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Contrats probabilistes pour la conception a base
de compostants

Résumé : Nous définissons un cadre formel de contrats probabilistes pour
décrire et analyser des systémes embarqués a base de composants. Ce cadre
formel est fondé sur la théorie des chaines de Markov interactives (IMC). Un
contrat spécifie les hypothéses qu'un composant fait quant & son contexte et
les garanties qu’il fournit. Des transitions probabilistes permettent de raisonner
sur les incertitudes dans le comportement d’'un composant, par exemple pour
modéliser un comportement de type boite noire (choix interne) ou sa fiabilité.
Un modéle d’interaction spécifie la fagn dont des composants interagissent.
Nous fournissons tous les ingrédients pour le flot de conception & base
de composants, incluant (1) la satisfaction et le raffinement de contrat, (2)
la composition paralléle de contrats portant sur des composants disjoints qui
interagissent, et (3) la conjonction de contrats décrivant des comportements
différents d’'un méme composant. Notre cadre formel permet de faire de la
conception compositionnelle grace & la congruence de I'opération de raffinement.

Mots-clés : composant, contrat probabiliste, raffinement, composition
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1 Introduction

Embedded and distributed systems often encompass unreliable software or hard-
ware components, as it may be technically or economically impossible to make
a system entirely reliable. As a result, system designers have to deal with prob-
abilistic specifications such as “the probability that this component fails at this
point of its behavior is less than or equal to 107%”. More generally, uncertainty
in the observed behavior is introduced by abstraction of black-box behavior of
components, the environment, or the execution platform. In this paper, we
introduce a framework for the design of correct systems from probabilistic, in-
teracting components.

Figure [1(a) shows a Link system that transmits data between a Client and
a Server. The Link receives a request from the Client and encodes the request
before sending it to the Server. The encoding process fails with probability 0.02.
After receiving a response from the Server, it decodes the data before delivering
it to the Client. To model components, we use a variant of Interactive Markov
Chain (IMC) framework [9] with discrete time semantics, which combines la-
beled transition systems (LTS) and Markov chains. Figure[1(b) shows an IMC
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fail1 fail2

req rec del' req'
Client (C) Link (L) Server (S)
(a) Client — Link — Server.

fallg /
O 02- - azl .le_’

rec 9§del’rec

(b) The IMC M of the Link.

Figure 1: An example of IMC: a Client-Link-Server.

describing the Link component of Figure [1(a). From its initial state £y, the
Link goes to state £1 as soon as it receives (rec) a request from a Client; the
probability that it delivers (del’) this request to the Server is 0.98 and the prob-
ability that it fails to deliver it to the Server is 0.02. The Link goes to state ¢4
immediately after receiving a response (rec’) from the Server; the probability
that it delivers (del) the response to the Client is 0.95 and the probability of
failing to do so is 0.05. In state fg, the Link may still communicate with the
Server regarding other services, but will not deliver any response to the Client.

Components communicate through interactions, that is, synchronized action
transitions. Interactions are essential in component frameworks because they
allow the modeling of how components cooperate and communicate. We use
the BIP framework [8] to model interactions between components.

Since the deploying context of a component is not known at design time, we
use probabilistic contracts to specify and reason about the correct behaviors of a
component. Contracts were first introduced in [13]. They allow the designer to
specify what a component can expect from its context, what it must guarantee,
and explicitly limit the responsibilities of both.

The framework we propose here allows us to model components, their in-
teractions, and the uncertainty in their observed behavior (§2). It supports the
different steps classically found in a design flow: refinement, satisfaction, and
projection (§3), parallel composition (§4.1), and conjunction (shared refinement)
(§4.2). We prove that these operations satisfy the desired properties of indepen-
dent implementability and congruence for parallel composition, and soundness
for conjunction. The features of our framework are thus the following:

e refinement is compositional, that is, contracts over different components
can be refined and implemented independently;

e the parallel composition of two contracts is satisfied by the parallel com-
position of any two implementations of the contracts; and

e several contracts C; over the same component may be used to indepen-
dently specify different requirements, possibly over different subsets of
the component interactions. The conjunction is a common refinement of

As pointed out in [2], the conjunction of probabilistic specifications is non
trivial, since a straight-forward approach would introduce spurious behaviors.

RR n°® 7328
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2 Components and Contracts

We use Interactive Markov Chains [9] with discrete-time semantics to model the
behavior of components.

Definition 1 (Probability distribution). A probability distribution over a finite
set X is a function f: X — [0,1] such that Z f(z)=1.
reX

Definition 2 (Interactive Markov Chain (IMC)). An IMC'is a tuple
(Q, A, —,m,50) where:

e Q is a nonempty finite set of states, partitioned into QF, the set of prob-
abilistic states, and Q%, the set of action states;

A is a finite alphabet of actions;

e — C Q% x A x Q is an action transition relation;

m: QP — (Q — [0,1]) is a transition probability function such that, for
each s € QP, (s) is a probability distribution over Q;

e 3o is the initial state.

