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Abstract. We present a specification approach of secured systems as
transition systems and security policies as constraints that guard the
transitions. In this context, security properties are expressed as invari-
ants. Then we propose an abduction algorithm to generate possible se-
curity policies for a given transition-based system. Because abduction
is guided by invariants, the generated security policies enforce security
properties specified by these invariants. In this framework we are able to
tune abduction in two ways in order to: (i) filter out bad security policies
and (ii) generate additional possible security policies. Invariant-guided
abduction helps designing policies and thus allows using formal methods
much earlier in the process of building secured systems. This approach
is illustrated on role-based access control systems.

1 Introduction

Security administration in large, open, distributed and heterogeneous environ-
ments has strongly motivated research on security policy specification and anal-
ysis, but is yet nowadays a challenge. There is a great amount of proposals for
security languages and frameworks for access control and more generally se-
curity policies, but even with an expressive policy language, a user may have
difficulty understanding the overall effects of a policy and may not foresee the
consequences of composing several policies. To improve confidence, both logic-
based languages and verification techniques have been set up, as well as security
analysis concepts. Our approach is in the line of logic-based languages providing
a well-understood formalism, amenable to verification, proof and analysis.

We specify secured systems as transition systems whose states record the
relevant security information in the current environment, and whose transitions
model their changes. Security policy authorisations guard the transitions. Guards
are constraints that are solved in the current state. The transition occur only
when the constraint is satisfied and the changes may take into account the solu-
tions of the constraint. In this context, the system and the policy that restrict
it are given separately, but share a common language. Contrary to close related



work (such as TLA [16]), this modular design allows to plug-in different security
policies and to compare them. Transition rules and constraints are expressed in
first-order logic. Many security properties can then be expressed as invariants of
the transition system and verified: invariants are first-order formulae that should
hold in any state of the system restricted by the policy.

Our main contribution is to show how to synthesise security policies that
enforce given invariants. Using abduction, the method consists in trying to prove
the desired properties - invariants - and inspecting failed proof attempts to
guess security policies. While current approaches on security analysis use formal
methods to validate already existing security policies, invariant-guided abduction
helps designing policies and thus allows using formal methods much earlier in
the process of building secured systems. The modular design of system and
policy described above is essential for the abduction algorithm, that requires
that the system’s states and transitions are defined before generating policies.
Our approach uses first-order deduction: it can be implemented in frameworks
using transition systems and whose proof obligations can be discharged with
sequent calculus (such as TLA [16] or B [3]).

In Sec. 2, we define secured systems and security policies using standard
first-order logic. In Sec. 3, we show how to prove invariants of secured systems
inductively. In Sec. 4, we present our abduction algorithm that proposes possible
security policies satisfying by construction such invariants. We also provide some
heuristics for choosing between different possibilities, when any. In Sec. 5, the
synthesis method is illustrated on a role-based access control (RBAC) system.
Finally, we discuss related work and give further perspectives in Sec. 6.

2 Secured systems and security policies

In order to model security policies applied to a system, we choose to model the
part of information in the system relevant to security as a state, the evolution
of this information as a transition relation, and the policy as a constraint that
restricts the transition relation.

For instance in a role-based access control (RBAC) [24, 12, 18] policy, the
state is built from current information on users, sessions, roles, inheritance rela-
tion; the transition relation is defined from events like create a session or assign

a role whose parameters are abstractly defined but should instantiate on actual
users, sessions, roles... in the current state where the event occurs; the effect of
a transition triggered by an event create a session is to modify the current state
of information for instance by opening a session for a current user and giving
him a list of actual roles. The security policy should constrain this transition to
cases where the session is not yet opened and the actual roles are allowed for the
current user in the current state where the event occurs.

In this approach the transition rules and the policy constraints are speci-
fied abstractly with first-order formulae but their evaluation is performed in a
changing environment which is the current state of information in the system.



A specification SP consists of a signature Σ = (S,F ,P) with a set of sorts S,
a set of functions F , a set of predicates P, together with a set of Σ-formulae T.
Because in this paper, the functions purpose is only to build events, we require:
(1) S contains a sort Event, (2) functions and predicates do not have Event in
their domains, and (3) functions all have Event as co-domain.

Lists of variables (x1, . . . , xn) are denoted simply x, f(x) (resp. p(y)) denotes
f(x1, . . . , xn) (resp. p(y1, . . . , ym)) when f is a function of Σ of arity n, (resp. p

is a predicate of arity m), and x = x� denotes component-wise equality of lists
of variables.

For example, the specification of a RBAC system [24, 12, 18] can be given as
follows:

sorts S ∆=
�

User ,Role,Roles

Session, Event

�
predicates P ∆=






UR : User × Role

user : Session ×User

role : Session × Role

≤ : Role× Role






functions F ∆=






createSession : User × Session × Roles → Event

addActiveRole : User × Session × Role → Event

dropActiveRole : User × Session × Role → Event

deleteSession : User × Session → Event

assignRole : User × Role → Event

addInheritance : Role × Role → Event






theory T ∆=






∀x.x ≤ x

∀x y z.x ≤ y ∧ y ≤ z ⇒ x ≤ z

∀x y.x ≤ y ∧ y ≤ x ⇒ x = y

∀u r r
�
.UR(u, r) ∧ r

� ≤ r ⇒ UR(u, r
�)






SPRBAC
∆= ((S,F ,P), T)

To keep the specification small, we omit objects and operations, as well as ad-
ministrative commands and review functions [18]. Predicate UR(u, r) indicates
that role r is assigned to user u; user(s, u) (SU in [18]) indicates that user u

opened session s; role(s, r) (SR in [18]) indicates the set of roles activated by
session s’ user; and ≤ (INH in [18]) specifies the hierarchy between roles. Func-
tions specify events. The theory states that ≤ is an order and axiomatizes the
hierarchy of roles.

