
HAL Id: inria-00504606
https://inria.hal.science/inria-00504606

Submitted on 26 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Off Keying Modulation and Tardos Fingerprinting
Fuchun Xie, Teddy Furon, Caroline Fontaine

To cite this version:
Fuchun Xie, Teddy Furon, Caroline Fontaine. On-Off Keying Modulation and Tardos Fingerprinting.
Proc. ACM Multimedia and Security, ACM, 2008, Oxford, United Kingdom. �inria-00504606�

https://inria.hal.science/inria-00504606
https://hal.archives-ouvertes.fr

On-Off Keying Modulation and Tardos Fingerprinting∗

Fuchun Xie
INRIA-Bretagne Atlantique

Research Center
Campus de Beaulieu

35042 Rennes, France
fuchun.xie@inria.fr

Teddy Furon
INRIA-Bretagne Atlantique

Research Center
Campus de Beaulieu

35042 Rennes, France
teddy.furon@inria.fr

Caroline Fontaine
CNRS/IRISA and

INRIA-Bretagne Atlantique
Research Center

Campus de Beaulieu
35042 Rennes, France

caroline.fontaine@irisa.fr

ABSTRACT
We consider a particular design of fingerprinting code for
multimedia contents, carefully motivated by a detailed anal-
ysis. This design is based on a two-layer approach: a proba-
bilistic fingerprinting code a la Tardos coupled with a zero-
bit side informed watermarking technique. The detection of
multiple watermark presences in content blocks give birth
to extended accusation processes, whose performances, as-
sessed experimentally, are excellent. This prevents the col-
luders from mixing different content blocks, a class of collu-
sion which is not encompassed in the classical marking as-
sumption. Therefore, the collusion must stick to the block
exchange strategy which is fully tackled by the fingerprinting
code.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image processing and
computer vision, Applications

General Terms
Design, Experimentation

Keywords
Watermarking, fingerprinting, anti-collusion

1. INTRODUCTION
This article deals with active fingerprinting, also known

as traitor tracing, or forensics, when applied on multimedia
content. Fingerprinting is the application where a content
server distributes personal copies of the same content to n

∗This work is supported by the French national programme
“Securité ET INformatique” under project NEBBIANO,
ANR-06-SETIN-009; and this work is also supported by
the European Commission through the IST Programme un-
der Contract IST-2002-507932 ECRYPT, and by the French
ANR/RIAM programme under Contract ESTIVALE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’08, September 22–23, 2008, Oxford, United Kingdom.
Copyright 2008 ACM 978-1-60558-058-6/08/09 ...$5.00.

different buyers. Some are dishonest users, called colluders,
who mix their copies to yield a pirated content. This is
the so-called collusion process. By analyzing this pirated
content, the accusation process (or the decoding) aims at
tracing back the colluders’ identity. One hot issue in this
application is to find the right association of two pieces of
technology: an anti-collusion or fingerprinting code and a
watermarking technique.

A fingerprinting code is a set of n different m symbol
sequences {Xj}

n
j=1. The symbols belong to a q-ary discrete

alphabet: Xj(i) ∈ X , ∀(j, i) ∈ [n] × [m], with |X | = q
([n] denotes {1, . . . , n}). The code has the property that
observing a mixture of a bounded number of code sequences,
the decoding can retrieve a subset of the original sequences
used for this forgery.

Each sequence identifying a user has to be hidden in his
personal copy with a watermarking technique. The embed-
ding is block based: it divides the content into consecutive
blocks and it hides a symbol per block. We assume here
that the content (a video or an audio clip) is long enough so
that there is at least m blocks. This two-layer approach has
two advantages. The blocks of content are watermarked of-
fline in q versions containing a different symbol. The online
content server is just a switch that ships the right blocks ac-
cording to the user sequence. On the other hand, the pirated
copy is processed only once by the computationally greedy
watermark decoding for retrieving a m symbol sequence Y.
Then, the lighter accusation process of the fingerprinting
code accuses some users (or nobody) based on this ‘pirated’
sequence Y.

