G. Bauer and T. Nipkow, The 5 Colour Theorem in Isabelle/Isar. Theorem Proving in HOL Conf, LNCS, vol.2410, pp.67-82, 2002.

M. De-berg, O. Cheong, M. Van-kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 2008.

Y. Bertrand and J. Dufourd, Algebraic Specification of a 3D-Modeler Based on Hypermaps, CVGIP: Graphical Models and Image Processing, vol.56, issue.1, pp.1-29, 1994.
DOI : 10.1006/cgip.1994.1005

Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development -Coq'Art: The Calculus of Inductive Constructions, Text in Theoretical Computer Science, An EATCS Series, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344237

Y. Bertot, N. Magaud, and P. Zimmermann, A proof of GMP square root, Journal of Automated Reasoning, vol.29, issue.3/4, pp.225-252, 2002.
DOI : 10.1023/A:1021987403425

URL : https://hal.archives-ouvertes.fr/inria-00101044

F. Besson, Fast Reflexive Arithmetic Tactics: the linear case and beyond. Types for Proofs and Programs, LNCS, vol.4502, pp.48-62, 2007.

C. Brun, J. Dufourd, and N. Magaud, Designing and proving correct a convex hull algorithm with hypermaps in Coq, Computational Geometry, vol.45, issue.8, 2009.
DOI : 10.1016/j.comgeo.2010.06.006

URL : https://hal.archives-ouvertes.fr/hal-00955400

R. Cori, Un Code pour les Graphes Planaires et ses Applications, Astérisque, vol.27, 1970.

C. Dehlinger and J. Dufourd, Formalizing the trading theorem in Coq, Theoretical Computer Science, vol.323, issue.1-3, pp.399-442, 2004.
DOI : 10.1016/j.tcs.2004.05.002

J. Dufourd and F. Puitg, Functional specification and prototyping with oriented combinatorial maps, Computational Geometry, vol.16, issue.2, pp.129-156, 2000.
DOI : 10.1016/S0925-7721(00)00004-3

URL : http://doi.org/10.1016/s0925-7721(00)00004-3

J. Dufourd, Design and formal proof of a new optimal image segmentation program with hypermaps, Pattern Recognition, vol.40, issue.11, pp.2974-2993, 2007.
DOI : 10.1016/j.patcog.2007.02.013

J. Dufourd, Polyhedra genus theorem and Euler formula: A hypermap-formalized intuitionistic proof, Theoretical Computer Science, vol.403, issue.2-3, pp.133-159, 2008.
DOI : 10.1016/j.tcs.2008.02.012

URL : http://doi.org/10.1016/j.tcs.2008.02.012

J. Dufourd, An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps, Journal of Automated Reasoning, vol.47, issue.5, pp.19-51, 2009.
DOI : 10.1007/s10817-009-9117-x

J. Dufourd, Reasoning formally with Split, Merge and Flip in plane triangulations, 2009.

J. Dufourd and Y. Bertot, Formal proof of Delaunay by edge flipping http://galapagos.gforge.inria.fr/devel/DelaunayFlip.tgz 18. Edelsbrunner, H.: Triangulations and meshes in combinatorial geometry, Acta Numerica, pp.1-81, 2000.

E. Flato, The Design and Implementation of Planar Maps in CGAL, LNCS 1668 (WAE'99), pp.154-168, 2000.
DOI : 10.1007/3-540-48318-7_14

L. Fousse, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, p.2, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00070266

G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry, A Modular Formalisation of Finite Group Theory, Theorem Proving in Higher Order Logics, pp.86-101, 2007.
DOI : 10.1007/978-3-540-74591-4_8

URL : https://hal.archives-ouvertes.fr/inria-00139131

G. Gonthier, Formal proof -the four-Colour theorem. Not. Am, Math. Soc, vol.55, pp.1382-1393, 2008.

L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, Proceedings of the fifteenth annual ACM symposium on Theory of computing , STOC '83, pp.74-123, 1985.
DOI : 10.1145/800061.808751

L. Kettener, K. Mehlhorn, S. Pion, S. Scirra, and C. Yap, Classroom examples of robustness problems in geometric computations, Computational Geometry, vol.40, issue.1, pp.61-78, 2008.
DOI : 10.1016/j.comgeo.2007.06.003

D. E. Knuth, Axioms and Hulls, LNCS, vol.606, 1992.

L. I. Meikle and J. Fleuriot, Mechanical Theorem Proving in Computational Geometry, ADG (2004), pp.1-18
DOI : 10.1007/11615798_1

G. Melquiond and S. Pion, Formally certified floating-point filters for homogeneous geometric predicates, RAIRO - Theoretical Informatics and Applications, vol.41, issue.1, pp.57-69, 2007.
DOI : 10.1051/ita:2007005

URL : https://hal.archives-ouvertes.fr/inria-00071232

S. Obua and T. Nipkow, Flyspeck II: the basic linear programs, Kluwer, pp.3-4, 2009.
DOI : 10.1007/s10472-009-9168-z

D. Pichardie and Y. Bertot, Formalizing Convex Hulls Algorithms. Theorem Proving in HOL Conf, LNCS, vol.2152, pp.346-361, 2001.
DOI : 10.1007/3-540-44755-5_24

D. Priest, Algorithms for arbitrary precision floating point arithmetic, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic, pp.132-143, 1991.
DOI : 10.1109/ARITH.1991.145549

F. Puitg and J. Dufourd, Formal specifications and theorem proving breakthroughs in geometric modelling. Theorem Proving in HOL Conf, LNCS, vol.1479, pp.401-427, 1998.

W. E. Tutte, Graph Theory. in Encyclopedia of Mathematics and its Applications, 1984.

C. Yap and S. Pion, Special Issue on Robust Geometric Algorithms and their Implementations, Computational Geometry, vol.33, issue.1-2, pp.1-2, 2006.
DOI : 10.1016/j.comgeo.2005.08.001

URL : http://doi.org/10.1016/j.comgeo.2005.08.001