Efficient Parallel Implementation of Evolutionary Algorithms on GPGPU Cards

Abstract : A parallel solution to the implementation of evolutionary algorithms is proposed, where the most costly part of the whole evolutionary algorithm computations (the population evaluation), is deported to a GPGPU card. Experiments are presented for two benchmark examples on two models of GPGPU cards: first a "toy" problem is used to illustrate some noticable behaviour characteristics before a real problem is tested out. Results show a speed-up of up to 100 times compared to an execution on a standard micro-processor. To our knowledge, this solution is the first showing such an efficiency with GPGPU cards. Finally, the EASEA language and its compiler are also extended to allow users to easily specify and generate efficient parallel implementations of evolutionay algorithms using GPGPU cards.
Type de document :
Communication dans un congrès
15th International Euro-Par Conference on Parallel Processing 2009, Aug 2009, Delft, Netherlands. Springer-Verlag, 5704, pp.974 - 985, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-03869-3_89〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00504356
Contributeur : Philippe Clauss <>
Soumis le : mardi 20 juillet 2010 - 12:16:55
Dernière modification le : samedi 13 janvier 2018 - 01:02:58

Identifiants

Collections

Citation

Ogier Maître, Nicolas Lachiche, Philippe Clauss, Laurent Baumes, Avelino Corma, et al.. Efficient Parallel Implementation of Evolutionary Algorithms on GPGPU Cards. 15th International Euro-Par Conference on Parallel Processing 2009, Aug 2009, Delft, Netherlands. Springer-Verlag, 5704, pp.974 - 985, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-03869-3_89〉. 〈inria-00504356〉

Partager

Métriques

Consultations de la notice

292