So far, the designs of these two technologies have often
been made separately. The fingerprinting codes have been
mostly proposed by the cryptographic community with mod-
els of the collusion process defined on the sequence space
since the pioneering work [1]. Watermarking techniques are
mainly studied by people in the image or signal processing
community. Hence, it is crucial to verify that a collusion
of watermarked contents is compliant with the assumptions
made by fingerprinting designers. Sec. 2 details the attack
model on the content space and it shows that its impacts is
quite involved for the above layer. There is a class of attack,
denoted in the sequel fusion, which can have dramatic effect.
However, Sec. 3 proposes an interesting example of this lay-
ered approach: a Tardos fingerprinting code [8] with a zero-
bit side informed watermarking technique [3] used with a
on-off modulation. This constitutes a good counter-attack
to the fusion. The experimental investigations of Sec. 4 show
that the colluders have no longer interest of using this class

of attack, and should restrict their collusion process to col-
lusion modeled by the marking assumption and correctly
handled by the fingerprinting code.

2. MODELS OF COLLUSION

2.1 Block based embedding
We suppose the watermarking process starts extracting a

long sequence s(o) of L extracted features (such as DCT,
DFT, DWT coefficients...) from the original content. This

sequence is split into m blocks of l samples {b
(o)
i }m

i=1 (we

suppose that L = ml), s. t. b
(o)
i = (s(o)(il +1), . . . , s(o)((i+

1)l)). The watermark embedding hides the symbol Xj(i)

into the block b
(o)
i producing the i-th watermarked block

b
(w)
i,j delivered to the j-th user. Packed back all together,

this yields the watermarked sequence s
(w)
j .

2.2 Three classes of attacks
A set of colluders C with the number of members up to c

receives their personalized copies and mixes them to forge a
pirate copy s(p). We assume that the collusion process can
be expressed as a sample-wise linear transform plus some
noise:

∀k ∈ [L], s(p)(k) =
X

j∈C

wj(k)s
(w)
j (k) + n(k). (1)

Weights are such that
P

j∈C wj(k) = 1, ∀k ∈ [L], in order to
reconstruct a pirated copy similar to the original sequence.
We can also assume that

P

k∈[L] |wj(k)| ≈ Lc−1, ∀j ∈ C if
the colluders participate evenly in the collusion. This gen-
eral model allows us to make the three following classes.

2.2.1 Block exchange
We refuse to assume that the splitting of the sequence into

blocks is a secret primitive and we suppose that there is no
way of keeping this process secret. Therefore, the colluders
know the blocks. One strategy is to forge the pirated copy
by copy-pasting blocks from the colluders’ copies. It means
that ∀k ∈ {il + 1, · · · , (i + 1)l}, wj(k) = δJ(i)(j), where δ
is the Kronecker function and function J : [m] 7→ C maps a
block index to a colluder index. This class can be divided
into families depending on the nature of function J :

• This mapping is independent of any auxiliary data,
like, for instance, a random drawing uniformly over C.

• This mapping depends on colluders’ blocks. Compar-
ing their blocks for a given index, they can know how
many different symbols are embedded in their blocks,
and their frequency: for instance, a majority (resp. mi-
nority) vote, where the block put in the pirated copy
is the most (resp. less) frequent.

• This mapping depends on colluders’ symbols. This can
be, for instance, a constant symbol strategy, where,
whenever possible, the colluders always select the block
with a given symbol inside.

These families of attacks are managed by the anti-collusion
code because it exactly matches the scenario envisaged by
the cryptographers (the so-called marking assumption [1]).

However, note that the third subfamily is not relevant a pri-
ori in multimedia fingerprinting. Fingerprinting codes in-
vented by cryptographers foresee this case because the con-
tent is modelized as a long string of symbols1 directly ob-
servable by the colluders. In multimedia scenario, the col-
luders do not know the watermarking secret key to decode
symbols embedded in their copies. With this respect, these
fingerprinting codes are more powerful than we need, how-
ever they do not foresee the next class of collusion attacks.

2.2.2 Fusion
The first class has the particularity that the weights are

exclusive (one weight equals one and the others zero) and
constant over a block. This second class can thus be divided
into two following families:

• The weights are non exclusive. Eq. (1) really mixes
several samples into one value, possibly with negative
weights. This can be, for instance, an average where
all the weights equal c−1.

• The weights evolve at a finer granularity than the one
of the blocks defined at the watermark embedding.
For instance, Eq. (1) selects a sample according to a
rank (median, maximum, minimum) among the collec-
tion [5].