Each action state in Q% may have outgoing action transitions — also called
non-deterministic transitions in the literature — like those in a labeled tran-
sition system (LTS). Each probabilistic state in QP has outgoing probabilistic
transitions like those in a Markov chain. Probability distributions on states
are memoryless, i.e., the future of an IMC depends only on the current state,
not on past choices. For example, in Figure [I[b), the probabilistic choice that
the Link delivers the response to the Client (i.e., m(¢4)(¢5) = 0.95) is indepen-
dent from the probabilistic choice of delivering a request to the Server (i.e.,
m(£1)(¢3) = 0.98).

Notation: For convenience, we sometimes write the transition probability
function 7 as a transition relation --+ C QP x [0, 1] x Q such that:

- ={(sps) [ s € QPN € QAp=m(s)(s')}

Graphically, we only depict the --+ transitions labeled with a non null proba-
bility (see Figure[2(a)).

We introduce contracts as a finite specification for a possibly infinite num-
ber of components modeled by IMCs. In contrast to IMCs, the probabilistic
transitions of a contract are labeled with probability intervals, similar to the
formalism of |10, 17]. Moreover, two distinct states T and L are used to dis-
tinguish the assumptions on the use of the component from the guarantees it
provides.

Definition 3 (Contract). A contract is a tuple (Q, A, —,0,tg) where:

e Q is a nonempty finite set of states, partitioned into @ = QPUQ*U{T, L},
where QP is the set of probabilistic states, Q% is the set of action states,
and T and 1 are distinct states without any outgoing transitions;

e A is a finite alphabet of actions;

RR n°® 7328
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(a) IMC M; for Server (b) Contract Cy for Server

Figure 2: Contract Examples

e — C Q% x A x Q is the action transition relation;

o:QF - (Q — 2[0’1]) is a transition probability predicate, associating
with each pair of states in QP x Q an interval of probabilities;

e ty is the initial state.
Let C = ({L},0,0,0, L) be the inconsistent contract.
Notations: We also write o as a transition relation --» C QP x 201 x Q
such that --» = {(s,P,s') | s € QP As’ € QAP = o(s)(s')}. We write
+
q 5 ¢ if 3p > 0: p € o(q,q") and denote by %" the transitive closure of
5. Graphically, we only depict the % transitions (see Figure [2(b)). Let

== U —>—0+, and let ~~* be the reflexive and transitive closure of ~». A state
q € Q is reachable if and only if ty ~~* gq. A contract is consistent if L is not
reachable.

The meaning of a contract C' over a component M is the following:

e a transition s — T specifies the assumption of the component M that an
interaction involving action a does not occur in state s;

e in an action state s, an action a labeling a transition not leading to T
specifies the guarantee of the component M that a is enabled in s; con-
versely, the absence of any outgoing transition labeled with a specifies the
guarantee that an interaction involving a will not occur;

e the T state represents the fact that the assumption has been violated, and
henceforth, the component M can behave arbitrarily;

e the | state stands for “inconsistent” and means that M cannot satisfy the
contract C' any more;

b . . . e
e a transition s [—a—e] t specifies an interval of allowed transition probabilities,
i.e., the component M has a transition s %5 ¢ with any p € [a,b].

Hypothesis 1. We require that the target states of probabilistic transitions are
action or probabilistic states: if q =5 q then q ¢ {T,L1}.

Example 1. The contract Cs in Figure 2(b) specifies that, after the Server
receives a request req’, the probability that it reaches state t3 is within [0,0.1];
in state t3, it assumes that the environment does not provide req’; if this occurs,

RR n°® 7328
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its implementation is not bound by Cs any more; the probability that it reaches
to from ty is within [0.9,1]; in state to, it guarantees to send a response (res’).
In §3, we show how to check that the IMC M, (in Figure[2(a)) satisfies the
contract Cs.

Vac A, |51 s = 51589
Vp e [0,1], [s1 N sa] = s1 [—pﬁ] 59

Figure 3: Rules for lifting an IMC to a contract.

From the definitions of IMC and contract, we can see that an IMC can
be trivially converted into a contract. For this, we define a lifting operator |.]
(Figure 3). We use the same notation --+ to represent both kinds of probabilistic
transitions (i.e., those in an IMC and in a contract).

[n] = ifn>1thenlelsen
1, ur] 4 [l2,u] = [l + Lo, [ur + ua]] [F1]
[01,u1] % [la,u] = [€1 % l2,uy * us] [F2]
kx[lu] = [kxlk=xu] for k € [0,1] [F3]

Figure 4: Operations on probability intervals.

In Figure[4, we define some useful operations related to probability intervals.
When summing up the upper bounds, the ceiling for a probability value is 1, so
if the summation is greater than 1, we let the result be 1 (operator [.]).

