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Environment-driven Embodied Evolution
in a Population of Autonomous Agents

Nicolas Bredeche and Jean-Marc Montanier

TAO - Univ. Paris-Sud, INRIA, CNRS - F-91405 Orsay, Frafice st nanme. nane@ri . fr

Abstract. This paper is concerned with a fixed-size population of aartowus
agents facing unknown, possibly changing, environmerttg Motivation is to
design an embodied evolutionary algorithm that can cople thé implicit fithess
function hidden in the environment so as to provide adaptati the long run at
the level of the population. The proposed algorithm, terrm&DEA, is shown
to be both efficient in unknown environment and robust witarels to abrupt,
unpredicted, and possibly lethal changes in the envirohmen

1 Introduction

In this paper, we are interested in a fixed-size populati@utdnomous physical agents
using local communication (e.g. autonomous robots), taamknown and/or dynamic
environments. This class of problems typically arises wtenenvironment remains
unknown to the human designer until the population of agisrastually made opera-
tional in the real situation [4], or whenever the environiieriknown to change during
operation, without any indication amhenandhowthese changes will impact survival
strategies.

The challenge is to design a distributed online optimizatdgorithm targeting
agent self-adaptation in the long term, that is being abftwessfully manage an im-
plicit pressure resulting from environmental particuias and algorithmic constraint
with regards to the optimization process. Embodied EvoiutEE), as proposed ini-
tially in [5], addresses part of this question as it focuseslgorithms for evolutionary
optimization of agent behaviors in an on-line, possiblyedgralized manner. On the
other hand, EE requires an objective function designed fitemsupervisor, which is
unavailable by definition in the problem setting addressad.h

While concepts and methods from EE may be relevant, we canassume that
maximizing the integrity of the agent population as well eamtaining a communica-
tion network for exchanging genome are the basic requirésnerhe present context.
To this end, we propose a distributed algorithm for envirentrdriven self-adaptation
based on evolutionary operators that takes into accousttsmh pressure from the en-
vironment. The basic assumption behind this algorithm isotasider the strategies as
the atomic elements and the population of agents as a ditgdlyesource onto which
strategies compete with one another. This approach i lilkistrated using the Selfish
Gene metaphor [3]: one specific strategy (or set of parasiedergenome) is "suc-
cessful” if it manages to spread over the population, whighlicitly requires to both
minimize risk for its "vehicles” (ie. the autonomous agémtisd maximizing the number
of mating opportunities, though the two may be contradictor



The general motivation behind the work presented here igudysand provide
general evolutionary adaptation algorithms that can atléty be implemented on real
robotic hardware. To this end, the main contribution of thaper is to introduce a new
and simple distributed evolutionary adaptation algorifiomuse in population of au-
tonomous agents. While it is yet to be applied in a real rasstup, this paper focuses
on an indepth experimental analysis of the robustness oéld@ithm with regards
to unknown, and changing, environments, under realististaints (fixed number of
agents, limited sensors and actuators, etc.).

2 Environment-driven Distributed Evolutionary Adaptatio n

As stated in the introduction, our objective is to designsrdiuted online evolution-
ary algorithm for a fixed population of autonomous physig@ras (e.g. autonomous
robots), whenever the human engineer fails to provide agsrdgscription of an objec-
tive function. As a consequence, the key issue behind Emviemt-driven Distributed
Evolutionary Adaptation (EDEA) relies in theplicit nature of the fitness function.

However, this implicit fithess may be seen as the result offfessibly conflicting mo-
tivations:

— extrinsic motivation: agent must cope with environmental constraints in order to
maximize survival, which results solely from the interactbetween the agent and
the environment around (possibly including other agentsed§. ;

— intrinsic motivation: set of parameters (ie. "genomes”) must spread across the
population to survive, which is imposed by the algorithmature of the evolution-
ary process. Therefore, genomes are naturally biased dsvgoducing efficient
matingbehaviors as the larger the number of agents met, the gtbatepportu-
nity to survive.

The level of correlation between these two motivations dogmct problem com-
plexity to a significant amount: high correlation implieatkhe two motivations may be
treated as one while low correlation implies conflictingeattives. An efficient EDEA
algorithm should indeed address this trade-off betweennsit and intrinsic motiva-
tions as the ideal optimal genome should reach the pointwfiequm where genome
spread is maximum (e.g. looking for mating opportunitieghwegards to survival ef-
ficiency (e.g. ensuring energetic autonomy).

