), the computed probability of

more than 1 user contending with the AP is only 0.097, and

the probability of more than 2 users contending with the AP

is 0.0039.

Based on this, we can assume that the probability of

collision between TACKs is small. On the other hand, when

W < U the number of contending users is high, however, they

have a large contention window leading to a low probability

of collision. We now calculate the probability of r out of ni

users transmitting their TACKs before the AP’s transmission,

by providing a recursive calculation of m(ni, ki, r).

246

We select r of the ni users and calculate the probability that

the selected r user choose a transmission slot smaller than the

slot s selected by the AP, while the other ni−r users choose a

slot with index the same or higher than s. The first probability

is given by m(r, ki, r) while the second probability is given

by m(r, kj , 0). It follows that,

m(ni, ki, r) =

(

ni

r

)

·m(r, ki, r) ·m(r, ki, 0)

For calculating the basis of our recursive formulation, we

distinguish between two cases.

Case I: Ŵ ≤ U . In this case the probability, YI , that a given

user selects a slot j smaller than s is as follows.

YI =

Ŵ
∑

s=2

s−1
∑

j=1

1

U · Ŵ
=

Ŵ
∑

s=2

s− 1

2 · U · Ŵ
=

Ŵ − 1

2 · U

Therefore, we get

mI(r, ki, r) =

(

W · 2ki − 1

2 · U

)r

mI(r, ki, 0) =

(

1−
W · 2ki − 1

2 · U

)r

Case II: U < Ŵ . As we calculated earlier for A(Si), with

probability Ŵ−U

Ŵ
the AP selects a slots s > U , and then the r

users transmit their TACKs before the AP’s transmission. We

also need to calculate the probability of such an event when

s ≤ U . The probability that a given user chooses a slot j < s
is given by,

U
∑

s=2

1

U
·

s−1
∑

j=1

1

U
=

1

U2

U
∑

s=2

s− 1 =
U − 1

2 · U

Thus, the probability YII that a given user selects a slot j
smaller than s is as follows;

YII =
Ŵ − U

Ŵ
+

U

Ŵ
·
U − 1

2 · U

By using similar argument for the case on r contending users

we get,

mII(r, ki, r) =
W · 2ki − U

W · 2ki

+
1

W · 2ki · U r

U
∑

s=2

sr

mII(r, ki, 0) =
1

W · 2ki · U r
·

U
∑

s=1

(U − s+ 1)r

E. Success Probability and Throughput

The Markov chain presented above enables us to calculate

iteratively the probability P (Si) = P (ni, ki) that the AP is

located in state Si = (ni, ki). From this we can calculate the

success probability as

Pr(success) =
∑

Si

P (Si) · A(Si)

For comparison with our experiment results we calculated the

retry-rate, R;

R =
Pr(failure)

1 + Pr(failure)
=

1− Pr(success)

2− Pr(success)
(2)

For calculating the system throughput, we calculate

the expected amount of information delivered by a sin-

gle message as Pr(success) · msg payload divided by

Avr overall msg time, the time spent for transmitting a

single TCP message including all the related overheads. In

other words,

Throughput =
Pr(success) ·msg payload

Avr overall msg time

We now elaborate on our Avr overall msg time calcula-

tion. This period of time contains both fixed and varying

time period components that are included in the overall period

of time that each message transmission consumes. The fixed

time-period components include the DIFS and the packet

transmission duration itself. In addition, we take into account

the following varying time-period components:

(a) The average contention window, denoted by avr CW ,

Avr CW =
∑

Si=(ni,ki)

P (ni, ki) ·
W · 2ki − 1

2
· Slot time

(b) SIFS and ACK message in case of successful transmission,

(c) TACK message transmission for every D successful deliv-

ery of TCP messages, where D = 2 for considering delayed

TACK transmission, and (d) the overhead of TACK collision.

Due to lack of space, we do not present the details of the last

component in this paper. As noted earlier in this section, the

probability of TACK collision is very small.

Recall that when the AP support both TCP and UDP flows,

the ratio D of data messages to TACK messages should be

increased to meet the ratio between TCP flows and UDP flows.