Definition 4 (Delimited contract). A contract C = (Q, A, —,0,tg) is delim-
ited [6] iff Vs € QP, Vs’ € Q, and Vp € o(s)(s'): 1 —p € Z a(s)(s").
s7€Q\{s'}
Definition[4] borrowed from [6], states that, for any probability chosen in any

probabilistic transition’s interval, it is always possible to choose probabilities in
the intervals of all the remaining transitions outgoing from the same state such

that the sum is 1.
a
0.2, Q.;@ 0.2, q.;l@
H@m 0.8 b H@@.zoig] b

(a) Delimited. (b) Non-delimited.

Figure 5: Delimited contract and non-delimited contract.

Example 2. Figure[d(a) shows a delimited contract: for all p € [0,2,0.3], we
can find p’ € [0.7,0.8] such that p+ p' = 1 and vice versa. Figurel5(b) shows
a contract that is not delimited. However, we can cut [6] the redundant sub-
interval [0.8,0.9] from the interval [0.7,0.9] to obtain the delimited contract of
Figure[dl(a).
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3 Contract Refinement

System synthesis involves refining a contract until an implementation is ob-
tained. We therefore define formally the notion of contract refinement.

3.1 Refinement and Satisfaction

We first define contract refinement, and give thereafter some explanations.

Definition 5 (Contract refinement). Let C; = (Q1, A, —1,01,50) and Cy =
(Q2, A, —2,09,tg) be two contracts. A relation < C Q1 X Qs is a simulation if
for all s <Xt we have:

1.s=T = t=T.
2.t=1 = s=1.
3. If (s,t) € QF x (Q3U{T}) then
(a) V' #T € Qq, (t 2, )y = (3¢ €9y, s 18 A8 < t);
(b)) ¥s' € Q1, (s 218) = (t=T V IH € Qy, t Zot' Ns' ).

4. If (s,t) € QF x QF then there exists a function § : Q1 X Qy — [0, 1], which,
for each s’ € Qy, gives a probability distribution §(s’) over Qa, such that
for every probability distribution f over Qi with f(s') € o1(s)(s') and
vVt € Qg,

D F(8)x8(8)(E) € o2(t)(t) and Vs € Qy: (3(s)(t) >0 = ' <)

s'€Qy

o+
5. If (s5,6) € Q% x QF then 3% € Q3 1t =3, t*As < 1% and Vt' € Qa,
(t 25t = s=<t).

+
6. If (s,t) € QF x QF then 35 € QY : s —>—0+1 s*As* <t and Vs € Qy,

(s —>—q>1 s = s < t).

It can be shown that a greatest simulation relation, called refinement and
noted <, exists. Cy refines Cy (written C; < Cs) iff so < to.

In Definition [5] conditions (1) and ensure that C; makes no stronger
assumptions on the context than C5, and that the inconsistent state L is only
refined by itself. Since Definition/5 defines < as the greatest relation, this implies
that for any state s, L. <sand s <T.

Condition (3a) says that any action transition accepted by Cy must also be
accepted by C7. In contrast, action transitions leading to T (i.e., violating the
assumption) do not need to be present in the refinement Cy. This is why we
have V¢’ # T in condition (3a). On the other hand, condition (3b) says that
each action transition of C; must also be enabled in Cs, unless C5 is in the T
state. Condition (4), adapted from [10], deals with refinement among proba-
bilistic states. Intuitively, s <t if there exists a function § that distributes the

RR n°® 7328
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probabilities of transitions from s to all successor states s’ onto the transitions
from ¢ to its successors ', such that the sum of the probability fractions (i.e.,
f(s) % d(s")(t')) is in the range oo (t)(t'); this is illustrated in Example (4.

Condition (5) says that an action state s refines a probabilistic state ¢ if it
refines all action states reachable with a path of positive probabilities from ¢.
Finally, condition (6) is symmetrical to condition (5).

In Section 2] we gave an intuitive explanation of contracts: transitions lead-
ing to T model the violation of the assumption, whereas action transitions not
leading to T model the guarantee that the transition has to be offered. The fol-
lowing example shows that Definition[5 is consistent with the usual contravariant
notion of contract refinement requiring that the refining contract has a weaker
assumption and a stronger guarantee.

(a) Contract Cy

a

0.6,0.8 @ N
a @ [02 0.4]
H

(b) Contract C1, (c) Contract C1p

Figure 6: Stronger guarantee and weaker assumption

Example 3. In Figure [6(a), the contract Cy says that, in the state tg, the
action b is assumed not to occur; if an interaction involving b occurs (and the
environment violates the assumption of C3), then a component implementing
C5 is no longer bound by Cs; i.e., it can do anything after the action b is
synchronized. The contract Cy also says that, in the state ty, the action a is
guaranteed to be offered. It follows that a contract can refine Cy in different
ways, as shown in Figure|6:

(1) Cia < Cy: the contract Cy, does not offer action b in state sg.

