Deluding Image Recognition in SIFT-based CBIR Systems

Thanh-Toan Do 1 Ewa Kijak 1 Teddy Furon 2 Laurent Amsaleg 1
1 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
2 TEMICS - Digital image processing, modeling and communication
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Content-Based Image Retrieval Systems used in forensics related contexts require very good image recognition capa- bilities. Therefore they often use the SIFT local-feature de- scription scheme as its robustness against a large spectrum of image distortions has been assessed. In contrast, the security of SIFT is still largely unexplored. We show in this paper that it is possible to conceal images from the SIFT-based recognition process by designing very SIFT-specific attacks. The attacks that are successful in deluding the system re- move keypoints and simultaneously forge new keypoints in the images to be concealed. This paper details several strate- gies enforcing image concealment. A copy-detection oriented experimental study using a database of 100,000 real images together with a state-of-art image search system shows these strategies are effective. This is a very serious threat against systems, endangering forensics investigations.
Type de document :
Communication dans un congrès
ACM Multimedia in Forensics, Security and Intelligence, Oct 2010, Firenze, Italy. 2010
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00505845
Contributeur : Teddy Furon <>
Soumis le : mardi 29 mars 2011 - 13:31:11
Dernière modification le : vendredi 16 novembre 2018 - 01:22:08
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 12:50:57

Fichier

mifor809-do.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00505845, version 1

Citation

Thanh-Toan Do, Ewa Kijak, Teddy Furon, Laurent Amsaleg. Deluding Image Recognition in SIFT-based CBIR Systems. ACM Multimedia in Forensics, Security and Intelligence, Oct 2010, Firenze, Italy. 2010. 〈inria-00505845〉

Partager

Métriques

Consultations de la notice

711

Téléchargements de fichiers

392