For instance, if half of the flows are TCP, while the other

flows are UDP, then under the assumption of fair bandwidth

allocation to each flow, the value of D is 4. From this, it

follows that,

Avr overall msg time = avr CW +msg Tx time

+DIFS + Pr(success) · [SIFS +ACK time+

+
1

D
· (DIFS + TACK time+ SIFS +ACK time)]

Recall that the overhead of transmitting TACK messages

does not contains CW time, since this time overlaps with the

AP contention window duration.

F. Modeling UDP traffic

Our proposed model is tailored to the I-WLAN setting with

dominant downstream traffic. It can also be extended to the

case of UDP flows as well as moderate TCP/UDP upstream

flows. This approximation to the analysis is primarily done via

the delayed ACK parameter, D.

247

The parameter D can be interpreted in a couple of ways:

(a) it indicates how many packets are sent on the downlink

in order to generate a single packet on the uplink, or (b) it

is the ratio of downlink to uplink traffic. For the case of a

TCP downlink flows alone, a single TCP-ACK message is sent

for every successful transmission of D = 2 TCP downstream

packets.

If the system supports a small number of upstream flows,

D may get a value 1 ≤ D ≤ 2 for representing the upstream

traffic. For instance, consider the case of x downlink TCP

flows and y upstream TCP flows, where y = c · x, for some

0 ≤ c ≤ 1. All TCP flows have deferred TCP ACK ratio of 2
and we assume fair service to all flows. In such settings, for

every successfully reception of 2x downlink TCP packets x
TCP ACK message are sent upstream. Similarly for every 2y
successful transmission of upstream TCP packets, y downlink

TCP ACK are sent. Consequently, under the assumption of

fair service, D can be calculated as follows, D = Downlink
Upstream =

2x+y
x+2y = 2+c

1+2c . For c = 0, 0.25, 1, D = 2, 1.5, 1 respectively.

The analysis for UDP flows is along similar lines, as long

as the assumption of fair service among upstream flows is

maintained. If we have UDP downlink flows with a rate of

kd packets and UDP upstream flows at the rate of ku packets

for every downlink TCP packet (in the equilibrium state), then

we can model this case by setting D = 2+c+2kd

1+2c+2ku
, as long as

ku ≤ kd.

G. The timing factor

We evaluated the performance of our analytical model via

an extensive set of experiments and we observed a departure

from the analytical model when the user contention window

is set to 2. For instance, in the case when the AP CW, W = 2,

and the user CW, U = 2, we expected a success probability of

around 65%, while in practice we detected success probability

of 75−81%. This performance gap cannot be easily explained

for reasons described next.

Consider for instance the case of a single TCP follow where

W = 2, U = 2 and the ratio of TCP frames to TCP ACKs

is D = 2. When both the user and the AP have a packet to

send there is a probability of 50% that their transmission will

collide. Recall that the user produces a TCP ACK packet after

reception of two TCP frames, which implies the overall failure

probability of at least 25%. When we take into account the

non-negligible probability that the retry messages may collide

as well, this implies that the success probability should be

significantly lower than 75% and it should be around 65%.

We rule out estimation error as the cause since our model

produces quite accurate estimates that match the experimental

data for higher contention window values. Thus, it appears

that even when the user and the AP select the same slot

their transmissions may not collide. We believe that such

phenomenon is entirely possible due to timing issues that can

be explained as follows.

Consider an AP with a single user and let us assume that

the AP has just finished delivery of a message to the user.

Let us say that the user has a packet to send to the AP, and

now both AP and user select the same back-off slot. Both the

user and AP sense idle channel, wait for the same amount of

back-off slots after both wait for the DIFS time. Now, note

that since the AP’s last transmission was a success, the last

message seen on the channel is the MAC ACK sent by the user

to the AP. This implies that the user’s radio is in Tx mode,

and it should now switch to Rx mode, while the AP is already

in Rx mode2. If a node decides to transmit at the end of the

back-off + DIFS period, it should switch to Tx mode. For the

transmission to be successful, the message should reach the

other end for at least TCCA (Clear Channel Assessment Time)