These assumptions have also been extensively studied iiretdeof open-ended
artificial evolution, with an emphasis on computational mloaf evolutionary dynam-
ics [1], including a particular focus on the effect of the Bomment over the evolu-
tionary adaptation process [6]. However, their applicgatiathin Embodied Evolution
is still an open issue as there is a major difference conegrthie working hypothesis
as EE is concerned with a fixed number of physically groundethts that are usually
ment to target real world environment (e.g. obstacles,gnesnstraints, etc.).

2.1 MEDEA: a Minimal EDEA algorithm

Based on these considerations, we introduceMiiEDEA algorithm ("minimal
EDEA"), described in table 1. This algorithm describes hawleation is handled on a



Algorithm 1 ThemEDEA algorithm

genome.randominitialize()
while foreverdo
if genome.notEmpty() then
agent.loadfenome)
end if
for iteration = 0tolifetime do
if agent.energy- 0 andgenome.notEmpty() then
agent.move()
broadcasy{enome)
end if
end for
genome.empty()
if genomeLiskize> 0 then
genome = applyVariationgelectqndom(genomeLig)
end if
genomeLisempty()
end while

local basis and is copied as is within all agents in the pdfmraThis algorithm works
along with a communication routine, which purpose is to @ coming genomes
and store these in the Imported Genome List for later use.

At a given moment, a given agent is driven by a control archite which parame-
ters are extracted from an "active” genome, which remairthianged for a generation.
This genome is continuously broadcasted to all agents mv{thiimited) communica-
tion range. This algorithm actually implements severaldenbut crucial, features, that
can be interpreted from the viewpoint of a traditional etiolary algorithm structure:

Selection operator the selection operator is limited to simple random sangplin
among the list of imported genomes, ie. no selection pressura local individual
basis However, cumulated local random selection ultimatelypfatie most widespread
genome®n a global population basias such genomes have greater probability to be
randomly pickedn averageln fact, the larger the population and mating opportusijtie
the more accurate the selection pressure at the level obiaation.

Variation operator: the variation operator is assumed to be rather conseevativ
to ensure a continuity during the course of evolution. Gatieg altered copies of a
genome only make sense if there is some continuity in themgerimeage: if no vari-
ation is performed, the algorithm shall simply converge wvarage towards the best
existing genome initially in the population. In the follavg, we assume a gaussian
random mutation operator, inspired from Evolution Straed2], which conservative
behavior can be easily tuned through parameter.

Replacement operator lastly, replacement of the current active genome to contro
a given agent is performed by (1) local deletion of the actjeaome at the end of
one generation and (2) randomly selecting a new active geraomong the imported
genome list (cf. selection operator). On a population lete$ implies that surviving
genomes are likely to be correlated with efficient matingtsygies as a given genome
may only survive through (altered) copies of itself in thedaun.



The positive or negative impact of environmental varigpibn genome perfor-
mance is smoothed by the very definition of the variation afmeras newly created
genomes are always more or less closely related to theinp@e a consequence, each
genome results from a large number of parallel evaluatibo) on the spatial scale
as closely related copies sharing the same ancester mayatain a population, and
on the temporal scale, as one genome is also strongly retatedancestors. Hence, a
single genome may get lucky once in a while, but it's highljikely that a "family” of
closely related genomes manage to survive in the populdtibare are more efficient
competitors.

3 Experimental Setting

This section provides a description of the experimentairgptised hereafter as well
as implementation details. The motivation is here to desigetting such that it is
possible to address several issues regarding evaluattbradidation of the proposed
algorithm. In particular, robustness@EDEA with regards to environmental pressure
and to sudden environmental changes shall be studied.

3.1 The problem: surviving in a dynamic unknown environment

Figure 1 shows the environment used for the experiment: areBaawith obstacles,
possibly containing food items. The figure also illustrat®® autonomous mobile
agents loosely inspired from the ePuck mobile robot spetifins. This environment
is used to define two different experimental setups, desdfiereafter:

Fig. 1. Snapshot from the simulator with 100 agents. Yellow: foatnis. Red: agents, modeled
after an e-puck robot. Blue: range of proximity sensors (@mamication range is half this range).