(2) Cip < Cy: the contract Cp offers action b in state ug. If the b is syn-
chronized with its environment, it reaches state uy, from which Cip can
perform any action.

Both in C14 and Chyp, the action a is guaranteed in state sy and ug respectively.
It is also easy to check that s < t1 as the probabilistic transition leading to
so has a tighter interval and so < to, and similarly for the transition leading
to s3. This means that both C1, and Ci, have stronger guarantees than Cs.
At the same time, the transition labeled by b leading from state ty to T has
been removed in C1, and replaced with a transition leading to a state different
from T in Cyyp, thus weakening the assumption of Cy. For instance, contract Cy

RR n°® 7328
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p2 € [0.1,0.1]

(1)
07,0 71@ d1 (2) ps€0.7,0.7]
[0.2,0. 2 dy (3) p1€[0.2,0.2]
lOlOll. @io %1 (4) p2+ps+pa=1
(5)
(

\»@ d3@001j p3 *x dy + pg xda € [0.9,1]

6) p2*xdz € [0,0.1]

Figure 7: Left: Contract refinement s; < t;. Right: Constraints to be checked.

assumes action b not to occur, whereas C1, guarantees not to offer b in state
so- On the other hand, ug accepts more behaviors by the environment than tg
without reaching T .

We define the satisfaction of a contract by an IMC as the refinement of the
contract by the lifted IMC (i.e., written in the form of a contract).

Definition 6 (Contract satisfaction). An IMC M satisfies a contract C (written
M E C)iff M| <C

Example 4. We illustrate in Figure[7 how to check that the contracts of Figure 2
are such that | M| < Cs, in particular, sy < ty1. It is easy to check that s3 < tq,
s4 < to, and sy < t3. According to Condition in Definition [5, we must
find for each s; € {sa,s3,84} a probability distribution §(s;) over {ta,t3} such
that Z f(ss) % 6(s;)(t;) € o2(t1)(t;) — where f is the probability
i€{2,3,4},57€{2,3}

distribution over {sa, s3,84} with f(s2) = 0.1, f(s3) = 0.7, and f(s4) =

—, and 0(s;)(t;) = 0 if s; £ t;. In Figure[7, §(s3)(t2) = di, 6(s4)(t2) =
0(s2)(ts) = ds (all three represented by dotted lines), and 6(s;)(t;) = 0 for
all other pairs of states. We must thus check that for each tuple (pa,ps3,ps)
satisfying the constraints (1) to (4) in Figurel7, the constraints (5) and (6) are
implied. As each 6(s;) is a probability distribution, we obtain for our example
dy = dy = ds = 1. (Note that if we had sy < to as well with weight dy from
s9 to to, we would have another constraint ds + dy = 1, and (5) would become
pg * dy + pa x do + po xdy € [0.9,1].) Condition (4) can be checked efficiently
by requiring the set inclusion to hold for the bounds of interval o(s)(s’), using
a linear programming solver.

Definition 7 (Models of contracts). The set of models of a contract C' (written
M(C)) is the set of IMCs that satisfy C: M(C)={M | M = C}.

It can be checked that the inconsistent contract C' , consisting only of the
state L, does not have any model.

Definition 8 (Semantical equivalence). Contracts C; and Cs are semantically

equivalent (written C = Cy) iff M(C1) = M(Cy).

Lemma 1 (Reflexivity of refinement). For all contracts C = (Q, A, —, 0, s0),
we have C < C, and for any state s € Q, we have s < s.

Proof. Definition [5] (1)-(3) are trivially satisfied for {(s,t) | s = t}. Defini-
tion [5] (4) is satisfied with d(s)(s) = 1 and d(s)(¢f) = 0 for s # t. Finally,
Definition [5] (5)—(6) are irrelevant for {(s,t) | s = t}. O
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Lemma 2 (Transitivity of refinement). For all contracts C1, Cy and Cs, if
Cl S CQ and CQ S Cg, then Cl S C3.

Proof. See appendix/[A.1. O
Corollary 1. For all IMC M and contracts C1 and Cs, we have:

1. if M E Ci and C; < Cy, then M = Cy;

2. if C1 < Cy, then M(Cy) C M(C3);

3. if Cy < Cy and Cy < C, then C1 = Cs.

3.2 Bisimulation

We adapt the usual notion of bisimulation to contracts, and define reduction of
a contract with respect to bisimulation.

Definition 9 (Bisimulation ~). Given two contracts C; = (Q1, A, —1,01, S0)
and Cy = (Qa, A, —2,09,t0), a relation ~ C Q1 X Qs is a bisimulation if both
~ and ~"'={(t,8) | s =t} are simulations.

C1 and Cy are bisimilar (written C, ~ Cs ) iff so ~ to, where ~ is the greatest
bisimulation.