before the other node switches to Tx mode. In other words,

TTx→Rx > TRx→Tx + TCCA

where, TTx→Rx and TRx→Tx denotes the transition time of

switching the radio from Tx to Rx mode and vice versa,

accordingly. Therefore, in this scenario, if the two nodes

select the same back-off window then the last node to send

a transmission on the air (here, a MAC ACK) will detect

the other node’s subsequent transmission first and defer its

own transmission. For IEEE 802.11a/g, these radio Tx/Rx

mode transition times are < 5µs, while the TCCA time is

approximately 2µs. Depending on the specific vendor chipset

and the hardware timing inaccuracy, there can be a non-

negligible probability of success even when two nodes select

the same slot.

In order to evaluate this theory, we conducted two experi-

ments in different testbeds. In the first testbed, there is one AP

and a MN is attached to this AP. The MN has one downstream

UDP flow and one upstream UDP flow. The UDP payload

size is set to 1472 bytes. The CWmin of AP and MNs are

set to either 2 or 4. To ensure the same back-off behavior,

we set CWmax to the same value as CWmin. In the second

testbed, there are two APs (AP1 and AP2) and two MNs

(MN1 and MN2). Both APs use the same frequency. MN1

is attached AP1 while MN2 is attached to AP2. Each MNs

has a downstream UDP flow with payload size of 1472 bytes.

The experimental results are shown in Table IV. The main

observation is that in the one AP setup, the upstream flow

receives clearly higher throughput than the downstream flow,

while such unfairness does not occur in the two AP setup.

Conceptually in both cases there are always two stations that

compete for the channel, and hence we expect them to behave

identically. However, based on our earlier inference, the skew

in the throughput in the single AP case is predictable.

In the two-AP case, the APs send UDP packets and the users

reply with ACK packets, ensuring both AP simultaneously

sense the idle channel and initiate their back-off mechanism

at the same time. Thus their chance of collision is exactly the

same. However, in the one-AP case, the user and AP are both

the source and the destinations of the flows. Thus they toggle

between sending UDP frames and ACK messages. This means

that in this experiment after each successful transmission one

2Channel propagation times are negligible at these ranges, so we ignore
them here.

248

TABLE IV
EXPERIMENT RESULTS: TIMING FACTOR

1 AP & 1 MN 2 AP & 2 MNs

up down down 1 down 2

CWmin=2
throughput 16.00 11.70 14.10 13.50

(succ. prob) (0.50) (0.32) (0.41) (0.36)

CWmin=4
throughput 18.30 11.80 14.80 14.70

(succ. prob) (0.75) (0.60) (0.64) (0.62)

100Mbps Ethernet

Server AP

MNs (1~5)

IEEE 802.11a

2 meter

Fig. 3. Testbed layout

of the stations detects that the channel is idle some time

after the other station. An initial throughput skew can easily

build up as time progresses as the last successful UDP sender

continues to succeed most of the time when a collision is

supposed to happen. This experiment confirms our timing gap

theory and we incorporate it in our model. Essentially, in the

case of a collision, we evaluate the probability that one of the

station was the last station that sent an ACK packet and in

such case we assume a 25% probability that the stations do

not collide. This modification enables us to provide a more

accurate estimation of the system performance.

V. EXPERIMENTAL EVALUATION

The experiments were carried out in an indoor testbed

with a single 802.11a cell. The testbed is depicted in Fig-

ure 3. All devices, including WLAN AP, in the testbed are

Linux-based notebook computers (Thinkpad z60m) to achieve

maximum flexibility. All notebooks commonly run Fedora

core 5 (2.6.15.1 kernel). In that kernel, every TCP ACK is

delayed 200 msec (D = 2) as default. For WLAN interface,

Cisco Aironet 802.11 a/b/g adapter (with Atheros chipset)