The states of the system are first-order SP-interpretations I that map sorts
and predicates into sets. We refer to [8] for the precise definitions. Because in
this paper, functions only represent events, they do not appear in formulae and
we can leave them uninterpreted.

Fig. 1 shows an SPRBAC -interpretation: IRBAC . It represents the state of a
system where the set of users includes Bob, role Secretary is assigned to Bob, Bob

opened session 0 and Bob associated roles Secretary and Worker with session 0.



IRBAC
∆=

8
>>>>>>>><

>>>>>>>>:

User �→ {Alice,Bob}
Role �→ {Secretary ,Worker}

Session �→ N
UR �→ {(Alice,Worker), (Bob,Secretary)}
≤ �→ {(Worker ,Secretary)}

user �→ {(0,Bob)}
role �→ {(0,Secretary), (0,Worker)}

9
>>>>>>>>=

>>>>>>>>;

Fig. 1. Definition of a SPRBAC -interpretation: IRBAC

2.1 Transitions

The transition rules of the system describe the evolution of the states when
specific events occur.

Definition 1 (Transition rule). A transition rule (or simply rule) over a

specification SP is a pair “f(x) : action” where:

1. f(x) is called the pattern and variables in x are called parameters;

2. action is a •-separated list of atomic actions of the form p(y) | φ or ¬p(y) | φ.

In an action p(y) | φ, some variables in y may be parameters, and φ’s free

variables must occur in x∪y (similarly for negated atomic actions). Given a

transition rule r, we denote by pattern(r) (resp. action(r)) the pattern (resp.

the action) of r.

The separator between actions (•) can be understood as a conjunction: the
effect of act1 • act2 is the effect of performing act1 and act2. Intuitively, the
atomic action p(y) | φ (resp. ¬p(y) | φ) means that the interpretation of predicate
p is made true (resp. false) for instances of free variables in y that satisfy φ. When
φ is the true formula �, we simply write p(y) instead of p(y) | �.

A transition rule f(x) : action is triggered when a specific event f(t) oc-
curs: this event is an instance of the rule’s pattern by a substitution that must
instantiate all parameters by constants.

In order to express easily the relation between two consecutive interpretations
(given later in Def. 3), we assume that for any transition rule, for any predicate
p, p appears at most once in the event’s action (similarly for ¬p). This is not
a real restriction, because an action of the form p(y0) | φ • p(y1) | ψ can be
written as p(y) | (y = y0 ∧ φ) ∨ (y = y1 ∧ ψ).

As an example, Fig. 2 lists the transitions for the role-based access control
system (RBAC).

For later developments, we need to formalise that actions reflect the effect
of a transition on a state. We do this by specifying the relation between a given
state and its successor with a first-order formula built from the transition rule’s
actions. This relation consists of three parts: facts set to true, facts set to false,
and facts unchanged.

Before giving the relation between consecutive states in details, we define the
semantics of these relations. This semantics is adapted from TLA [16]. Given two



createSession(u, s, rs) : user(s, u) • role(s, r0) | r0 ∈ rs
addActiveRole(u, s, r) : role(s, r)

dropActiveRole(u, s, r) : ¬role(s, r)
deleteSession(u, s) : ¬user(s, u) • ¬role(s, r0)

assignRole(u, r) : UR(u, r)
addInheritance(r0, r1) : r0 ≤ r1

Fig. 2. Transition rules: pairs of a pattern and a list of (action | condition)

consecutive states I and I �, we follow TLA’s convention of using non-primed
(resp. primed) formulae to indicate formulae interpreted w.r.t. I (resp. I �).

Definition 2 (Two-states relations and their interpretation). Let I and

I � be two SP-interpretations. A two-states relation on I and I � is a formula that

can contain both non-primed and primed predicates. Non-primed predicates are

interpreted by I while primed predicates are interpreted by I �. Formally:

I; I � |= p(t1, . . . , tn) iff I(p)(t1, . . . , tn) = �
I; I � |= p

�(t1, . . . , tn) iff I �(p)(t1, . . . , tn) = �
I; I � |= ¬p(t1, . . . , tn) iff I(p)(t1, . . . , tn) = ⊥
I; I � |= ¬p

�(t1, . . . , tn) iff I �(p)(t1, . . . , tn) = ⊥

where the ti’s are variables or constants. Connectors and quantifiers interpreta-

tions are similar to the single-state case. As before we leave functions uninter-

preted, because our formulae do not include function symbols (even though we

use functions to represent events).

We write φ
� to denote formula φ where all predicates have been primed. The

formula φ
� can also be seen as a formula in temporal logic where, instead of

priming predicates, they would be enclosed by a next operator X.
To simplify the generation of the relation between two consecutive states (see

Def. 3), we suppose that actions are put in some normal form. Given a transition
rule f(x) : action, action is normalised iff for any p(y) | φ appearing in action,
we have y ∩ x = ∅ (similarly for negated actions). Actions are normalised using
the following rewrite system:

p(y0, x, y1) | φ → p(y0, y, y1) | y = x ∧ φ where y is a fresh variable
¬p(y0, x, y1) | φ → ¬p(y0, y, y1) | y = x ∧ φ where y is a fresh variable

Definition 3 (Relation between consecutive states). The relation between

a SP-interpretation I and its successor I � after a transition r is a first-order for-

mula denoted by relation(r). built by inspecting the effect of action(r) on predi-

cates declared in SP. Let r be “f(x) : act”. For each predicate p : S1 × · · · × Sm

declared in SP, we define:

relationp(r) ∆=
�
∀y.φ ⇒ p

�(y) if p(y) | φ ∈ act

� if p(y) | φ �∈ act



relation
¬
p (r) ∆=

�
∀y.φ ⇒ ¬p

�(y) if ¬p(y) | φ ∈ act

� if ¬p(y) | φ �∈ act

relation
equiv
p (r) ∆=






∀y.¬φ ∧ ¬ψ ⇒
�
p
�(y) ⇔ p(y)