These weights can also be described as random variables.
For instance, the collusion attack enforcing Prob(wj(k) =
1) = 1/2 for indices such that

j ∈ {arg max
j∈C

{s
(w)
j (k)}, arg min

j∈C
{s

(w)
j (k)}},

is known to yield a low SNR at the decoding side of the
watermark [9].

2.2.3 Content processing
The last class of attack corresponds to regular content

processing, such as lossy source coding, lowpass filtering,
denoising, which can remove the presence of the watermark-
ing signal. This is encompassed in our model by the addition
of a noise n in Eq. (1). This class of attack can be used by a
dishonest user alone, or by a group of colluders in addition
to the first or second class.

2.3 When can we trace colluders?
The second and third classes of attacks are not considered

by typical cryptographic fingerprinting codes. It is up to the
watermarking layer to tackle these classes. Of course, it will
successfully do so if the decoded symbol Y (i) belongs to the
set {Xj(i)}j∈C as assumed by the marking assumption.

The robustness of the watermarking technique is of the
utmost importance to fight against the third class. Yet, some
fingerprinting codes handle symbol erasures. In the same
way, the impact of the mixing of several watermarked blocks
on the decoded symbol is an even more involved problem.
Some fingerprinting code still work if, for some indices, the
decoded symbol is not in the subset {Xj(i)}j∈C . However,
these two watermarking decoding failures must seldom occur
as the cost to be paid is much longer code sequences.

1Some of them being substituted by the symbols of the code-
word.

3. ON-OFF KEYING MODULATION

3.1 Positive rate watermarking
Let us write that the watermarked signal is the sum of the

original and watermark signal: b
(w)
i,j = b

(o)
i +w(Xj(i),b

(o)
i).

Consider a fusion of c signals via an average process. Then,

the pirated block reads b
(p)
i = b

(o)
i + c−1w(Xj(i),b

(o)
i) + ǫ.

This is very different from attacks of the class 2.2.3 because
of the scaling factor c−1 and the noise ǫ, sum of the other
watermark signals, which is not at all independent of the
host or the watermark signals. It is not sure that a very
robust watermarking technique greatly performing against
the third class, is actually good against the fusion of blocks.

From a geometrical point of view, the watermark decoding
output a symbol whenever the input block belongs to its
decoding region. There are two possibilities: either the space
is a partition of q decoding regions, either it is a partition
into these q regions plus one for the erasure. Assume that
the embedding algorithm succeeded to push the host signal
in the different decoding region, then the average attack
amounts to take the barycentre of points of these regions.
There are three possibilities:

• The barycentre still belongs to the decoding region as-
sociated to one of the colluders’ symbols,

• The barycentre is inside another decoding region,

• The barycentre is inside the erasure region.

As already mentioned, fingerprinting codes ‘dislike’ the two
last cases, some can manage them if and only if this oc-
curs very rarely and at the price of longer code sequences.
Knowing this, the colluders will prefer this class of attacks.

3.2 Zero-bit watermarking
Zero-bit watermarking is similar to on-off keying (OOK)

in digital communications. This modulation is used on very
rare applications: fiber communication where it is not pos-
sible to modulate the light emission, except by switching it
on and off. Some theoretical works also show that OOK is
the last solution to communicate when the channel trans-
mission quality is really too bad (e.g., the delay spread of
the fading is less than the symbol duration, so that chan-
nel estimation and equalization is not possible) [4]. The use
of zero-bit watermarking is not new in multimedia finger-
printing. For instance, Safavi-Naini and Yang embed q-ary
symbols in pictures using q different secret keys of a classi-
cal spread spectrum scheme [6]. We use a different zero-bit
watermarking technique which is side-informed.

The q possible watermark signals {w(X,b
(o)
i)}X∈X are

not strictly independent because all taking advantage of the

side-information b
(o)
i . But they are less dependent compared

to signals from a positive rate watermarking technique, be-
cause they are generated from q independent secret keys.
Hence, a fusion attacks is more similar to the scaling and the
addition of an independent noise. Another advantage is that
it is very unlikely that the barycenter is inside the detection
region of symbol (i.e., a secret key) which doesn’t belong to
{Xj(i)}j∈C. The rationale is that, for a very small probabil-
ity of false alarm, the colluders cannot succeed to watermark
a block without knowing this secret key from signals which
are independent from this detection region. Another way
to see this, is that, assuming the fusion is linear, the forged

block remains in an affine space passing by the point b
(o)
i

and spanned by the watermark signals {w(Xj(i),b
(o)
i)}j∈C,

which is almost orthogonal to the detection region related
to the other keys. Hence, this event should be as rare as a
false alarm.