and ’madwifi-0.9.4’ device driver are used. We use the Iperf

for the traffic generation. In all experiments, 802.11a is used

at channel 34 (5.17GHz). There is no external interference

on this channel. The server is connected to the AP via

100Mbps Ethernet. To make the testbed more realistic, we

run Netem delay emulator between the server and the AP. In

all experiments, 20 msec artificial delay is injected for the

traffic between the server and the AP. The MNs are located

2 meters away from the AP to ensure the channel condition

for 54Mbps transmission mode. MNs are positioned about 1

meter apart from each other to avoid interference. We collocate

all MNs in order to avoid any skewing of results due to the

well-known location-based unfairness observed in WLANs

due to capture effects [18]. Since in our work we just tune

the contention window of the AP and the mobile nodes, note

that the performance trends shown here are independent of the

nodes’ position and their bit-rates. Each experiment is run for

6 minutes. The first 3 minutes is for warm up and the data

measurement is done during the last 3 minutes.

A. Smaller is better

We first examine the impact of CWmin selection when

there exist only TCP downstream flows. Five MNs, each of

which runs 3 TCP downstream flows, are attached to the AP.

A total of 25 possible combinations of CWmin setting are

tested. Five different values (which are 2, 4, 8, 16, and 32)

are used as the CWmin of AP and the same five values are

used as the CWmin of MNs. All MNs use the same CWmin

in each experiment. In each experiment, we measured the TCP

throughput for each MN, the total TCP throughput which is

the sum of individual MN’s throughput, and retry rate. The

TCP throughput is measured at the MN side, and the retry rate

is measured at the AP side. Table V summarizes the results.

The TCP throughput of individual MNs is omitted as all MNs

share the total throughput roughly equally in all cases. Instead

of the retry rate, we present the success probability (using

Equation (2)).

The first general observation from Table V is that smaller

CWmin generally increases the system throughput. For ex-

ample, the case of (CWmin of AP = 16, CWmin of MN

= 16) results about 14.2% higher throughput than the case

of (CWmin of AP = 32, CWmin of MN = 32). The case

of (8, 8) produces 20.3% higher throughput than the case

of (32, 32). Reducing AP’s CWmin to below 8, however,

causes throughput degradation. For MN’s CWmin, such a

point of inflection does not appear, and using smaller CWmin

is nearly always beneficial. As a result, the case of (8, 2)

becomes the optimal CWmin setting in this experiment. Note

that the throughput is the outcome of the interplay between

the success probability and CWmin value, so that higher

success probability does not warrant higher throughput. The

comparison of experimental data and analytic data indicate that

our model predicts the experimental throughput remarkably

well.

B. Contention is constant

One of the key results that we observe from our analysis

is that the throughput is largely independent of the number

of TCP flows, confirming the result noted in [11]. To verify

this by experiment, we changed the number of TCP flows per

MN to 1, 2, and 3, resulting a total of 5, 10, and 15 TCP

flows in the system. The results are given in Table VI, where

analytic results are given in the last column as they are not

affected by the number of flows. For the sake of clarity, we

only present the CWmin settings which use the same value for

AP and MNs, i.e., (2,2), (4,4), (8,8), (16, 16), (32, 32). We can

observe that the throughput is largely unaffected by the number

of TCP flows. We also conducted experiments by changing the

number of MNs, and witnessed identical behavior.

249

TABLE V
TCP DOWNLINK FLOWS ONLY (THROUGHPUT IN MBPS)

Experiment
MN CWmin (U)

2 4 8 16 32

A
P

C
W

m
in

(W
)

2
throughput 23.18 22.79 22.42 22.18 22.49

(succ. prob) (0.75) (0.72) (0.70) (0.68) (0.69)

4
throughput 23.77 23.64 23.51 23.37 23.27

(succ. prob) (0.82) (0.81) (0.81) (0.80) (0.79)

8
throughput 24.36 24.32 24.18 24.11 23.94

(succ. prob) (0.92) (0.92) (0.91) (0.91) (0.90)

16
throughput 22.99 23.02 23.02 22.95 22.94

(succ. prob) (0.96) (0.96) (0.96) (0.96) (0.96)

32
throughput 20.17 20.16 20.17 20.16 20.09

(succ. prob) (0.99) (0.99) (0.99) (0.98) (0.98)

Analysis
MN CWmin (U)

2 4 8 16 32

A
P

C
W

m
in

(W
)

