Hermite Polynomials as Provably Good Functions to Watermark White Gaussian Hosts

Teddy Furon 1
1 TEMICS - Digital image processing, modeling and communication
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : In the watermark detection scenario, also known as zero-bit watermarking, a watermark, carrying no hidden message, is inserted in content. The watermark detector checks for the presence of this particular weak signal in content. The article looks at this problem from a classical detection theory point of view, but with side information enabled at the embedding side: the watermark signal is a function of the host content. Our study is twofold. The first issue is to design the best embedding function for a given detection function (a Neyman-Pearson detector structure is assumed). The second issue is to find the best detection function for a given embedding function. This yields two conditions, which are mixed into one 'fundamental' partial differential equation. Solutions of this fundamental equation are heavily dependent on the probability distribution function of the host signals. This conference paper is an extract of~\cite{Furon2006:A-constructive}, where we only look at white gaussian hosts. This gives birth to polynomials solutions known as Hermite polynomial, whose extension is the JANIS watermarking scheme, invented heuristically some years ago.
Type de document :
Communication dans un congrès
Proc. ACM Multimedia and Security, 2006, Geneva, Switzerland. 2006
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00504548
Contributeur : Teddy Furon <>
Soumis le : mardi 29 mars 2011 - 22:20:59
Dernière modification le : jeudi 11 janvier 2018 - 06:20:10
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 12:50:44

Fichier

mmsec162-furon.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00504548, version 1

Collections

Citation

Teddy Furon. Hermite Polynomials as Provably Good Functions to Watermark White Gaussian Hosts. Proc. ACM Multimedia and Security, 2006, Geneva, Switzerland. 2006. 〈inria-00504548〉

Partager

Métriques

Consultations de la notice

178

Téléchargements de fichiers

81