3.3 Past approaches
So far, we have defended the fact that a zero-bit water-

marking scheme can avoid the second unwanted possibility
of the fusion attack. Furthermore, as the zero-bit watermak-
ing is also more robust than positive rate watermarking, the
third unwanted possibility is also less likely. We would like
now to stress another advantage. The number of detection
outputs is indeed 2q > q, as, for each of the q secret keys, the
detector will give a binary decision. Hence there are cases
where several watermark signals are detected. At block i,
a set of symbols Yi = {Yi(k)}Ki

k=1 is detected. Ki represent
the number of symbols detected at block i. What kind of
fingerprinting code can take advantage of this feature? We
found in literature the following two candidates.

Many strong c-traceable code are based on algebraic error
correcting codes such as Reed-Solomon codes. This feature
allows two strategies: list decoding or iterative decoding.
List decoding finds a group of nearest code sequences (from
the pirated sequence) [7] beyond the decoding distance, and
its algorithm like Guruswami-Sudan takes into account some
reliability measures about the decoded symbols, which could
be based on the decoded symbols Yi. Another strategy is to
decode iteratively the pirated sequence to find several col-
luders. In [2], symbols of the pirate sequence are replaced
by erasures when they match symbols of code sequences de-
coded in previous iterations. This new pirated sequence is
again decoded at the next iteration. Here, we can replace
erasure by another symbol decoded in the block.

3.4 Our approach
A well known weak traceable code is the probabilistic Tar-

dos fingerprinting code, and especially its q-ary version pro-
posed by Skoric et al. [8]. {pi}

m
i=1 are auxiliary vectors used

for generating the code: Symbols Xj(i) are independent ran-
dom variables drawn such that Prob(Xj(i) = X) = pi(X),
for X ∈ X . Thus, we have pT

i 1 = 1. Skoric et al. propose
to draw each pi independently from a Dirichlet distribution
with shape parameter κ. The accusation process first calcu-
lates a score Sj for the j-th user:

Sj =

m
X

i=1

U(Y (i), Xj(i),pi). (2)

A focused decoding accuses user j if Sj > Z, a general de-
coding accuses users with the biggest scores. Skoric et al.

use the same summands as Tardos:

U(Y, X,p) = δY (X)g1(p(Y)) + (1 − δY (X))g0(p(Y)), (3)

with g1(p) =
p

(1 − p)/p and g0 = −
p

p/(1 − p). Our work
is to extend this decoding in order to take into account the
fact that a list of symbols, denoted Yi = {Yi(1), . . . , Yi(Ki)},
are decoded from the i-th block. The i-th watermark detec-
tion doesn’t bring any information about the guilt of user j
when the list is empty (Ki = 0 and Yi is an empty set) or
full (Ki = q and Yi = X) since all users have then a decoded
symbol.

3.4.1 First method
We propose the following score, with U defined in (3):

Sj =
m

X

i=1

Ki
X

k=1

U(Yi(k), Xj(i), pi). (4)

At first sight, it is as if the code length would have increased
from m to mK̄, with K̄ = m−1 Pm

i=1 Ki. The longer a
Skoric’s code is, the more reliable is the accusation process.
This rationale justifying the idea isn’t correct because the
summands are not independent. The experimental section
shows however that it works great.

3.4.2 Second method
The sum is defined in (2), where the summands are:

U(Y, X,p) = δY(X)g1(pY) + (1 − δY(X))g0(pY), (5)

with δY(X) = 1 if X ∈ Y, else 0, and pY =
PK

k=1 p(Y (k)).
Our rationale here is to decrease the variance of the collud-
ers’ scores: whatever their symbol Xj(i) ∈ Yi, they receive
the same penalization g1(pYi

).

