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Abstract. This paper is concerned with a fixed-size population of autonomous
agents facing unknown, possibly changing, environments. The motivation is to
design an embodied evolutionary algorithm that can cope with the implicit fitness
function hidden in the environment so as to provide adaptation in the long run at
the level of the population. The proposed algorithm, termedmEDEA, is shown
to be both efficient in unknown environment and robust with regards to abrupt,
unpredicted, and possibly lethal changes in the environment.

1 Introduction

In this paper, we are interested in a fixed-size population ofautonomous physical agents
using local communication (e.g. autonomous robots), facing unknown and/or dynamic
environments. This class of problems typically arises whenthe environment remains
unknown to the human designer until the population of agentsis actually made opera-
tional in the real situation [4], or whenever the environment is known to change during
operation, without any indication onwhenandhow these changes will impact survival
strategies.

The challenge is to design a distributed online optimization algorithm targeting
agent self-adaptation in the long term, that is being able tosuccessfully manage an im-
plicit pressure resulting from environmental particularitiesand algorithmic constraint
with regards to the optimization process. Embodied Evolution (EE), as proposed ini-
tially in [5], addresses part of this question as it focuses on algorithms for evolutionary
optimization of agent behaviors in an on-line, possibly decentralized manner. On the
other hand, EE requires an objective function designed fromthe supervisor, which is
unavailable by definition in the problem setting addressed here.

While concepts and methods from EE may be relevant, we can only assume that
maximizing the integrity of the agent population as well as maintaining a communica-
tion network for exchanging genome are the basic requirements in the present context.
To this end, we propose a distributed algorithm for environment-driven self-adaptation
based on evolutionary operators that takes into account selection pressure from the en-
vironment. The basic assumption behind this algorithm is toconsider the strategies as
the atomic elements and the population of agents as a distributed resource onto which
strategies compete with one another. This approach is better illustrated using the Selfish
Gene metaphor [3]: one specific strategy (or set of parameters, or genome) is ”suc-
cessful” if it manages to spread over the population, which implicitly requires to both
minimize risk for its ”vehicles” (ie. the autonomous agents) and maximizing the number
of mating opportunities, though the two may be contradictory.



The general motivation behind the work presented here is to study and provide
general evolutionary adaptation algorithms that can utlimately be implemented on real
robotic hardware. To this end, the main contribution of thispaper is to introduce a new
and simple distributed evolutionary adaptation algorithmfor use in population of au-
tonomous agents. While it is yet to be applied in a real robotic setup, this paper focuses
on an indepth experimental analysis of the robustness of thealgorithm with regards
to unknown, and changing, environments, under realistic constraints (fixed number of
agents, limited sensors and actuators, etc.).

2 Environment-driven Distributed Evolutionary Adaptatio n

As stated in the introduction, our objective is to design a distributed online evolution-
ary algorithm for a fixed population of autonomous physical agents (e.g. autonomous
robots), whenever the human engineer fails to provide a proper description of an objec-
tive function. As a consequence, the key issue behind Environment-driven Distributed
Evolutionary Adaptation (EDEA) relies in theimplicit nature of the fitness function.
However, this implicit fitness may be seen as the result of twopossibly conflicting mo-
tivations:

– extrinsic motivation: agent must cope with environmental constraints in order to
maximize survival, which results solely from the interaction between the agent and
the environment around (possibly including other agents aswell). ;

– intrinsic motivation : set of parameters (ie. ”genomes”) must spread across the
population to survive, which is imposed by the algorithmic nature of the evolution-
ary process. Therefore, genomes are naturally biased towards producing efficient
matingbehaviors as the larger the number of agents met, the greaterthe opportu-
nity to survive.

The level of correlation between these two motivations doesimpact problem com-
plexity to a significant amount: high correlation implies that the two motivations may be
treated as one while low correlation implies conflicting objectives. An efficient EDEA
algorithm should indeed address this trade-off between extrinsic and intrinsic motiva-
tions as the ideal optimal genome should reach the point of equilibrium where genome
spread is maximum (e.g. looking for mating opportunities) with regards to survival ef-
ficiency (e.g. ensuring energetic autonomy).