�

if p(y) | φ ∈ act and ¬p(y) | ψ ∈ act

∀y.¬φ ⇒
�
p
�(y) ⇔ p(y)

�

if p(y) | φ ∈ act and ¬p(y) | ψ �∈ act

∀y.¬ψ ⇒
�
p
�(y) ⇔ p(y)

�

if p(y) | φ �∈ act and ¬p(y) | ψ ∈ act

∀y.p
�(y) ⇔ p(y)
if p(y) | φ �∈ act and ¬p(y) | ψ �∈ act

Above, as explained in Def. 2, predicate p
� is interpreted as predicate p in inter-

pretation I �. Finally, the relation between two consecutive states is:

relation(r) ∆= ∃x.
�

p∈ SP relationp(r) ∧ relation
¬
p (r) ∧ relation

equiv
p (r)

For later convenience, we define:

quantifiers(r) ∆= ∃x
relation

updt
�∃ (r) ∆=

�
p∈ SP relationp(r) ∧ relation

¬
p (r)

relation �∃(r) ∆=
�

p∈ SP relationp(r) ∧ relation
¬
p (r) ∧ relation

equiv
p (r)

2.2 Secured Systems

In our framework, transition systems over structures are simply called systems.
Security policies restrict possible transitions to obtain secured systems. This
section defines these components.

Definition 4 (System). Given a specification SP, a formula init representing

initial conditions, and a set τ of transition rules; the system S = �SP, init, τ� is

the transition system such that:

– the set of initial states is: {I0 | I0 is an SP-structure and I0 |= init}.
– the transition relation

evt−−→
S

is such that, for any event evt = σ(pattern(r))
with r ∈ τ , I evt−−→ I � whenever I; I � |= σ(relation(r)).

Definition 5 (Security policy). Given a specification SP, a security policy ℘

is a function that maps all patterns to SP-formulae. Given a SP-interpretation

I, a policy ℘, a transition rule r, and an event evt = σ(f(x)) = σ(pattern(r)),
evt is authorised by ℘ in I iff I |= σ(℘(f(x))) holds.

Fig. 3 shows how to define policy ℘RBAC for the RBAC system given before.
Let us suppose that the event createSession(Alice, 0, {Secretary ,Worker})
occurs in an RBAC system whose state is interpretation IRBAC given in Fig. 1.
The policy checks if the following holds:

IRBAC |=
�

∀u0.¬user(0, u0) ∧ ∀r0.¬role(0, r0)
∧∀r0.r0 ∈ {Secretary ,Worker} ⇒ UR(Alice, r0)

�



℘RBAC
∆=

8
>>>>>>>><

>>>>>>>>:

createSession(u, s, rs) �→
„

∀u0.¬user(s, u0) ∧ ∀r0.¬role(s, r0)
∧∀r0.r0 ∈ rs ⇒ UR(u, r0)

«

addActiveRole(u, s, r) �→ user(s, u) ∧UR(u, r)
dropActiveRole(u, s, r) �→ user(s, u) ∧ role(s, r)

deleteSession(u, s) �→ user(s, u)
assignRole(u, r) �→ �

addInheritance(r0, r1) �→ ¬(r1 ≤ r0)

9
>>>>>>>>=

>>>>>>>>;

Fig. 3. Policy for RBAC

But this does not hold, because user(0,Bob) in IRBAC contradicts the first
conjunct. Having 1 as createSession’s second parameter in the event would
make it hold.

Definition 6 (Secured system). Given a system S = �SP, init, τ� and a pol-

icy ℘, we denote by S|℘ = �SP, init, τ�℘ the ℘-secured system built from S. S|℘
is the transition system such that:

– the set of initial states is: {I0 | I0 is an SP-structure and I0 |= init}
– the transition relation

evt−−→
S

℘ is such that, for any event evt = σ(pattern(r))
with r ∈ τ :

I evt−−→
S

℘ I � iff I evt−−→
S
I � ∧ I |= σ(℘(pattern(r)))

Let
∗−→S

℘ denote the reflexive transitive closure of this transition relation.

3 Invariants of Secured Systems

Because secured systems are transition systems, they support reasoning about
temporal formulae, in particular invariants. Formally, given a secured system
S|℘ = �S, init , τ�℘, formula φ is an invariant of S|℘ (written S|℘ |= �φ) if
for any initial state I0, I0 |= φ and ∀ I.I0

∗−→S
℘ I ⇒ I |= φ. Like in TLA, an

invariant can be checked inductively i.e. by checking that it is true in the initial
state and it is preserved by every step of the transition system. In Definition 3,
we wrote the relation that exists between I and I � when I σ(pattern(r))−−−−−−−−→ I �: it
is relation �∃(r). Furthermore, the security policy forces I |= σ(℘(pattern(r))) to
hold. By generalizing over all possible events (i.e. over σ), we have to prove:
init ⇒ φ and for any r ∈ τ :

φ ∧
�
quantifiers(r).relation �∃(r) ∧ ℘(pattern(r))

�
⇒ φ

� (INV)

Using this method, we can prove that the RBAC system shown before, se-
cured by policy ℘RBAC , enforces the invariant that sessions are either unassigned
or assigned to a unique user:

∀s.(∀u.¬user(s, u)) ∨ (∃! u.user(s, u))



For example, to prove that Fig. 2’s transition rule createSession preserves this
invariant,we have to prove:

∀s0.(∀u0.¬user(s0, u0)) ∨ (∃! u0.user(s0, u0))
�

φ

∧ ∃u s rs.
�

quantifiers(r)
user �(s, u) ∧ ∀r0.r0 ∈ rs ⇒ role

�(s, r0)
∧∀s0 u0.s0 �= s ∨ u0 �= u ⇒ (user �(s0, u0) ⇔ user(s0, u0))
∧∀s0 r0.s0 �= s ∨ r0 �∈ rs ⇒ (role �(s0, r0) ⇔ role(s0, r0))
∧∀u0 r0.UR