Definition 10 (Reduction modulo ~ and reduced contract C). Let C = (Q, A,
—,0,80) be a contract and ~ be a bisimulation over Q. For all s € Q, let Cs =
{q € Q| s~ q} be the equivalence class of s. Let C = {Cs | s € Q}. The reduced
contract, written C)~, is (C, A, —~,0~,Cs,) withCP = {c€ C|Vs€c:s€ QP}
and C* = C\ (CP U{T,L}) such that, Vs = {s1,...,8m},t = {t1,...,tn} € C,
we have:

(a) s S tiff 3i,j: s 3%]-, and

(b) o~(s,t) = Z o(s1,t;) iff s € CP.

1<<n
If ~ is the greatest bisimulation then we write C for Cx.

Notice that an equivalence class may contain both action and probabilistic
states. For each probabilistic state s; € s, the probabilities of transitions to
states t; € ¢t are summed up (it does not matter which of the transitions is taken
since all the successors t; are equivalent). This sum is the transition probability
from s; to some state in ¢. By definition of ~~, the sum is the same for all s; € s,
thus we pick o(s1,t;).

Example 5. By Definition[10, we can reduce the contract Cs of Figure[8(a) to
C3 of Figure 8(b). There are 3 equivalence classes: {s1}, {s4} and {s2, 83, 55,56}
By Definition[10(b), we sum up the (lower bound and upper bound of) transi-
tions from sy to sy and from sy to s3.

Lemma 3 (Bisimilarity of reduction). For any contract C, we have C ~ C.

Proof. Let C = (Q,A,—,0,50) and C/ = (C, A, —~,0~,Cs,). By Defini-
tion [10lwe have sg € Cy, and thus sy ~ Cs, and C ~C. O
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[0.5, 061@
0.2, 03].@@4 05]

3%%2]@ o

(a) Contract Cs (b) Reduced contract Cs

Figure 8: A reduced contract.

Definition 11 (Deadend freedom). A delimited contract C = (Q, A, —, 0, s¢) is
deadend-free if any reachable state has an outgoing transition in (Q\{T}, A, —'
,0,80) where —' ={(q,a,q¢') € = | ¢ #T}.

In other words, C' is deadend-free if all reachable action states have a suc-
cessor state other than T. In particular, L is unreachable in any deadend-free
contract since 1 has no successor at all.

Theorem 1 (Refinement preserves deadend-freedom). Let C' = (Q, A, —, 0, sp)
and C' = (Q,A,—',0',s;) be two contracts such that C' < C, and C' is
delimited and consistent. If C is deadend-free then so is C'.

Proof. Since C' is delimited, every reachable probabilistic state has an outgoing
transition with a non-empty probability interval. For each action state in ¢ € Q*
that has a transition ¢ = ¢, with ¢ # T, all action states ¢ € Q' refining ¢
have an outgoing transition ¢/ — ' ¢y with go # T. On the other hand, all
reachable action states in @’ must refine some reachable action state in Q. The
claim follows. O

3.3 Contract Projection

The need of projection arises naturally in contract frameworks. A and B being
two alphabets of actions such that B C A, we abstract from actions in A\ B
that are not relevant by renaming them into internal 7 actions. The contract
over the alphabet BU {7} is then projected on the sub-alphabet B by using the
standard determinization algorithm (see e.g. [1]).

Definition 12 (Projection). Let C = (Q,.A, —1,0, s0) be a contract and B C A
such that for any ¢ € Q% and a € A, if ¢ 51 T orq =1 L then o € B. Let

= (Q,BU{r},—2,0,50) be the contract where all transition labels in A\ B
are replaced with a new label T. We require that C is such that act N prob =
where

act:{qGQHq'GQ:qigq'/\
(BaeBIg €Qiq 2d") vV (¥ :d Do d’ = ¢ € Q"))}
prob={qe Q|3¢ € Q" :q 3¢}

T .. . T
and —o is the transitive and reflexive closure of —s.
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The projection of C on B (written mp(C)) is obtained by T-elimination (de-
terminization) of C'.

The requirement that action transitions immediately leading to T or L be
kept in the projection ensures that Hypothesis 1]is preserved. The second re-
quirement ensures that the states of mg(C') are partitioned into action states,
probabilistic states, {T}, and {L}. More precisely, act is the set of states ¢
from which a state ¢’ is reachable by taking only 7 transitions, such that either
a transition with an action label in B is enabled in ¢’, or no more probabilistic
state is reachable. Conversely, prob is the set of states from where a probabilis-
tic state can be reached. Disjointness of both sets ensures that every state of
m5(C) is uniquely typed, such that 73(C) is a contract again.

Lemma 4 (Projection and refinement). For all contracts C1 = (Q1, A, —1
,-=21, 80) and Cy = (Qa, A, —2,--29,19) and for all B C A such that w5(C)
and 7g(Cy) are defined, if C1 < Cy then wg(C1) < mg(Cs).