These assumptions have also been extensively studied in thefield of open-ended
artificial evolution, with an emphasis on computational model of evolutionary dynam-
ics [1], including a particular focus on the effect of the environment over the evolu-
tionary adaptation process [6]. However, their application within Embodied Evolution
is still an open issue as there is a major difference concerning the working hypothesis
as EE is concerned with a fixed number of physically grounded agents that are usually
ment to target real world environment (e.g. obstacles, energy constraints, etc.).

2.1 M EDEA: a Minimal EDEA algorithm

Based on these considerations, we introduce theMEDEA algorithm (”minimal
EDEA”), described in table 1. This algorithm describes how evolution is handled on a



Algorithm 1 TheMEDEA algorithm
genome.randomInitialize()
while foreverdo

if genome.notEmpty() then
agent.load(genome)

end if
for iteration = 0 to lifetime do

if agent.energy> 0 andgenome.notEmpty() then
agent.move()
broadcast(genome)

end if
end for
genome.empty()
if genomeList.size> 0 then

genome = applyVariation(selectrandom(genomeList))
end if
genomeList.empty()

end while

local basis and is copied as is within all agents in the population. This algorithm works
along with a communication routine, which purpose is to receive incoming genomes
and store these in the Imported Genome List for later use.

At a given moment, a given agent is driven by a control architecture which parame-
ters are extracted from an ”active” genome, which remains unchanged for a generation.
This genome is continuously broadcasted to all agents within (a limited) communica-
tion range. This algorithm actually implements several simple, but crucial, features, that
can be interpreted from the viewpoint of a traditional evolutionary algorithm structure:

Selection operator: the selection operator is limited to simple random sampling
among the list of imported genomes, ie. no selection pressure on a local individual
basis. However, cumulated local random selection ultimately favor the most widespread
genomeson a global population basisas such genomes have greater probability to be
randomly pickedon average. In fact, the larger the population and mating opportunities,
the more accurate the selection pressure at the level of the population.

Variation operator : the variation operator is assumed to be rather conservative
to ensure a continuity during the course of evolution. Generating altered copies of a
genome only make sense if there is some continuity in the genome lineage: if no vari-
ation is performed, the algorithm shall simply converge on average towards the best
existing genome initially in the population. In the following, we assume a gaussian
random mutation operator, inspired from Evolution Strategies [2], which conservative
behavior can be easily tuned through aσ parameter.

Replacement operator: lastly, replacement of the current active genome to control
a given agent is performed by (1) local deletion of the activegenome at the end of
one generation and (2) randomly selecting a new active genome among the imported
genome list (cf. selection operator). On a population level, this implies that surviving
genomes are likely to be correlated with efficient mating strategies as a given genome
may only survive through (altered) copies of itself in the long run.



The positive or negative impact of environmental variability on genome perfor-
mance is smoothed by the very definition of the variation operator as newly created
genomes are always more or less closely related to their parent. As a consequence, each
genome results from a large number of parallel evaluations,both on the spatial scale
as closely related copies sharing the same ancester may evaluated in a population, and
on the temporal scale, as one genome is also strongly relatedto its ancestors. Hence, a
single genome may get lucky once in a while, but it’s highly unlikely that a ”family” of
closely related genomes manage to survive in the populationif there are more efficient
competitors.

3 Experimental Setting

This section provides a description of the experimental setting used hereafter as well
as implementation details. The motivation is here to designa setting such that it is
possible to address several issues regarding evaluation and validation of the proposed
algorithm. In particular, robustness ofMEDEA with regards to environmental pressure
and to sudden environmental changes shall be studied.

3.1 The problem: surviving in a dynamic unknown environment

Figure 1 shows the environment used for the experiment: a 2D arena with obstacles,
possibly containing food items. The figure also illustrates100 autonomous mobile
agents loosely inspired from the ePuck mobile robot specifications. This environment
is used to define two different experimental setups, described hereafter:

Fig. 1. Snapshot from the simulator with 100 agents. Yellow: food items. Red: agents, modeled
after an e-puck robot. Blue: range of proximity sensors (communication range is half this range).

1. the ”free-ride” setup
– Description: a population of autonomous mobile agents is immersed within an

environment with few obstacles. As a consequence, an agent dies only if it was
not able to mate with at least one other agent - ie. the currentgenome is lost for
sure as it does not get a chance to survive within any other agents.