�(u0, r0) ⇔ UR(u0, r0)





relation �∃(r)

∧
�

∀u0.¬user(s, u0) ∧ ∀r0.¬role(s, r0)
∧∀r0.r0 ∈ rs ⇒ UR(u, r0)

� �
℘(pattern(r))

⇓
∀s0.(∀u0.¬user �(s0, u0)) ∨ (∃! u0.user �(s0, u0))

�
φ
�

This implication can be proven with any theorem prover that accepts first-
order logic with equality and set theory. Alternatively, the RBAC system and
its security policy can be encoded in TLA [16] or B [3], and this invariant can
be proven using these tools.

4 Abduction algorithm

In this section, we present our abduction algorithm. In Sec. 4.1, we show a
standard abduction algorithm for first-order logic and sequent calculus based on
Mayer and Pirri [19]. In Sec. 4.2, we show how our application domain helps in
selecting good candidate security policies3 for abduction, then in Sec. 4.3, we
show how it helps generating additional candidates.

We assume here that we have a proof search procedure in first-order logic.
Given SP = (Σ, T), we write φ �SP ψ to denote that φ and the theory T entail
ψ. We omit the SP subscript when it is clear from the context. We require the
proof search procedure to be correct w.r.t. |=, i.e.:

if φ �(Σ,T) ψ then T |= φ ⇒ ψ

4.1 Abduction Problem

An abduction problem in our application domain is a triple �SP; τ ;φ� where φ is
an invariant that should be respected by any system S = �SP, init , τ�. A solution
to this abduction problem is a policy ℘ that associates to each transition rule
r ∈ τ a SP-formula such that transitions of any secured system S|℘ preserves φ.
This means that for any r ∈ τ , ℘ must satisfy:

φ ∧
�
quantifiers(r).relation �∃(r) ∧ ℘(pattern(r))

�
⇒ φ

�

3 Abduction is mainly used in the AI community, where the term explanation denotes
abducted formulae. In this paper, however, we prefer the term “candidate policy”
or “candidate”.



Following Mayer and Pirri [19], we use unfinished proofs in classical natural
deduction (specifically NK [13]) to find an appropriate ℘(pattern(r)) above. A
sequent ς in natural deduction is a construct of the form ψ1, . . . , ψn � ξ where
ψ1, . . . , ψn are hypotheses and ξ is the goal. In other terms, such a sequent can
be interpreted as the implication ψ1 ∧ · · · ∧ψn ⇒ ξ. With Γ ranging over sets of
formulae, we sometimes write sequents Γ � ξ.

Given a sequent, proof trees are built using inference rules [13]. In a proof
tree, a leaf is closed if it is an axiom. Otherwise it is open. We say that a formula
ψ is the candidate policy of an open leaf ς, if adding ψ to ς’s hypotheses closes ς.
Usually [19], a candidate policy of an open leaf ς is ς’s goal or the negation of an
hypothesis of ς. This definition of candidate policy, however, is too coarse for our
application domain. That is why we add contexts in order to complete candidate
policies with the part of the hypotheses involving non-parameter variables:

Definition 7 (Context of a formula). Given a transition rule r, a sequent

ψ1, . . . , ψn � ξ, and a formula ϕ; the context of ϕ in ψ1, . . . , ψn � ξ (written

ctx(r, {ψ1, . . . , ψn}, ϕ)) is a formula of the form Q1 x1 . . . Qn xn. ζ ⇒ ϕ such that

(1) ζ is a conjunction of the formulae ψi (1 ≤ i ≤ n) that contain ϕ’s variables

that are not parameters of rule r and (2) Q1 x1, . . . , Qn xn quantify over those

variables.

For example, given r = createSession(u, s, rs), we have:

ctx (r, {u0 �= u, u0 �= Bob}, user(s, u)) ∆= user(s, u)
ctx (r, {u0 �= u, u = Bob}, user(s, u0)) ∆= ∀u0.u0 �= u ⇒ user(s, u0)
ctx (r, {u0 �= u, s0 = s}, user(s0, u0)) ∆= ∀s0 u0.u0 �= u ∧ s0 = s ⇒ user(s0, u0)

Computing contexts consists in (1) gathering hypotheses about non-parameter
variables in candidate policies (variables that are not quantified and that are not
parameters of the event) and (2) quantifying appropriately these variables. Point
(2) is similar to reverse skolemization [9, 19]. Because later use of contexts is no
more complex than the above examples and because computing contexts is or-
thogonal to this paper’s topic, we do not detail it. Computing contexts is useful
to return weaker security policies in the following sense: for any r, Γ and ϕ, if
ctx (r, Γ, ϕ) = Q1x1, . . . , Qnxn.ζ ⇒ ϕ, we have ϕ ⇒ (ζ ⇒ ϕ).

Candidate policies are built in two ways:

Definition 8 (Positive candidate policy). Given an abduction problem

�SP; r;φ�, the positive candidate policy of the open leaf Γ � ξ is ctx(r, Γ, ξ) ⇒ ξ.

Definition 9 (Negative candidate policies). Given an abduction problem

�SP; r;φ�, the set of negative candidate policies of the leaf Γ � ξ is:

{ϕ | ϕ = (ctx(r, Γ, ψ) ⇒ ¬ψ) and ψ ∈ Γ}

Candidate policies are used to build solutions to abduction problems:

Definition 10 (Solution to an abduction problem). Given an abduction

problem �SP; r;φ�, and a proof tree of φ∧ (quantifiers(r).relation �∃(r)∧℘(r)) � φ
�

whose open leafs are ς1, . . . , ςn, a solution to the abduction problem consists of:



1. n non-empty sets of formulae Γ1, . . . , Γn such that for any 1 ≤ i ≤ n, Γi is

the set of (positive and negative) candidate policies of leaf ςi.