2
throughput 22.12 22.08 22.13 22.12 22.39

(succ. prob) (0.72) (0.72) (0.72) (0.72) (0.73)

4
throughput 25.40 24.25 24.17 24.11 24.07

(succ. prob) (0.87) (0.83) (0.83) (0.83) (0.82)

8
throughput 25.73 25.52 24.77 24.68 24.61

(succ. prob) (0.94) (0.94) (0.91) (0.90) (0.90)

16
throughput 23.96 23.95 23.84 23.41 23.35

(succ. prob) (0.97) (0.97) (0.97) (0.95) (0.95)

32
throughput 20.46 20.48 20.47 20.41 20.19

(succ. prob) (0.99) (0.99) (0.99) (0.98) (0.97)

TABLE VI
TCP DOWNLINK ONLY (VARYING FLOW COUNTS)

(W, U) 5 flows 10 flows 15 flows Analysis

(2,2)
throughput 24.65 23.95 23.18 22.12

(succ. prob) (0.81) (0.78) (0.75) (0.72)

(4,4)
throughput 24.67 24.20 23.64 24.25

(succ. prob) (0.85) (0.83) (0.81) (0.83)

(8,8)
throughput 25.01 24.58 24.18 24.77

(succ. prob) (0.93) (0.92) (0.91) (0.91)

(16,16)
throughput 23.53 23.25 22.95 23.41

(succ. prob) (0.97) (0.97) (0.96) (0.95)

(32,32)
throughput 20.52 20.35 20.09 20.19

(succ. prob) (0.99) (0.99) (0.98) (0.98)

C. UDP improves overall throughput

We then examine the scenario when TCP downstream flows

co-exist with UDP downstream flows. The same five MN

testbed is used. To assess the impact of the UDP downstream

traffic, each MN always runs one TCP downstream flow while

we tested two cases, one without UDP downstream flow, one

with UDP downstream flows. To prevent UDP traffic from

dominating the TCP traffic, we used rate-limited UDP flows

(to 500Kbps in this experiment). 6 UDP downstream flows

were added for each MN. Table VII shows the results. Only

the results of some important CWmin settings are presented.

The key observation is that introducing UDP downstream

traffic results in higher success probability and higher total

throughput, and as noted in Table V, the (8,2) setting for the

AP and User CW works out best.

TABLE VII
EXPERIMENT AND ANALYSIS RESULTS: TCP DOWNLINK + UDP

DOWNLINK FLOWS

(W, U)
TCP only TCP + UDP

Experiment Analysis Experiment Analysis

(4,2)
throughput 24.83 25.41 26.39 26.73

(succ. prob) (0.86) (0.88) (0.91) (0.92)

(8,2)
throughput 25.12 25.73 25.03 26.41

(succ. prob) (0.94) (0.94) (0.95) (0.97)

(8,4)
throughput 25.05 25.52 24.95 26.26

(succ. prob) (0.94) (0.94) (0.95) (0.96)

(16,16)
throughput 23.49 23.41 22.74 23.97

(succ. prob) (0.97) (0.95) (0.98) (0.97)

D. Large CW is better for upstream flows

Another interesting scenario is when TCP downstream flows

are mixed with TCP upstream flows. We again used the

five MN tested, in which each MN runs either only TCP

downstream flows or only TCP upstream flows. The number

of flows per MN does not influence the result. We experiment

with three different configurations by the changing the number

of MNs with upstream flows, from one MN to three with

remaining MNs running downstream flows. In this experiment,

we fix the CWmin of AP by 8, while applying different values

for the CWmin of MN with upstream flows (i.e., 16 and 32)

and the CWmin of MN with downstream flows (i.e., 2, 4, and

8). The experimental result is summarized in Table VIII.