– Motivation: this setup makes it possible to evaluate the mechanisms of the
MEDEA algorithm as environmental pressure should be limited.



2. the ”energy” setup
– Description: A set of energy resources (”food items”) is spread all over the en-

vironment, which can be harvested by the agents. Agents are endowed with an
energy level, which depends on harvested food items and power consumption.
If the energy level reaches 0, agent dies and genome information is lost. More-
over, harvested food items only ”grow” back after a given number of iterations.

– Motivation: In this setup, genomes also compete for agent resources buthave
to deal with environmental pressure as maximizing mating encounters may not
be fully compatible with energy self-sustainability.

The full experimental setup considers starting with the ”free-ride” setup, and then
suddenly switching to the ”energy” setup after a pre-definedfixed number of genera-
tions. In the meantime, agents are of course unaware of such achange in the environ-
ment and keep on running the same unchangedMEDEA algorithm.

3.2 Representation / Encoding the problem

Specifications for the autonomous agents are inspired from traditional robotic setup,
with 8 proximity sensors dispatched all around the agent body and 2 motor outputs
(translational and rotational speeds). Moreover, three additional sensory inputs are con-
sidered: the angle and direction towards the nearest food item and the current energy
level (which is set to a fixed value in the ”free-ride” setup).Note that these additional
sensor values are useless in the first setup, and may even be considered as distractors.
Each agent is controlled by a multiple layer perceptron (MLP) with 5 hidden neurons,
which means a total of 72 weights1.

The variation operator is a gaussian mutation with oneσ parameter: a small (resp.
large) σ tends to produce similar (resp. different) offsprings. This is indeed a well
known scheme from Evolution Strategy where continuous values are solely mutated
using a parameterized gaussian mutation, where theσ parameter may be either fixed,
updated according to pre-defined heuristics or evolved as part of the genome. In the
scope of this work, we rely on self-adaptive mutation, whereσ is part of the genome [2]
(ie. the full genome contains 73 real values).

The current implementation of theσ update rule is achieved by introducingα, a
σ update value, which is used to either decrease (σnew = σold ∗ (1 − α)) or increase
(σnew = σold ∗ (1 + α)) the value ofσ whenever a genome is transmitted. The idea
is that whenever an agent broadcast its own genome, probabilities of transmitting an
increased or decreasedσ values are equivalent. In the following,α is a predefined value
set prior to the experiment so that it is possible to switch from the largerσ value to the
smaller in a minimum of approx. 20 iterations.

3.3 Experimental settings

The whole experiment lasts for 150 generations, switching from the ”free-ride” setup
to the ”energy” setup at generation 75. During the course of evolution, some agents

1 11 input neurons ; 5 hidden neurons ; 2 output neurons ; 1 bias neuron. The bias neuron value
is fixed to 1.0 and projects onto all hidden and output neurons.



may come to a halt either because they did not meet any other agents, thus failing to
import a new genome for use in the next generation, or becausethey ran out of energy
during the ”energy” setup (each agent can store a maximum of 400 energy units and
consumes 1 unit/step, one generation lasts 400 steps). In the ”free-ride” setup, the agents
remain still (or ”inactive”, ie. without genome), waiting for new genomes imported
from ”active” agents that eventually come into contact. In the ”energy” setup though,
agents requires an external ”human” intervention for refilling energy. Revived agents
remains inactive, but are refilled with enough energy to waituntil the end of the current
generation, listening for new imported genome that may be used for the next generation.
While the reviving procedure makes it possible to avoid progressive extinction in the
second setup, extinction is nevertheless possible whenever all agents in the population
fail to meet any other agents during one generation, whatever the cause (bad exploratory
or harvesting strategies). Also, monitoring the number of active agents in a population
provides a reliable indicator of the performance of the algorithm as external intervention
may be viewed as one important cost to minimize (e.g. minimizing human intervention
in a robotic setup). Detailed parameters used for the experiment presented in the next
section are given in figure 2.