2. A choice function � such that �(Γi) ∈ Γi.

Given those two elements, a policy preserving invariant φ when transition r

fires in a system �SP, init, r� is ℘ = {pattern(r) �→ ε(Γ1) ∧ . . . ∧ ε(Γn)}. This

definition generalises straightforwardly to systems with multiple transition rules.

When abducting policies for systems with multiple transitions, we can obtain
contradictory policies (such as policy ψ for an event and policy ¬ψ for another
event). While we provide no way - in this paper - to detect such inconsistent
policies (because our approach is per transition), this could be detected by ad-
ditional semantical checks involving candidate policies abducted for different
events. This problem does not harm, however, the soundness of our approach.

Theorem 1 (Correctness of abduction). Given a system S = �SP, init, τ�,
a solution ℘ to the abduction problem �SP; τ ;φ� and a proof that S’s initial states

satisfy invariant φ (i.e. SP |= init ⇒ φ); then S|℘ |= �φ.

While Def. 10 shows how to build a policy preserving an invariant, it can be
improved in two ways. First, some candidate policies are not acceptable in our
framework and must be filtered out. Second, for abduction to succeed all sets
of candidate policies Γ1, . . . , Γn must be non-empty. If the brute force method
does not allow to close all branches, more candidates have to be found. Sec. 4.2
and Sec. 4.3 tackle these two problems.

4.2 Domain-specific filtering of candidate policies

Because abduction is all about finding good candidate policies, we now define
various filtering criteria that exclude “bad” candidates.

The first level of filtering eliminates candidate policies syntactically. Syntac-
tical filtering rules out policies that are unrelated to the transition considered
or that constrain the next state. E.g, filtering forbids invariants to be candidate
policies, because invariants do not have free variables.

Definition 11 (Acceptable candidate policy). Formula ψ is an acceptable
candidate policy for the abduction problem �SP; r;φ� iff all the following condi-

tions hold:

1. At least one parameter of rule r occurs in ψ as a free variable.

2. ψ contains a user-defined predicate.

3. ψ contains no primed predicate.

The second level of filtering eliminates candidate policies semantically, be-
cause it requires proof search. Intuitively, we should check that a candidate
policy ψ is not a consequence of the transition’s action. Otherwise, having this
candidate as a policy would mean “require ψ to be true before setting ψ to true“.



Definition 12 (Good candidate policy). Formula ψ is a good candidate
policy for the abduction problem �SP; r;φ� iff the following formula holds:

¬(quantifiers(r).relationupdt
�∃ (r) ⇒ ψ

�)

The two levels of filtering eliminate some candidate policies in Def. 10. Instead
of considering all candidates of open leafs, we consider only good candidates. Yet,
it is possible to get several good candidates so that some choice must be made.
In this case, we order candidate policies to help make this choice.

Definition 13 (Order on candidate policies). A choice strategy is a func-

tion f whose domain is the set of formulae and whose range is some set R such

that there is a relation ≤R such that (R,≤R) is a partial order. We say that ψ

is a better candidate policy than φ if f(φ) ≤ f(ψ).

A standard order (called minimality [19, Sec. 1.1]) is the function f such that
f(φ) ≤ f(ψ) iff φ � ψ. While this order is powerful, it is only partial (there are
φ and ψ such that φ � ψ and ψ � φ). Due to our application domain, however,
we can provide other orders. For example, cheap total orders include the func-
tions that count the number of free or quantified variables in candidate policies.
Intuitively, such orders are useful because - in our application domain - (1) Free
variables in candidate policies are parameters of transition rules (e.g. u, s, and
rs in createSession’s policy in Fig. 3). Because policies typically constrain pa-
rameters of transition rules, best candidate policies maximise the number of free
variables. (2) Universally quantified variables occur as arguments of predicates
(e.g. u0 and r0 in createSession’s policy in Fig. 3). Because this often indicates
too strong candidate policies, best candidates minimise the number of univer-
sally quantified variables. As usual, such orders can be combined. For example,
let f (resp. g) be the function of type Formula → N that counts free (resp.
universally quantified) variables in formulae. A cheap and useful order is the
syntactical lexicographical order ≤vars built from f and g:

φ ≤vars ψ iff f(φ) < f(ψ) or
�
f(φ) = f(ψ) and g(φ) > g(ψ)

�

Orders on candidate policies may already arise in Def. 10, because the choice
function ε can be defined in terms of orders. Typically, ε must satisfy: ∀Γ.∀ψ ∈
Γ.ε(Γ ) ≤ ψ.

4.3 Domain-specific generation of candidate policies

As Def. 10 shows, abduction fails if one open leaf does not have any candidate
policy. In this section, we show how to avoid some failures of abduction by gen-
erating more candidates than the standard techniques given in Def. 8 (positive
candidates) and Def. 9 (negative candidates).

First, we show how our application domain allows the generation of additional
negative candidate policies.



Definition 14 (Additional negative candidate policies). Given an abduc-

tion problem �SP; r;φ� and an open leaf Γ � ξ, the set of negative candidate
policies of this leaf is:

�
ϕ

����
ϕ = (ctx(r, Γ, ψ) ⇒ ¬ψ), ζ ∈ Γ, Γ ⇒ ψ holds,

and ψ is ζ where primes have been removed

�

Def. 14 tries to “guess” negative candidate policies by removing primes
from hypotheses of open leafs. This guessing is motivated by three reasons
specific to our application domain. First, hypotheses of sequents often contain
primed predicates. This stems from the fact that invariants often have the form
Q1 x1 . . . Qn xn.ψ

� ⇒ ξ
� where Q1, . . . , Qn are quantifiers and ψ

� and ξ
� are quan-

tifier free. Because proofs of such formulae typically follow the pattern:

ψ
� � ξ

�
⇒-R� ψ

� ⇒ ξ
�

(Quantifier elimination)
� Q1 x1 . . . Qn xn.ψ

� ⇒ ξ
�

primed formulae (e.g. ψ
�) end up in hypotheses. The second reason that mo-

tivates Def. 14 is that candidate policies should contain no primes. The third
reason is that formulae obtained after removing primes can often be proved,
because - by construction - proof obligations contain equivalences between non-
primed and primed predicates (see Def. 3) as hypotheses.