Proof. See appendix[A.2. O

Example 6. In Figurel2, if we do not care how the implementation handles
failure cases, we can check that w4\ {handie} (Ms) = Cs, where A, is the action
alphabet of Cs.

4 Contract Composition

We introduce two composition operations for contracts: parallel composition ||
parametrized with an interaction set Z, and conjunction A (also called shared
refinement).

4.1 Parallel Composition of Contracts

Parallel composition allows the designer to build complex models from simpler
components in a stepwise and hierarchical manner. In order to reason about the
composition of components at the contract level, we define the parallel composi-
tion of contracts. As in the BIP component framework [8], parallel composition
is parametrized with a set of interactions, where each interaction is a set of
component actions occurring simultaneously. For instance, an interaction set
{{a},{a,b},{c}} says that action a can interleave or synchronize with b; ac-
tion b must synchronize with a; action c is a singleton interaction that always
interleaves. Whenever there is no ambiguity we simply write a (resp. alb) for
the singleton interaction {a} (resp. for the interaction {a,b}), therefore the
symbol “|” is commutative.

Definition 13 (Parallel composition of contracts). Let C; = (91,41, —1, --»1,
s0) and Cy = (Qa, Aa, —9,--+2,tg) be two contracts. The parallel composition
of Oy and Co with respect to an interaction set T C 241942 (written Cy||7Cs)
15 the contract (Q7I, —/ s, (so,to)) where:

1. Q= (Q) x Q) U{T, L} with Q) = Q1 \ {T1, L1}, Q5 = Q2 \ {T2, Lo},
Q%= 09f x QF, and Q° = Q\ (Q*U{T, L});
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—' ={(g.a,q)e—|qd ¢Q UQ }U
{(g.a,T)| 3¢ € Q" : (¢,a,¢') € =} U
{(g,a, L) | 3¢ € @+ : (¢,a,q') € =}

where — is the least relation satisfying the rules [R1]-[R3] in Figure[9;
and

3. --» is the least relation satisfying the rules [R4]-[R6] in Figurel9
where QT = (Q1 x {T2HU{T1} x Q2) and Q+ = (91 x { L) U({L1} x Qo).

In other words, T (resp. L) is reached in Ci||zCs as soon as one of Cy or
C5 reaches its T, (resp. L;) state.

Chglqg ael q€Qf

@ Seqh a€l q € Q8 [

[R1] R2]

(q1,42) = (¢}, 42) (q1,02) = (q1,d5)

o 8 [p1,p2] [p3,p4]
Q=19 @ 2qy affeT R3 G- 1ql @ - adh R4
a8, [£23] [p1#ps,p2*pa] , , [74]

(q1,92) — (91, 93) (q1,92) -2 (41, 93)

,1,3_) U € Q¢ ,1,3_) ! € Q4
q1 1 qlP q2 2 [R5] q2 2 q2P a1 1 [RG]

(QLC]Q) -2 ((JLQQ) (QMQQ) -2 (mﬂJé)

Figure 9: Rules for the parallel composition of contracts.

Rules [R1] to [R3| are the usual parallel composition rules for LTS, while
Rule [R4] is similar to the typical parallel composition for Markov chains but on
probability intervals. Finally, Rules [R5] and [R6] state that probabilistic tran-
sitions, usually modeling hidden internal behavior, have priority over action
transitions. Parallel composition is commutative since the rules are symmetri-

cally defined.

Example 7. Figure[10 illustrates the parallel composition of contracts Cs (from
Figure [2(b)) and Cy = | My| (where My is given in Figurel1(b)), with T =
{rec,del,req|del’, res’|rec, faily, failp}. The composed contract Cs ||z Cy states
that a failure in the Link component does mot prevent it from continuwing to
deliver the request req’ to the Server, and receiving the response res’ from the
Server, but the failure prevents it from delivering the response res’ back to the
Client.

We end the section on parallel composition with several useful theorems.

Theorem 2 (Congruence of refinement for ||z). For all contracts Cy, Ca, C3, Cy
and an interaction set T, if C1 < Cy and C3 < Cy, then Cy||z C3 < Csllz Cy.

Proof. See appendix B.1. O
Theorem 3 (Independent implementability). For all IMCs M, N, contracts
C4, Cs, and interaction setZ, if M |= Cy and N |= Cy, then M||zN E C1]|zCs.
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0.0 (13, u9)

faily 7wq’\dv’o 9,1]
[n.uziq.pgl,,,-» > @ reslrec Y

'.ﬂx. 0.518y m,'\lzpz'({'f]‘-l [0.05,0.

2 oo 0.9, 1 ces! |rec, o

rec A0 .u ec 95,0.95]
o a

Figure 10: Parallel composition of Cs and Cp.

Proof.