Parameter Value
arena width and length 1024 ∗ 530 inches

”free-ride” setup duration 75 generations
”energy” setup duration 75 generations

lifetime (ie. generation duration) 400 steps per generation
population size 100 agents

proximity sensor range 64 inches
radio broadcast signal 32 inches

agent rotational velocity 30deg/step
agent translational velocity 2 inches/step

genome length 79 real values (78 MLP weights +σ)
variation operator gaussian mutation withσ parameter
σ

minV alue
0.01

σ
maxV alue

0.5
σ

initialV alue
0.1

α (ie. σ update parameter) 0.35

”energy” setup only:
food items 2000

food item diameter 10 inches
food item regrow delay btw 400 and 4000 steps (see text)
energy per food item 100 energy units

agent energy consumption 1 energy unit per step
agent maximum energy level 400 energy units

agent initial energy level 400 energy units

Fig. 2. Experimental settings (details)

In order to provide a challenging environment, the ”energy”setup is designed so that
the number of food items in the environment depends on the actual number of active
agents. Indeed, a food item grows back whenever harvested, but only after some delay.
If the number of active agents is less than half the population size, thendelayregrow

is set to 400 steps. However, if the number of active agents isbetween 50 and 100,
then the delay linearly increases from 400 steps (fast regrowing) to 4000 steps (slow
regrowing, aggressive environment).In the particular setup described here, switching
from a possibly efficient population of 100 agents from the ”free-ride” setup to the
”energy” setup will have a possibly disastrous impact as thenumber of agents at the
beginning of the second setup implies longer regrow delays.

At this point, it is important to note that the motivation behind this experimental
setup is both to stress the population for further analysis as well as providing a flexible
and challenging experimental settings that could be re-useto evaluate further version
and variation over the algorithm presented here. To this end, the source code and pa-



rameters for all experiments presented in the following is available on-line in the Evolu-
tionary Robotics Database2. On a practical viewpoint, one experiment takes approx. 15
minutes to be performed using one core of a 2.4GHz Intel Core 2Duo computer. The
home-brew agent simulator is programmed in C++ and featuresbasic robotic-inspired
agent dynamics with collision.

4 Results and Analysis
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Fig. 3. Experimental results - the experiment starts with the ”free-ride” setup from generation 0
to generation 75, then it switches to the ”energy” setup until generation 150.

The lack of explicit objective function makes it difficult tocompare performance
during the course of evolution. However, the number of active agents and the average
number of imported genomes per generation give a good hint onhow the algorithm
performs: it can be safely assumed that ”efficient” genomes lead to few deaths and
many mating opportunities. Moreover, the number of food items harvested gives some
indication in the ”energy” setup. The four graphs in figure 3 give an a synthetic view
of the results over 100 independent runs obtained withMEDEA on the experimental
scenario described in the previous section. These graphs compile the average values of

2 Evolutionary Robotics Database: http://www.isir.fr/evorob db/



selected parameters, or ”indicators”, over generations: number of active agents, average
number of imported genomes per agent, average energy balance per agent, and average
σ mutation parameter values.

In both setups, all indicators rise to reach stable average values and some conclu-
sions can be drawn: firstly, both setups show an increase in both mating opportunities
(number of imported genomes) and survival rate (number of active agents). Secondly,
switching setups initially leads to a drop for both indicators, followed by a quick recov-
ery through evolutionary adaptation. This interpretationis reinforced by the increasing
value of the energy balance which is a key element for the second setup. A notable
remark is that the energy balance stays around zero, which issufficient to guarantee
agent survival. This is not a surprise as over-maximizing harvesting may imply a cost
with regards to looking for mating partners. On the other hand, the gaussian mutation
parameter is not really influenced by the change of environmental setups (except from
a slight increase in maximum values). While the results may vary among runs, with
a great difference between minimal and maximal values for each indicator, values be-
tween the upper and lower quartiles are remarkably close given the noise inherent to this
kind of experiment. Indeed, complete extinctions were evenobserved after switching to
the ”energy” setup in three of the 100 runs (results not shown).
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Fig. 4.Genomes battles on both setups (left: free-ride setup ;right: energy setup). Average success
scores for each generation, both histograms are the resultsof 1000+ battles. See text for details.