Second, we show how to generate additional positive candidate policies. To
do this, we impose the proof search algorithm to follow a general pattern, which
is guided by our application domain. First, let us recall that proof obligations in
our framework have exactly this form:

φ ∧ (quantifiers(r).relation �∃(r) ∧ ψ) ⇒ φ
�

Now, suppose that the invariant φ is in prenex form i.e. it has the form
Q1 x1, . . . , Qn xn.ξ where ξ is quantifier free and Q1, . . . , Qn ∈ {∀,∃}. This
is not a restriction, because any first-order formula can be transformed into
an equivalent prenex formula.Furthermore, we know that quantifiers(r) is a se-
quence of existential quantifiers (see Def. 3). Therefore, we impose the proof
search to start as follows: (1) remove the top-level implication, (2) remove all
quantifiers in front of φ

�, (3) split the conjunction in the hypotheses, (4) remove
all quantifiers in front of quantifiers(r).relation �∃(r) ∧ ψ, and (5) perform case
splits on equality and membership between variables introduced in steps 2 and
4.

To help the reader understand this proof strategy, we illustrate it for a tran-
sition rule with a single parameter y and the invariant ∀x, x.φ. We abbreviate
relation �∃(r) ∧ ψ by ξ:

Step (5)

y = x, y �∈ x, φ, ξ � φ� y = x, y ∈ x, φ, ξ � φ� y �= x, y �∈ x, φ, ξ � φ� y �= x, y ∈ x, φ, ξ � φ�

φ, ξ � φ�
Step (4)

φ, ∃y. ξ � φ�
Step (3)

φ ∧ ∃y. ξ � φ�
Step (2)

φ ∧ ∃y. ξ � ∀x, x.φ�
Step (1)

� φ ∧ ∃y. ξ ⇒ ∀x, x. φ�



Why is this proof search pattern relevant for our application domain ? To
answer this question, suppose we want to enforce invariant ∀x.p(x). In events
that modify the truth value of p(y) for some y, the proof of the invariant will
perform a case split: (1) show that p(x) holds for any x �= y and (2) show that
p(y) holds. Typically, goal (1) follows from the hypotheses that the invariant
holds before the event (because the truth value of p(x) is unchanged in the
transition); while goal (2) follows from the policy (because the truth value of
p(y) is changed by the transition). Doing case split in low positions in proof
trees impacts abduction in two ways: first, it helps generating good candidate
policies, because the generated proof trees distinguish between parameters of the
transition rule from other variables; this mirrors the fact that policies constrain
differently parameters of transition rules and other variables (as all rules of
Fig. 3’s RBAC policy exemplify). Second, having case splits in proof trees permits
to gather positive candidate policies in lower positions than open leaves, as we
detail in the next paragraphs.

To justify how to find additional positive candidate policies, let us consider
rule ⇒-E of the sequent calculus:

ψ1, . . . , ψn � ξ ⇒ ϕ ψ1, . . . , ψn � ξ
⇒-E

ψ1, . . . , ψn � ϕ

Rule ⇒-E means: to prove ϕ when ξ ⇒ ϕ holds, it suffices to prove ξ. In this
inference rule, ϕ can be seen as the reason why ξ appears as a goal.

Definition 15 (Additional positive candidate policy). Given an abduction

problem �SP; r;φ� and an open leaf Γ � ξ, the corresponding positive candidate
policy is obtained as follows:

– If ctx(r, Γ, ξ) ⇒ ξ is a good candidate, it is the positive candidate policy.

– Otherwise, the positive candidate policy is the goal of the first sequent (below

the open leaf and above case splits involving parameters from the transition

rule) whose inference rule is ⇒-E and whose goal is a good candidate policy.

Def. 15 means that if the goal of the open leaf is inappropriate, the algorithm
looks for the reason why this branch of the proof tree has been started during
proof search and returns this reason as the positive candidate policy.

Collecting positive candidate policies by traversing proof trees from top to
bottom can be inadequate if it goes all way down to the root of the proof tree
(i.e. the root’s goal is taken as the leaf’s positive candidate policy). Because we
impose a proof strategy, however, we can stop traversing the proof tree from
top to bottom when a case split involving parameters of the transition rule is
encountered. This avoids returning the desired invariant as candidate policy.
Furthermore, because proof trees occurring above case splits represent radically
different cases, candidate policies for a given open leaf should not be chosen
below a case split: such a candidate would not be specific to the open leaf’s case.