M ': Cl and N ': 02

<= (By definition of )
LMJ S Cl and LNJ S 02

=  (By Theorem|[2 (Congruence of refinement for ||7))
[M][|lz|N] < Ci|zC2

<= (By definition of |.| (Figure[3))
[MI|zN] < Gi|zCs
<= (By Definition[6 (F=))

M||zN = C1]|zCq
O

Theorem 4 (Reduction and parallel composition). For all contracts C; and
Co, C1 ||z C2 =C1 ||z Ca.

Proof.

(By Lemma (3 (Bisimilarity of reduction))
C1<Cyand Oy < Cyand C; < Cj and Cy < Cy
= (By Theorem 2] (Congruence of refinement for ||7))
Cil[zC2 < C1|zC2 and C1[zCs < Ch|zC
= (By Corollary
C1]|zC2 = Ch|zCq

4.2 Conjunction of contracts

A single component may have to satisfy several contracts that are specified in-
dependently, each of them specifying different requirements on the component,
such as safety, reliability, or quality of service. Therefore, the contracts may
use different, possibly overlapping, sub-alphabets of the component. The con-
junction of contracts computes a common refinement of all contracts. Prior
to conjunction, we define similarity of contracts as a test whether a common
refinement exists.

Definition 14 (Similarity (~)). Let C1 = (9Q1,A1, —1,--21,50) and Cy = (Qa,
Ag, —a,--29,10) be two contracts. ~ C (Q1 \ {L}) x (Q2\ {L}) is the largest
relation such that ¥(s,t) € (Q1 \ {L}) x (Q2\{L}), s~tiff (s=TVvt=T)
or conditions (1)) to (4) below hold:

1. If (s,t) € Q% x QF then
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(a) for all s' € Q1, if s =, &', then either
i. a ¢ Ay, or

ii. @« € Ay and Im >0, 361, ..., B € Ao\ A1, Ft1, .., tim, t' € Qo

tﬁztl @)2...%215711 gztl/\Vi:].,...,mlsNti;

(b) for allt' € Qo if t S5 t', then either

i. a ¢ Ay, or
it. « € Ay and Im >0, 304, ..., Bm € A1\ A2, 81, ..., 8m, s’ € Q1
sﬁl s1 %16—>1 Sm =18 AYi=1,...,m:s; ~t;

2. If (s, t) € QF x QF then

P P
(a) for all s € Qy, if s ~—» &', then t -> t' for some t' € Qy with
PiNP,#0 ands ~t'; and

(b) for all t' € Qo, if t R t', then s REN for some s’ € Q1 with
PiNP,#0 and s ~t;

3. 1If (s,t) € QF x QF then for allt' € Qy with t Lagt, st

4. If (5,t) € QF x Q% then for all s' € Q1 with s —il s, s ~t.
Finally, Cy and Cs are similar, written C1 ~ Cs, iff so ~ tg.

Each P; in Definition|14 refers to a probabilistic interval in the form of [¢;, u,].
Any state is similar to a top state T, (where the contract does not constrain the
implementation in any way). The bottom states L; are not similar to any state.
Two action states are similar if they agree on the enabled actions in the shared
alphabet A; N A3. The successor states are not required to be similar again,
as they may be made unreachable in a subsequent parallel composition. Two
probabilistic states are similar if the probabilistic transitions can be matched
such that the intervals overlap (PN P, = (}) and the successor states are similar.
Overall, two states are similar if they agree on the behavior up to and including
the next reachable action transition in the shared alphabet.

Definition 15 (Unambiguous contract). A contract C = (Q, A, —,--», ) is
unambiguous w.r.t B C A iff for all r, s, and t € Q such that:

(25 A r ) v (BaseaBU@ S L)

we have: if s ~t then s =t, where q LA q for all g € Q, .
C is unambiguous if it is unambiguous w.r.t A.

In other words, a contract is unambiguous if the reachable successor states
of any probabilistic state are pairwise non-similar.

Example 8. In Figure[11l(a), the contract C, is ambiguous because sz ~ S3
(highlighted in gray) but sy # 3.

We are now ready to define the conjunction of two contracts. The two con-
tracts may refer to different, not necessarily disjoint alphabets. Therefore, the
contracts can be used to specify requirements on two (not necessarily disjoint)
aspects of a component.
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a

[0,0. 216
[0,0.3] a
@0061r¢0711@ Ll szzzﬁ
0.4,1) 0,04 —( 00,05 b
‘\@0 8, 11@ ~»@

(a) Contract C, (b) Contract C4 (c) Contract Cy

Figure 11: (a) An ambiguous contract Cy; (b,c) Two non-similar contracts C;
and Cs.