1. the "free-ride” setup
— Description a population of autonomous mobile agents is immersed mvihi
environment with few obstacles. As a consequence, an agenodly if it was
not able to mate with at least one other agent - ie. the cugemmame is lost for
sure as it does not get a chance to survive within any othertage
— Motivation this setup makes it possible to evaluate the mechanismiseof t
MEDEA algorithm as environmental pressure should be limited



2. the "energy” setup

— Description A set of energy resources ("food items”) is spread all okierdén-
vironment, which can be harvested by the agents. Agenta@eed with an
energy level, which depends on harvested food items andrmpmwsumption.
If the energy level reaches 0, agent dies and genome infanmmiatlost. More-
over, harvested food items only "grow” back after a given benof iterations.

— Motivation In this setup, genomes also compete for agent resourcémbat
to deal with environmental pressure as maximizing matirgpanters may not
be fully compatible with energy self-sustainability.

The full experimental setup considers starting with theéfride” setup, and then
suddenly switching to the "energy” setup after a pre-defiivezti number of genera-
tions. In the meantime, agents are of course unaware of subbrage in the environ-
ment and keep on running the same unchange®EA algorithm.

3.2 Representation / Encoding the problem

Specifications for the autonomous agents are inspired fraditional robotic setup,
with 8 proximity sensors dispatched all around the agenytedl 2 motor outputs
(translational and rotational speeds). Moreover, threltiatial sensory inputs are con-
sidered: the angle and direction towards the nearest feod &nd the current energy
level (which is set to a fixed value in the "free-ride” setuldhte that these additional
sensor values are useless in the first setup, and may evemsid@ed as distractors.
Each agent is controlled by a multiple layer perceptron (MwiRh 5 hidden neurons,
which means a total of 72 weights

The variation operator is a gaussian mutation with erparameter: a small (resp.
large) o tends to produce similar (resp. different) offsprings.sTts indeed a well
known scheme from Evolution Strategy where continuouseshre solely mutated
using a parameterized gaussian mutation, where tharameter may be either fixed,
updated according to pre-defined heuristics or evolved #sopdhe genome. In the
scope of this work, we rely on self-adaptive mutation, wheigpart of the genome [2]
(ie. the full genome contains 73 real values).

The current implementation of the update rule is achieved by introducing a
o update value, which is used to either decreasg.{ = 0,14 * (1 — ) Or increase
(Onew = ooia * (1 + @)) the value ofc whenever a genome is transmitted. The idea
is that whenever an agent broadcast its own genome, prafeebdf transmitting an
increased or decreased/alues are equivalent. In the following js a predefined value
set prior to the experiment so that it is possible to switcrfthe larger value to the
smaller in a minimum of approx. 20 iterations.

3.3 Experimental settings

The whole experiment lasts for 150 generations, switchinghfthe "free-ride” setup
to the "energy” setup at generation 75. During the coursevofuéion, some agents

111 input neurons ; 5 hidden neurons ; 2 output neurons ; 1 lelaon. The bias neuron value
is fixed to 1.0 and projects onto all hidden and output neurons



may come to a halt either because they did not meet any otleatgghus failing to
import a new genome for use in the next generation, or bedhagean out of energy
during the "energy” setup (each agent can store a maximun®@fetergy units and
consumes 1 unit/step, one generation lasts 400 stepsg ir¢le-ride” setup, the agents
remain still (or "inactive”, ie. without genome), waitingif new genomes imported
from "active” agents that eventually come into contact.Ha tenergy” setup though,
agents requires an external "human” intervention for iafllenergy. Revived agents
remains inactive, but are refilled with enough energy to waitl the end of the current
generation, listening for new imported genome that may bd @ the next generation.
While the reviving procedure makes it possible to avoid pesgive extinction in the
second setup, extinction is nevertheless possible wheaéhagents in the population
fail to meet any other agents during one generation, whatbeeause (bad exploratory
or harvesting strategies). Also, monitoring the numberabiza agents in a population
provides a reliable indicator of the performance of the atm as external intervention
may be viewed as one important cost to minimize (e.g. mirimgihuman intervention
in a robotic setup). Detailed parameters used for the exygeri presented in the next
section are given in figure 2.