However, we must be very cautious with the interpretation ofthese results. For ex-
ample, the quality of the equilibrium between maximizing mating opportunity and cop-
ing with environmental constraints (ie. avoiding walls, avoiding collisions with other
agents, harvesting) is difficult to estimate as such equilibrium may (and appears to)
imply sub-optimal values for both related indicators. As a matter of fact, all interpre-
tations provided so far rely on the assumption that values monitored in the experiment
are actually correlated with genome survival. In order to support this assumption, a new
experimental setup is defined from the results obtained so far: the post-mortembattle
experiment (or battle experiment, for short). The battle experiment is loosely inspired
from competitive coevolution, where each individual competes against a hall-of-fame
of the best individuals from every past generations [7], so as to estimate the fitness rank
of one individual within all possible (or at least, all available) situations. For the current
experiment, one ”battle” is achieved by randomly picking up10 generations from the



same setup, and extracting one random genome from each of these generations. Then,
each genome is copied into ten different agents, resulting in 100 agents that are im-
mersed in the same setup they were evolving in. Variation is turned off, and evolution
is re-launched. After 100 generations of random selection and replacement, the number
of copies for each genome is accounted for and used to computea ”survival score”. As
an example, one genome gets a maximal score if it succeeds in taking control of all the
agents. Average results over 1000 battles are given in figure4. In both setups, genomes
from later generations display better survival capabilitythan early genomes. Moreover,
battles on the second setup show a very fast recovery after environmental change, pos-
sibly to stable, but limited, strategies as the number of active agents is far from the
maximum. Also, these histograms lack the misleading artifacts observed in previous
graphs regarding the early generations in both setups: genomes from generation 0 do
not benefit from uniform sampling of starting location and genomes from generation 75
do not benefit from high initial energy level.

Fig. 5. Typical examples of agent behavioral traces in both setups (left: free-ride setup ;right:
energy setup). In the energy setup, colored traces show the current energy level of the agent (see
legend). In both setups, the square symbol shows the agent starting points.

The efficiency of the algorithm is also confirmed by looking atthe resulting behav-
ioral strategies. Two examples of behaviors are shown in figure 5, resulting from agent
driven by genomes obtained in the late generations of both setups. In the ”free-ride”
setup, genomes tend to lead to rather conservative behaviors, with obstacle avoidance,
but with limited exploratory behavior. On the other hand, genomes from the later gener-
ations of the ”energy” setup show a different behavioral pattern, favoring long distance
travel and few circling around, which is an efficient strategy to avoid being stuck in
an exhausted area. Moreover, a closer look at trajectories (including, but not limited to
what is shown here) show that agents acquired the ability to drive towards a detected
food items under certain conditions, such as favoring safe areas with few obstacles
whenever energy level is low.

5 Conclusions and Perspectives

This paper provides a proof-of-concept for the viability ofenvironment-driven dis-
tributed evolutionary adaptation in a population of autonomous agents. We have pre-
sented theMEDEA algorithm, a particular flavor of Embodied Evolution, tailored to
address evolutionary adaptation with implicit fitness. Theproposed algorithm was eval-
uated with regards to our initial motivation and proven to be(1) efficient with regards



to providing distributed evolutionary adaptation in unknown environment and (2) ro-
bust with regards to unpredicted changes in the environment. Moreover, this algorithm
is light-weight and with low complexity, which makes it possible to consider future
implementation within hardware/software setups with limited computational capability
such as robotic agents.

Many perspectives may be considered from this point, and some are already un-
der investigation. Firstly, the class of problems addressed here is also relevant in the
field of embodied Evolutionary Robotics. Secondly, surviving in aggressive environ-
ments requires more complex behavioral patterns (e.g. coordination). Sharing similar
concerns, previous works in collective intelligence and reinforcement learning have
already stressed the issue of the price of anarchy [8], ie. the cost of efficient selfish be-
havior with regards to population global welfare. Then again, solving this issue remains
an open problem, especially if there is no explicit objective function to decompose.
Thirdly, the work presented here targets, and is limited to,providing reliable survival
strategies. However, our motivational claim is that one should first aim at a reliable,
surviving population before even considering to optimize apre-defined objective func-
tion as objective function with extensive goal descriptionoften lead to deceiving fit-
ness landscape, and poor results. Of course, this remains tobe extensively studied and
demonstrated.
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