When the CWmin of MN with upstream flows is set to

16, upstream MNs receive more than their fair share of

throughput at the expense of downstream MNs. For example,

when the CWmin of downstream MNs is 2, one upstream

MNs get 8.79 Mbps while 4 downstream MNs get only

15.72 Mbps (each gets 3.93 Mbps). When the CWmin of

MN with upstream flows is increased to 32, such unfairness

reduces significantly, while total system throughput is virtually

unaffected. From this observation, we conclude that MNs with

TCP upstream flows should use high CWmin values, even

bigger than 32. In contrast, the MNs with TCP downstream

flows should use small CWmin values, such as 2, 4, or 8. As

the portion of upstream MNs increases, the unfairness between

upstream MNs and downstream MNs reduces noticeably, but

the overall system throughput also drops. Independent of the

mixture pattern of upstream MNs and downstream MNs, using

large CWmin for upstream MNs and using small CWmin

for downstream MNs always provides better performance. In

this experiment, the analytical model is able to predict the

success probability of the AP precisely. However, since we do

not model the throughput of upstream TCP flows, the model

cannot accurately predict the system throughput, unlike the

downlink-only cases seen before.

E. Recommendations for setting CW

As is evident from the results above, our experimental

evaluation agrees with our analytical model, and provides us

with four key conclusions. The first three are as follows.

250

TABLE VIII
EXPERIMENTAL RESULTS: TCP DOWNLINK FLOWS + TCP UPLINK FLOWS

(AP’S CWmin = 8)

(up MN CWmin,

down MN CWmin)

1 up MN + 2 up MNs + 3 up MNs +

4 down MNs 3 down MNs 2 down MNs

up down up down up down

(16,2)
throughput 8.79 15.72 14.87 8.67 18.45 4.11

(succ. prob) (0.72) (0.85) (0.64) (0.77) (0.55) (0.69)

(16,4)
throughput 8.80 15.42 14.81 8.68 18.34 4.11

(succ. prob) (0.72) (0.85) (0.64) (0.77) (0.54) (0.68)

(16,8)
throughput 8.76 15.14 14.80 8.65 18.60 4.51

(succ. prob) (0.67) (0.84) (0.64) (0.77) (0.57) (0.68)

(32,2)
throughput 6.24 17.97 13.05 10.66 15.07 6.93

(succ. prob) (0.65) (0.87) (0.65) (0.80) (0.58) (0.74)

(32,4)
throughput 6.18 17.97 12.99 10.67 16.62 7.23

(succ. prob) (0.64) (0.87) (0.65) (0.79) (0.57) (0.74)

(32,8)
throughput 6.29 17.88 12.89 10.74 15.84 6.92

(succ. prob) (0.67) (0.87) (0.64) (0.79) (0.55) (0.73)

(a) CWmin for the AP should be set to 8, (b) CWmin for

upstream TCP ACK traffic should be set3 to 4, (c) CWmin

for other upstream TCP traffic at the MNs should be set to at

least 32 to ensure fairness for downstream flows, if the MNs

do not know the number of flows in the I-WLAN.

If the MNs in the I-WLAN have consistent information

about the total number of flows in the cell, then further

throughput optimization is feasible. When the number of

upstream flows is large, then the CWmin for other upstream

TCP traffic at the MNs should be set to a value greater than

32, in order to avoid unfairness and starvation at the AP.

We leave it for future work to find the optimal values of

the CWmin for various number of upstream flows. We also

suggest to implement a signaling protocol that enables the AP

to configure the CWmin value of the MNs according to the

number of upstream and downlink flows observed by the AP.

Note that the CWmin at the AP has to be kept small at all

times in order to give it higher priority to access the channel.

VI. DISCUSSION

In this paper, we presented an analytical model for capturing

TCP+UDP flow behavior in I-WLANs. Our analytical model

is corroborated by experimental data which also reveals some

interesting observations. The key among these is the obser-

vation that the minimum congestion window can be reduced

below the 802.11a/g default value of 16. In addition, we also

affirm that the AP is a special node regardless of the number

of contending users in the cell, and that setting its CW =

8, while increasing the CW of other upstream users to 32 is

beneficial than setting everyone’s CW to 32. This is contrary

to the conclusions in [3], [6], [9]. The last observation is

that by giving higher priority to TCP ACK traffic, the overall

throughput of the system can be increased. While this might

seem obvious from a high level, we provide analytical and

experimental justification for choosing such a policy, unlike

the results in [13].