4. EXPERIMENTAL WORKS
The first experimental work evaluates the performances

of the watermarking technique in order to tune accordingly
the fingerprinting code.

4.1 Evaluation of the watermarking technique
The zero-bit watermarking technique ‘Broken Arrows’ [3]

is used as a practical watermarking solution in our experi-
mentation. Its performances in terms of robustness, security,
and imperceptibility are state-of-the-art. Its detector runs
very fast thanks to a simple and efficient implementation.
Some modifications of the code further improve detection
speed. After a wavelet transform, Nv correlations onto se-
cret carriers are calculated. This vector is divided into q sets
of Nc = Nv/q components each. In the original algorithm,
the watermark embedding uses the most host-correlated di-
rection of the first set as a secret vector v′

C (see [3, Eq.(18)]).
In the same way, the detection looks whether the received
vector is inside one of the Nc hypercones defined by the di-
rections of the first set (see [3, Eq.(5)]). Here, everything
remains the same except that the set in use at the embed-
ding is given by the symbol Xj(i). These sets of secret direc-
tions are independent, whence all is as if the embedding was
done with q different secret keys. The detection outputs the
indices of the sets which have given a positive output (the
signal is inside one of their hypercones).

We have used 2000 images to evaluate the collusion re-
sistance performance of this watermarking solution. The
PSNR of the watermarked images is around 43 dB. When
an average collusion attack is applied from ℓ different fin-
gerprinted images followed by a JPEG compression with a
quality factor Q = 20, we compute the probability P (K|ℓ) of
detecting K different watermarks. Table 1 shows the result.
The detection probability of the proposed watermarking sys-
tem is quite good (∼ 0.95) when ℓ is small (1 or 2). The
performance becomes worse when mixing more than 2 wa-
termarked images because the strength of one watermark
becomes smaller as more images are averaged. For ℓ = 4,
half of the time, we are not able find any watermark. The
maximum number of averaged watermarked images being
min(q, c), there is no point in having q higher than 4.

ℓ K = 0 K = 1 K = 2 K = 3 K = 4

1 0 1 0 0 0
2 0.01 0.03 0.96 0 0
3 0.17 0.23 0.26 0.34 0
4 0.46 0.23 0.15 0.11 0.05

Table 1: The conditional probabilities P (K|ℓ) of de-
tecting K watermarks when the average of ℓ water-
marked images is JPEG compressed with a quality
factor Q = 20.

4.2 Evaluation of the fingerprinting code
The methods presented in Secs. 3.4.1 and 3.4.2 amount

to the same accusation process as Skoric’s when Y is a sin-
gleton. This occurs when the colluders choose the block
exchange class of Sec. 2.2.1. According to Skoric et al., one
of their best attacks within this class is the so-called ‘ex-
tremal’ strategy defined in [8, Eq.(58)]. These authors also
noticed that there exist an optimal shape parameter κ to
counter-attack this worst case scenario.

Fig. 1 (resp. 2) shows the experimental measures of the
expectations (resp. the variances) of the scores of an in-
nocent µI,0 and of a colluder µC,0 (resp. σ2

I,0 and σ2
C,0).

We set m = 300, q = 4, c = 20 and κ is varying from
0.1 to 0.5. Noticeable features of Skoric detection are that
µI,0 = 0 and σ2

I,0 = m. The Kullback Leibler distance be-
tween the two pdfs, assuming that the scores are Gaussian
distributed, roughly show the performances of the focused
accusation process: the higher DKL is, the more powerful is
the test.

DKL(I ; C) =
1

2

„

(µI − µC)2

σ2
C

+
σ2

I

σ2
C

− 1 + log
σ2

C

σ2
I

«

. (6)

Fig. 3 shows that κ = 0.23 is optimal for this experimental
setup, which more or less confirms Skoric et al. optimal
value of 0.27. The slight difference is not surprising because
we use a completely different optimality criterion.

4.3 Evaluation of the new methods
The new methods enter in the picture when the collu-

sion chooses the fusion strategy of Sec. 2.2.2. We repeat
that classical cryptographic fingerprinting codes are not de-
signed for this kind of collusion. Our proposal (q-ary Tar-
dos code, zero-bit watermarking, and improved accusation
sums) raises interests if we can show that the fusion strat-
egy is worse from the colluders’ point of view. Therefore, the
collusion will reject it and it will stick to the block exchange
strategy, for which fingerprinting codes have been designed.