Parameter Value
arena width and length 1024 * 530 inches
“free-ride” setup duration 75 generations
"energy” setup duration 75 generations
lifetime (ie. generation duratiof) 400 steps per generation “energy” setup only:
population size 100 agents food items 2000
proximity sensor range 64 inches food item diameter 10 inches
radio broadcast signal 32 inches food item regrow delay [btw 400 and 4000 steps (see text)
agent rotational velocity 30deg/step energy per food item 100 energy units
agent translational velocity 2 inches/step agent energy consumptio| 1 energy unit per step
genome length 79 real values (78 MLP weights &) | Fagent maximum energy Tevel 400 energy units
variation operator gaussian mutation withr parameter| ™ agent initial energy level 400 energy units
TminValue 0.01
ImazValue 0.5
9initialValue 0.1
« (ie. o update parameter) 0.35

Fig. 2. Experimental settings (details)

In order to provide a challenging environment, the "enegptup is designed so that
the number of food items in the environment depends on theabotimber of active
agents. Indeed, a food item grows back whenever harvesiednly after some delay.
If the number of active agents is less than half the populaize, thendelay,egrow
is set to 400 steps. However, if the number of active agent&tween 50 and 100,
then the delay linearly increases from 400 steps (fast végg) to 4000 steps (slow
regrowing, aggressive environment).In the particulangetescribed here, switching
from a possibly efficient population of 100 agents from theeéfride” setup to the
"energy” setup will have a possibly disastrous impact asninmber of agents at the
beginning of the second setup implies longer regrow delays.

At this point, it is important to note that the motivation lredh this experimental
setup is both to stress the population for further analysisell as providing a flexible
and challenging experimental settings that could be recuswaluate further version
and variation over the algorithm presented here. To this #redsource code and pa-



rameters for all experiments presented in the followingalable on-line in the Evolu-
tionary Robotics Databa&eOn a practical viewpoint, one experiment takes approx. 15
minutes to be performed using one core of a 2.4GHz Intel Cdde@ computer. The
home-brew agent simulator is programmed in C++ and featuaesi robotic-inspired
agent dynamics with collision.

4 Results and Analysis

active agents per generation number of imported genomes per agent

#active agents

#imported genomes per agent
ok N W B O O N ®

0 20 40 60 80 100 120 140 160

generations generations
average energy balance per agent parameter for gaussian mutation

0.15

o

energy gain/loss

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
generations generations

Fig. 3. Experimental results - the experiment starts with the “fide” setup from generation 0
to generation 75, then it switches to the "energy” setupl getieration 150.

The lack of explicit objective function makes it difficult thmpare performance
during the course of evolution. However, the number of actigents and the average
number of imported genomes per generation give a good hirtoanthe algorithm
performs: it can be safely assumed that "efficient” genorees fto few deaths and
many mating opportunities. Moreover, the number of foothgdarvested gives some
indication in the "energy” setup. The four graphs in figurei&gn a synthetic view
of the results over 100 independent runs obtained wiBDEA on the experimental
scenario described in the previous section. These graphgileothe average values of

2 Evolutionary Robotics Database: http:/iwww.isir.fr/esta.db/



selected parameters, or "indicators”, over generatiomsiber of active agents, average
number of imported genomes per agent, average energy leglanagent, and average
o mutation parameter values.

In both setups, all indicators rise to reach stable averagjees and some conclu-
sions can be drawn: firstly, both setups show an increasetinrbating opportunities
(number of imported genomes) and survival rate (number ttfeaagents). Secondly,
switching setups initially leads to a drop for both indigatdollowed by a quick recov-
ery through evolutionary adaptation. This interpretat®reinforced by the increasing
value of the energy balance which is a key element for thergbsetup. A notable
remark is that the energy balance stays around zero, whistiffisient to guarantee
agent survival. This is not a surprise as over-maximizimyésting may imply a cost
with regards to looking for mating partners. On the otherchdhne gaussian mutation
parameter is not really influenced by the change of envirortaisetups (except from
a slight increase in maximum values). While the results mey \among runs, with
a great difference between minimal and maximal values foh éadicator, values be-
tween the upper and lower quartiles are remarkably clogndhe noise inherent to this
kind of experiment. Indeed, complete extinctions were eserved after switching to
the "energy” setup in three of the 100 runs (results not shown

genomes battles on the “free-ride" setup genomes battles on the "energy" setup
100 100

80 80

60 60

LT

> SR A

IS
3
average success

average success

N
S

Yol

#generation #generation

Fig. 4. Genomes battles on both setulest( free-ride setupright: energy setup). Average success
scores for each generation, both histograms are the regdl@00+ battles. See text for details.