3TCP ACKs need higher priority.

Note that when packets are not maximum-sized, especially

on the uplink, the overhead of back-off becomes a greater

proportion of the channel usage. Packet size is not set to MSS

only when it is the last packet of a stream, or if the flow

is part of a CBR flow (such as VoIP). In these cases, the

impact of our solution will be much greater since we reduce

the back-off overhead significantly. The unfairness between

TCP downlink and uplink flows seen in Table VIII is a well-

known issue, and can be addressed in parallel using the dual-

queue mechanism in [17]. This does not affect our analysis of

the AP’s overall success probability. We plan to expand our

analysis to cover the upstream + downstream cases next. We

also plan to evaluate the impact of TCP and UDP flows in

very large I-WLANs as part of future work.

ACKNOWLEDGMENTS

This work has been supported by IT R&D program of

MKE/KEIT [KI002137, Ultra Small Cell Based Autonomic

Wireless Network]

REFERENCES

[1] IEEE Computer Society LAN MAN Standards Committee, “Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-

fications”, November 1999.
[2] IEEE Computer Society LAN MAN Standards Committee, “IEEE

P802.11n/D9.00, Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications: Amendment 5: Enhancements for

Higher Throughput”, March 2009.
[3] F. Cali, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.

11 Protocol to Achieve a Theoretical Throughput Limit”, IEEE/ACM
Trans. Networking, vol. 8, no. 6, pp. 785-790, Dec. 2000.

[4] F. Cali,M. Conti, and E. Gregori, “IEEE 802. 11 Protocol: Design and

Performance Evaluation of an Adaptive Backoff Mechanism”, IEEE J.
Selected Areas in Comm., vol. 18, no. 19, pp. 1774-1786, Sept. 2000.

[5] Z. J. Haas and J. Deng, “On optimizing the back-off interval for random

access schemes”, IEEE Trans. Commun., vol. 51, no. 12, pp. 2081-2090,
Dec. 2003.

[6] H. Ma, H. Li, P. Zhang, S. Luo, C. Yuan, and X. Li, “Dynamic

Optimization of IEEE 802.11 CSMA/CA Based on the Number of

Competing Stations”, Proc. ICC04, Paris, France, June 2004.
[7] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, and M. Zanolo,

Saturation throughput analysis of IEEE 802.11 in presence of non-

ideal transmission channel and capture effects, IEEE Transactions on

Communications, 2008.

[8] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, and M. Zanolo,
Unsaturated throughput analysis of IEEE 802.11 in presence of non-

ideal transmission channel and capture effects, IEEE Transactions on

Communications, 2008.
[9] A. Ksentini, et. al., “Deterministic Contention Window Algorithm for

IEEE 802.11”, IEEE PIMRC, Sept. 2005.
[10] Atheros Communications, http://www.atheros.com.
[11] R. Bruno, M. Conti, and E. Gregori, “Analytical modeling of TCP clients

in Wi-Fi hot spot networks”, in Proceedings of IFIP Networking, 2004.
[12] IEEE Computer Society LAN MAN Standards Committee, “IEEE

Standard 802.11e: Amendment to IEEE Std. 802.11: Medium Access

Control (MAC) Quality of Service Enhancements”, November, 2005.
[13] D. J. Leith, et. al., “TCP Fairness in 802.11e WLANs”, IEEE Commu-

nications Letters, 9 (12), December 2005.
[14] Bob O’Hara and Al Petrick, The IEEE 802.11 Handbook: A Designer’s

Companion, Second Edition, Standards Information Network, IEEE
press, 2005.

[15] Bittorrent, http://www.bittorrent.com.
[16] G. Bianchi, Performance analysis of the IEEE 802.11 distributed

coordination function, IEEE JSAC, Vol. 18(3), March 2000.
[17] J. Ha and C. Choi, “Dynamic Optimization of IEEE 802.11 CSMA/CA

Based on the Number of Competing Stations”, Globecom 2006.

[18] S.-J. Han, et.al., “Analysis of Spatial Unfairness in Wireless LANs”, in
IEEE INFOCOM 2009, Brazil, March 2009.

251