We first investigate how frequently our methods yield dif-
ferent score than the regular Skoric’s accusation process.
One necessary condition is that c colluders have more than
one hidden symbol at the i-th block. Table 2 shows that
this occurs with a probability greater than 0.57 if c ≥ 3.
Another condition is that the number of decoded symbols
after the fusion is neither 0 nor q, else the summands at that
index are zeros. The performance of the watermarking tech-
nique against the fusion has a clear impact on this condition.
Combining tables 1 and 2, we easily have the probability

of decoding K symbols: P (K|c) =
Pmin(q,c)

k=1 P (K|ℓ)P (ℓ|c).
Table 3 shows that P (K = q|c) is negligible, and that P (K =
0|c) is slowly increasing with c thanks to the good robustness

c ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

2 0.60 0.40 0 0
3 0.43 0.50 0.07 0
4 0.34 0.52 0.14 0.00
5 0.28 0.52 0.19 0.01
6 0.24 0.51 0.23 0.02
10 0.15 0.46 0.33 0.06
15 0.11 0.40 0.38 0.10
20 0.08 0.36 0.42 0.14

Table 2: The conditional probabilities P (ℓ|c) that the
colluders have ℓ watermarked versions of a block for
2 ≤ c ≤ 20 and κ = 0.23.

c K = 0 K = 1 K = 2 K = 3 K = 4

2 0.00 0.61 0.39 0 0
3 0.02 0.46 0.49 0.03 0
4 0.03 0.39 0.53 0.05 0.00
5 0.04 0.34 0.55 0.07 0.00
6 0.05 0.32 0.55 0.08 0.00
10 0.09 0.26 0.53 0.12 0.00
15 0.12 0.23 0.50 0.14 0.01
20 0.14 0.22 0.47 0.16 0.01

Table 3: The probabilities P (K|c) of detecting K wa-
termarks per block when the collusion size is c.

of the zero-bit watermarking technique. Even for c = 20, our
methods are active over 63% blocks.

The experimentation setup is the same as described in
Sec. 4.2. The collusion is based on Table 1 to simulate a
fusion: whenever the collusion has ℓ different symbols, we
randomly pick up K of them. Statistics are established from
32,000 scores for the innocents and 8,000 scores for the col-
luders. Fig. 1 shows that the expectation of an innocent’s
score is zero whereas the one of the colluder is roughly the
same for both methods and especially much higher than
previously. Fig. 2 shows that the variance of the scores
(innocent’s and colluder’s) are smaller than previously for
both methods. The first method is very good at lowering
σ2

I whereas the second method has the smallest σ2
C . The

overall performance measured by the Kullback Leibler dis-
tance confirms in Fig. 3 that the collusion has no interest in
adopting the fusion strategy.

A practical issue is the value of the threshold Z. The
following relationship holds for both methods:

µI = µI,0 , µC ≥ µC,0 (7)

σ2
I ≤ σ2

I,0 , σ2
C ≤ σ2

C,0 (8)

Therefore, if the length of the code is large enough to ensure
required probabilities of false alarm and false negative when
comparing the scores to Z for the block exchange class of
attack, then, this threshold will ensure even lower probabil-
ities of errors for the fusion class thanks to the performance
of our methods. This statement is true only when the Gaus-
sian assumption holds, i.e. for m large enough.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

0

5

10

15

20

25

30

s

µ

Expectation of the innocents and colluders scores

Ours−innocent
Ours−colluder
Skoric−innocent
Skoric−colluder

Figure 1: Expectation of an innocent’s (solid) and a
colluder’s (dash) score against Dirichlet distribution
shape parameter κ for block exchange class (green),
fusion class and first method (blue), fusion class and
second method (red).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
150

200

250

300

350

400

450

500

s

σ2

Variance of the innocents and colluders scores

Ours−innocent
Ours−colluder
Skoric−innocent
Skoric−colluder

Figure 2: Variance of an innocent (solid) and a col-
luder’s (dash) score against Dirichlet distribution
shape parameter κ for block exchange class (green),
fusion class and first method (blue), fusion class and
second method (red).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
 Kullback Leibler distance between the innocents’ and colluders’ scores

s

d

Ours solution
Skoric’s solution

Figure 3: Kullback Leibler distance between the in-
nocent’s and colluder’s scores pdf against Dirichlet
distribution shape parameter κ for block exchange
class (green), fusion class and first method (blue),
fusion class and second method (red).