However, we must be very cautious with the interpretatiothese results. For ex-
ample, the quality of the equilibrium between maximizingimg opportunity and cop-
ing with environmental constraints (ie. avoiding wallsp@ing collisions with other
agents, harvesting) is difficult to estimate as such equilib may (and appears to)
imply sub-optimal values for both related indicators. As atter of fact, all interpre-
tations provided so far rely on the assumption that valuesitoied in the experiment
are actually correlated with genome survival. In order fopgrt this assumption, a new
experimental setup is defined from the results obtainedrsdhfapost-mortenbattle
experiment (or battle experiment, for short). The battlpeziment is loosely inspired
from competitive coevolution, where each individual cotggeagainst a hall-of-fame
of the best individuals from every past generations [7],stoastimate the fitness rank
of one individual within all possible (or at least, all awdile) situations. For the current
experiment, one "battle” is achieved by randomly pickinglipgenerations from the



same setup, and extracting one random genome from eachsef ge@erations. Then,
each genome is copied into ten different agents, resulintDD agents that are im-
mersed in the same setup they were evolving in. Variatioarised off, and evolution
is re-launched. After 100 generations of random selectimhraplacement, the number
of copies for each genome is accounted for and used to coragatevival score”. As
an example, one genome gets a maximal score if it succeeakingtcontrol of all the
agents. Average results over 1000 battles are given in figureboth setups, genomes
from later generations display better survival capabilitgn early genomes. Moreover,
battles on the second setup show a very fast recovery afi@oamental change, pos-
sibly to stable, but limited, strategies as the number affaa@gents is far from the
maximum. Also, these histograms lack the misleading atsfabserved in previous
graphs regarding the early generations in both setups:ngesiérom generation 0 do
not benefit from uniform sampling of starting location andgees from generation 75
do not benefit from high initial energy level.

‘@\/ i
= MR
\/\am 0/ /\

Fig. 5. Typical examples of agent behavioral traces in both setigfis free-ride setup right:
energy setup). In the energy setup, colored traces shovwuthent energy level of the agent (see
legend). In both setups, the square symbol shows the agetibhgtpoints.

energy level

The efficiency of the algorithm is also confirmed by lookingted resulting behav-
ioral strategies. Two examples of behaviors are shown indi§uresulting from agent
driven by genomes obtained in the late generations of bdtlpseln the "free-ride”
setup, genomes tend to lead to rather conservative bebawiith obstacle avoidance,
but with limited exploratory behavior. On the other handygmes from the later gener-
ations of the "energy” setup show a different behavioralgrat favoring long distance
travel and few circling around, which is an efficient strateg avoid being stuck in
an exhausted area. Moreover, a closer look at trajectanelsifling, but not limited to
what is shown here) show that agents acquired the abilityite dowards a detected
food items under certain conditions, such as favoring sedasawith few obstacles
whenever energy level is low.

5 Conclusions and Perspectives

This paper provides a proof-of-concept for the viability exfvironment-driven dis-
tributed evolutionary adaptation in a population of autmoas agents. We have pre-
sented thewnEDEA algorithm, a particular flavor of Embodied Evolutioajlored to
address evolutionary adaptation with implicit fithess. pheposed algorithm was eval-
uated with regards to our initial motivation and proven to(beefficient with regards



to providing distributed evolutionary adaptation in uniamenvironment and (2) ro-
bust with regards to unpredicted changes in the environrvareover, this algorithm
is light-weight and with low complexity, which makes it pdse to consider future
implementation within hardware/software setups with fedicomputational capability
such as robotic agents.

Many perspectives may be considered from this point, andesara already un-
der investigation. Firstly, the class of problems addrédsre is also relevant in the
field of embodied Evolutionary Robotics. Secondly, sumiyin aggressive environ-
ments requires more complex behavioral patterns (e.gdamation). Sharing similar
concerns, previous works in collective intelligence anifercement learning have
already stressed the issue of the price of anarchy [8], éecdist of efficient selfish be-
havior with regards to population global welfare. Then agsdlving this issue remains
an open problem, especially if there is no explicit objeetiunction to decompose.
Thirdly, the work presented here targets, and is limitedotoyiding reliable survival
strategies. However, our motivational claim is that oneutthdirst aim at a reliable,
surviving population before even considering to optimizgerdefined objective func-
tion as objective function with extensive goal descriptaften lead to deceiving fit-
ness landscape, and poor results. Of course, this remaliesagtensively studied and
demonstrated.
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