5 Case study: Role-based access control systems

We show how to synthesise a policy for event createSession(u, s, r) that enforces
the invariant that activated roles are assigned to users:

∀s u r.user(s, u) ∧ role(s, r) ⇒ UR(u, r)

Given the effect of event createSession(u, s, r) (it is user(s, u)• role(s0, r0) | s0 =
s ∧ r0 ∈ r as shown in Fig. 2), abduction consists in finding ψ such that:

∀s0 u0 r0.user(s0, u0) ∧ role(s0, r0) ⇒ UR(u0, r0)
�

φ

∧∃u s r.

user �(s, u) ∧ ∀r0.r0 ∈ r ⇒ role
�(s, r0)

∧∀s0 u0.s0 �= s ∨ u0 �= u ⇒
�
user �(s0, u0) ⇔ user(s0, u0)

�

∧∀s0 r0.s0 �= s ∨ r0 �∈ r ⇒
�
role

�(s0, r0) ⇔ role(s0, r0)
�

∧∀u0 r0.UR
�(u0, r0) ⇔ UR(u0, r0)

∧ψ






hyps[1, . . . , 5]

⇓
∀s0 u0 r0.user �(s0, u0) ∧ role

�(s0, r0) ⇒ UR
�(u0, r0)

�
φ
�

We detail a classical proof trial of the formula above (see this trial in Coq [1])
that follows all steps of the proof search strategy defined in 4.3. In this example,
this strategy transforms the goal into 8 subgoals:

(1) hyps ∧ s0 = s ∧ u0 = u ∧ r0 ∈ r � user �(s, u) ∧ role
�(s, r0) ⇒ UR

�(u, r0)
(2) hyps ∧ s0 = s ∧ u0 = u ∧ r0 �∈ r � user �(s, u) ∧ role

�(s, r0) ⇒ UR
�(u, r0)...

(8) hyps ∧ s0 �= s ∧ u0 �= u ∧ r0 �∈ r � user �(s0, u0) ∧ role
�(s0, r0) ⇒ UR

�(u0, r0)

We now show how a typical proof trial for subgoal (1) proceeds. In our
application domain, a standard proof search strategy is to prove goals con-
taining primed predicates by transforming them into non-primed predicates.
This is reasonable, because we have equivalences between primed and non-
primed predicates in hypotheses. This works, because our hypotheses (the in-
variant and policies) are not-primed. This proof search strategy proceeds as
follows on subgoal (1) (where we omit some trivial leafs and where ξ abbreviates
s0 = s ∧ u0 = u ∧ r0 ∈ r):

stuck!

φ, hyps, ξ, user �(s, u), role �(s, r0) � user(s, u)
stuck!

· · · � role(s, r0)
∧-I

φ, hyps, ξ, user �(s, u), role �(s, r0) � user(s, u) ∧ role(s, r0) ⇒-E and φ
φ, hyps, ξ, user �(s, u), role �(s, r0) � UR(u, r0)

⇒-E and hyps[5]
φ, hyps, ξ, user �(s, u), role �(s, r0) � UR�(u, r0)

⇒-I
φ, hyps, ξ � user �(s, u) ∧ role �(s, r0) ⇒ UR�(u, r0)

Proof search is stuck in two leafs, because each respective goal is a non-primed
predicate, and no hypothesis matches it. We detail how the candidate policies for
the left open leaf are obtained (the case of the other leaf is similar). This leaf’s



goal (user(s, u)) is an acceptable positive candidate: it contains only non-primed
user-defined predicates and two variables of the event (s and u). It is not, how-
ever, a good candidate, because it is incompatible with createSession’s actions:
createSession sets user(s, u) to true. Incompatibility is detected by proving the
following formula (where moustaches refers to Def. 12 to show how the sequent
is built systematically):

¬
quantifiers(createSession(u,s,r))

� �� �
∃u s r.

relationupdt
�∃ (createSession(u,s,r))

� �� �
user

�(s, u) ∧ ∀r0.r0 ∈ r ⇒ role
�(s, r0) ⇒

ψ�

� �� �
user

�(s, u)

Because the candidate policy user(s, u) is not a good one, we use Def. 15 to
look for other candidates in lower positions in the proof tree (as indicated by
grey background). Because the positive candidate policy ∀r0.r0 ∈ r ⇒ UR(u, r0)
(built from the goal UR(u, r0) and the goal’s context) (1) is under an application
of rule ⇒-E and (2) is a good candidate, it is returned by the algorithm.

This closes subgoal (1). However, the proof is stuck in subgoal (2) in the
same position as subgoal (1): the resulting proof tree is the same except that ξ

abbreviates s0 = s∧u0 = u∧r0 �∈ r. In this subgoal, the positive candidate policy
∀r0.r0 �∈ r ⇒ UR(u, r0) is produced. In addition, negative candidates are found.
Because user �(s, u) and role

�(s, r0) occur in the leaf’s hypotheses; the provability
of user(s, u) and role(s, r0) are checked (as in Def. 14). Because role(s, r0) is
provable and is good, the negative candidate policy ∀r0.r0 �∈ r ⇒ ¬role(s, r0) is
produced. To recap, after abducting the constraint ∀r0.r0 ∈ r ⇒ UR(u, r0) for
goal (1), one of the two candidate policies below should be chosen for goal (2):

∀r0.r0 �∈ r ⇒ UR(u, r0) or ∀r0.r0 �∈ r ⇒ ¬role(s, r0)

Because choosing the first candidate policy would make the constraint equiv-
alent to ∀r0.UR(u, r0) (which is very restrictive), it indicates that the second
candidate should be chosen. Sec. 4’s syntactical order ≤vars selects the good
candidate if we use the already abducted constraint, because the following holds:

�
∀r0.r0 ∈ r ⇒ UR(u, r0)

∧∀r0.r0 �∈ r ⇒ UR(u, r0)

�
≤vars

�
∀r0.r0 ∈ r ⇒ UR(u, r0)

∧∀r0.r0 �∈ r ⇒ role(s, r0)

�

Choosing the second candidate policy and completing the proof leads to
abduct two candidates: ∀u0 r0.u0 �= u ∧ r0 ∈ r ⇒ UR(u0, r0) and ∀u0.u0 �= u ⇒
¬user(s, u0). The second candidate (which is the “good” one) is automatically
selected by the order ≤vars . This third abduction step suffices to finish the proof.
Finally, the abducted constraint for createSession is the formula ψ below while
the formula ξ is the constraint given in Fig. 3:

ψ
∆=

∀r0.r0 ∈ r ⇒ UR(u, r0)
∧∀r0.r0 �∈ r ⇒ ¬role(s, r0)
∧∀u0.u0 �= u ⇒ ¬user(s, u0)

ξ
∆=

∀r0.r0 ∈ r ⇒ UR(u, r0)
∧∀r0.¬role(s, r0)
∧∀u0.¬user(s, u0)

While the two constraints are close, they are not equivalent. The ξ constraint
entails the abducted constraint ψ (hence the abducted constraint is less restric-
tive). The difference is that the abducted constraint allows a user u to open



twice session s: ψ does not imply ¬user(s, u)∧∀r0.¬role(s, r0). On the contrary
ξ implies ¬user(s, u) ∧ ∀r0.¬role(s, r0) (i.e. ξ requires u not to have opened s

before). The difference between the abducted constraint and the human-written
constraint, however, is not a defect of our abduction algorithm. The difference
stems from the invariant used to guide abduction: this invariant does not forbid
a user to open a session multiple times. We cannot, however, express the invari-
ant that users are forbidden to open a session multiple times, because it is a two
states properties. To support such invariants, we need temporal reasoning (at
least the X operator).

This Section’s examples as well as middle-size additional examples are avail-
able online [1]. These experiments validate our choice of heuristics.

6 Related Work and Conclusion

Related work. Among a rich literature on security policies (see for instance [10]
for policy specification languages), our specification framework is in the line
of logic-based languages providing a well-understood formalism, amenable to
verification, proof and analysis. Close frameworks based on Datalog are [11]
and [5]. In [11] security properties are analysed using model checking formulae
in first-order temporal logic and in [5], sequences of user actions are analysed
with a proof system.

Concerning invariant verification, the closest related work is Lamport’s TLA
[16, 20]. First, like in TLA, the effects of transitions (i.e. actions) are expressed
with first-order formulae. Second, our rules for proving invariants (in Sec. 3)
are similar to TLA’s rules. But contrary to TLA, we do not allow users to write
arbitrary first-order formula as actions: users have to write actions using p(y) | φ
and ¬q(z) | ψ predicates. This permits to have well-structured relations between
two consecutive states. Such well-structured relations simplify the presentation of
our abduction algorithm (see e.g. the use of relation

updt
�∃ in Def. 12). Furthermore,

our language of actions induce relations in first-order logic with equality and set
theory, while TLA’s relations contain non-standard operators (e.g. [17, p. 3]) to
express changes to the interpretation of predicates. Another difference is that,
in TLA, security policies would be specified as part of actions. Consequently, in
TLA, plug-in different security policies and comparing them (for a single system)
is not as easy as in our approach.

Concerning abduction, the closest related work is [19]’s abduction algorithm
for first-order logic. Like Mayer and Pirri, our abduction algorithm uses proof
trees in sequent calculi. However, while Mayer and Pirri’s algorithm gathers
positive justifications by inspecting solely opened leafs, our algorithm has a
top to bottom strategy: it first gathers positive justifications in opened leafs;
but it can also recursively inspect goals in lower positions in the proof tree.
Another crucial difference is that our application domain allows us to define
criteria (Defs. 11 and 12) to filter out undesirable explanations and to classify
possible explanations.



The literature on abduction for logic programs is consequent (see [14, 23, 4,
6, 25] and [15] for a survey). These works use techniques that do not fit our
setting of first-order logic and sequent calculi. Abduction for logic programs
has good termination and completeness result which cannot be achieved in first-
order logic. Russo et al. [23] use abductive logic programming to detect violation
of invariants in event-based systems. Contrary to us, they use abduction in
“refutation mode”, where abducted formulae represent possible violations of
invariants which can be used to modify either the system or the faulty invariant.
To our knowledge, the only other work on abduction for security policies is by
Becker et al. [6] who use abduction for various applications: to write and debug
policies, to explain to users when access is denied, and to compute missing
credentials automatically. While the first application is close to ours; Becker et

al. do not use invariants to guide abduction and they do not tune abduction
with domain-specific hypotheses like we do.

Further work and Conclusion. First, we presented a framework to specify transi-
tion systems restricted by security policies, based on first-order logic. The frame-
work is modular in the sense that the system and the policy that restricts its
transitions are given separately, but using a common language. This gives the
possibility to plug-in different security policies and to compare them.

Second, we proposed an abduction algorithm that infers security policies by
using invariants as guides. These invariants are expressing security properties.
We showed how the specification formalism of transition systems restricted by
policies is appropriate to policy synthesis. From the logical point of view, the
specificities of this application domain naturally induces both syntactic heuristics
and a proof search methodology that allowed us to tune abduction. We have
shown how to filter out explanations not suitable as security policies and how
to generate additional candidates for possible security policies.

Contrary to most previous work on abduction, our approach is based on first-
order logic instead of logic programming. Indeed decidability and complexity
results are harder to obtain, but first-order logic is standard to specify systems,
used for instance in TLA [16] or B [3]. While we do not want to stick to a
specific framework, our algorithm could be adapted without significant effort to
infer part-of TLA’s actions and to infer part-of B’s preconditions.

Future work includes evaluating the quality of our heuristics. This is com-
plex, because these heuristics depend on the proof search strategy, on the way
proof trees are inspected, and on the choice criteria between candidate expla-
nations. For that, we plan to implement the abduction algorithm in existing
theorem provers. This is handy in interactive theorem provers such as Coq [2]
or Isabelle [21] that provide rich interfaces to inspect the proof’s state. The al-
gorithm can also be implemented in automatic theorem provers for first-order
logic based on tableau or sequent calculi [22, 7].

Another advantage of the synthesis approach is its incremental feature. In
this paper, for clarity, we used only one invariant to guide abduction. In practice,
however, systems often have to ensure multiple, often unrelated invariants. Our
abduction algorithm can be easily made incremental to allow multiple invariants.
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