5. CONCLUSION
The proposed design has three ingredients: a symmetric q-

ary Tardos fingerprinting code, a state of the art zero-bit side
informed watermarking technique used with a on-off keying
modulation, and an extended accusation process taking into
account list of decoded symbols. Our experimental study
shows that these ingredients blend into a very good design
because it completely shuts down the fusion class of attacks.
Following this strategy, the collusion helps more the accu-
sation process than it deludes it. The collusion is then back
to the block exchange class of attack which is fully tackled
by the fingerprinting code.

6. REFERENCES
[1] D. Boneh and J. Shaw. Collusion-secure fingerprinting

for digital data. IEEE Trans. Inform. Theory,
44:1897–1905, September 1998.

[2] M. Fernandez and M. Soriano. Soft-decoding tracing in
fingerprinted multimedia content. IEEE Multimedia,
11(2):38–46, 2004.

[3] T. Furon and P. Bas. Broken arrows. submitted to

EURASIP Jounal on Information Security, 2008.

[4] M. Gursoy, H. Poor, and S. Verdú. On-off
frequency-shift keying for wideband fading channels.
EURASIP Journal on wireless communications and

networking, 2006(ID 98564):15 pages, 2006.

[5] P. Moulin and N. Kiyavash. Performance of random
fingerprinting codes under arbitrary nonlinear attacks.
In Proc. ICASSP, Honolulu, avril 2007.

[6] R. Safavi-Naini and Y. Wang. Collusion-secure q-ary
fingerprinting for perceptual content. In
Springer-Verlag, editor, Proc. Security and Privacy in

Digital Rights Management, SPDRM’01, volume 2320
of Lecture Notes in Computer Science, pages 57–75,
2001.

[7] A. Silverberg, J. R. Staddon, and J. Walker.
Application of list decoding to tracing traitors. IEEE

Trans. Inform. Theory, 49:1312–1318, may 2003.

[8] B. Skoric, S. Katzenbeisser, and M. Celik. Symmetric
Tardos fingerprinting codes for arbitrary alphabet sizes.
Designs, Codes and Cryptography, 46(2):137–166,
February 2008.

[9] Z. Wang, M. Wu, H. Zhao, W. Trappe, and K. Liu.
Resistance of orthogonal gaussian fingerprints to
collusion attacks. In Proc. of Int. Conf. on Acoustics,

Speech and Signal Processing, pages 724–727, Hong
Kong, April 2003. IEEE ICASSP’03.

APPENDIX

A. FIRST METHOD: µI = 0

We have µI = mE(
P

Y ∈Y U(Y, X,p)) giving:

µIm−1

=
X

Y,X

pXpY

X

Y ∈Y

δY (X)g1(pY)) + (1 − δY (X))g0(pY)

=
X

Y

pY

X

X,Y ∈Y

pX(δY (X)g1(pY) + (1 − δY (X))g0(pY))

=
X

Y

pY

X

Y ∈Y

p

pY (1 − pY) −
p

pY (1 − pY)

= 0

B. SECOND METHOD: µI = 0

We have µI = mE(U(Y, X,p)) giving:

µIm−1

=
X

Y,X

pXpY(δY(X)g1(pY)) + (1 − δY(X))g0(pY))

=
X

Y

pY

X

X

pX(δY(X)g1(pY) + (1 − δY(X))g0(pY))

=
X

Y

pY(
p

pY(1 − pY) −
p

pY(1 − pY))

= 0

C. SECOND METHOD: σ2
I

We have σ2
I = mE(U(Y, X,p)2) giving:

σ2
I m−1

=
X

Y /∈{∅,X},X

pXpY(δY(X)g1(pY))

+ (1 − δY(X))g0(pY))2

=
X

Y /∈{∅,X}

pY(
X

X∈Y

pXg1(pY)2 +
X

X /∈Y

pXg0(pY)2)

=
X

Y /∈{∅,X}

pY(1 − pY + pY) = 1 − pY(∅) − pY(X)