Definition 16 (Conjunction of contracts (A)). Let C; = (91, A1, —1, --+1
s0) and Cy = (Qa, Ag, —2,--+9,t0) be two contracts such that Cy and Cy are
unambiguous w.r.t Ay N As. The conjunction of C1 and Cy is the contract

CiNCy = (Q,A1 UAy, —', -3, (so,to)) where:

1. Q={(q1,¢2) € &1 x Q| a1 ~@AN(@ # T1Vae #T2)U{T,L},
Or =9nN ((QF x Q) U (91 x 9h)), and Q% = Q\ (QP U{T,L});

/

—'={(¢;a,¢') e = | ¢ € Q} U
{((La,—l—) | ((Laa (T17T2)) € _)} U
{(g,a, L) [ 3¢ = (q1,45) € Q1 x Q2 : =(¢) ~ q3) N (q,a,¢') € =}

where — is the least relation satisfying the rules [C1] — [LIFTR] in Fig-
urel12, and

3. --» is the least relation satisfying the rules [C3]  [C4R] in Figure[12
(where for all other probabilistic transitions (q1,gz) iR (¢),¢%), P =

[0,0]).

The L state is entered in the contract Cy AC5 as soon as a pair of non-similar
states (including, by definition, pairs with at least one L state) is reached.

Rule [C1] requires the contracts to agree on action transitions over their
common alphabet. According to rule [C2L] (resp. [C2R]), the conjunction
behaves like the first (resp. second) contract as soon as the other contract is
in T. Rules [LIFTL] and [LIFTR] allow the interleaving of action transitions
that are not in the common alphabet. Rules [C3] — [C4R] define probabilistic
transitions whose successor states are similar.

Example 9. Figure[13 shows three contracts for the Link component: Cy1 spec-
ifies that the implementation should receive a request (rec) from the Client and
deliver it to the Server (del’); Cya specifies that the implementation should re-
ceive a response (rec’) from the Server and deliver it to the Client (del); Cys re-
quires the response (rec’) received from the Server to occur after the request
(del’) delivered to the Server. We can verify that My |= (Cor AC3) A (Coa ACys)
(where My is in Figure[1(b)).
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q1 g’1 qi q2 g’2 QQ
(C1]

(q1,92) = (4}, 45)

o / o /
q1 —1 41 [ ] q2 —2 go
((I1,T2) i) (qllvTQ) (Tl,qQ) i) (Tlaq/Q)

G114, @€ adA

[C2R]

s [LIFTL]
(Q1aQ2) - (Q17€I2)
q2 g)Z qé q1 € Qtll « ¢ Al [LIFTR]
(q1,42) = (q1,5)
P ! P ! / !
q1 -=*141 Q42 -=*24y 41 ~ Qs [03]

PiNPy

(q1,92) - (41, 43)

P
@ -1q @€ Q3U{T2} ¢ ~q

[CAL]
(q17 CI2) _6') (qlla (]2)

P
g2 -2 ¢y @ €99 U{T1} @1~ ¢

[C4R]
(q1,92) —1-3* (q1, (Ié)

Figure 12: Rules for conjunction of contracts.

[0.0270/.9@&.@ [010‘9@@ faily @
rec @6.5{0.98] rec @[p:§57 1]
pOSSASCy

(a) Ca (b) Cea

. del’

Figure 13: Example: Conjunction of Contracts

Example 10. Since a contract that is not in reduced form may be ambiguous,
contracts should be reduced before performing conjunction. In Figure [11(c),
contract Cy is ambiguous, but to ~ t3. If we reduce Cy by applying Definition[10,

,0.6 . ,
we get t;  --» ] {to, t3} % {to,t3}. The reduced contract is unambiguous and
s1 ~ t1, hence conjunction yields a common refinement of C7 and Cs.

Theorem 5 (Associativity of conjunction over the same alphabet). For all
unambiguous contracts C1 = (Q1, A, —1,01,80), Co = (Qa, A, —2,09,t), and
03 = (Q37Aa *)370'37u0)f (Cl A 02) N 03 = Ol A (CQ A 03)

Proof. See appendix [B.5. O

Theorem 6 (Soundness of conjunction). For all unambiguous contracts C

and Cq, if ma,(C1 A C3) is defined then wa,(Ch A Co) < C; fori=1,2.
Proof. See appendix B.2. O
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—

(a) Ambiguous contract Cj, (b) Cy A Cy

085040 2o )-2-(0)
—(0J02 8
(¢) A model M, @

Figure 14: Example where M, = C, A Cp, but M, £ Cp.

Example 11. Figure [1} motivates the requirement of conjunction (Defini-
tion16) for unambiguous contracts. The resulting contract Cy A Cy, is reduced
such that the model relation can be seen easily. In Figure[14(b), vo denotes the
equivalent class {(t1,t2), (t2,t1), (t2,t2)} while vs denotes the equivalent class
{(t1,13), (t2,t3), (t3, t1), (t3,t2), (t3,t3)}. Since t1 ~ ta ~ t3, duplicated intervals
lead to an unsound result.

Theorem 7 (Completeness of conjunction over the same alphabet). For all
delimited unambiguous contracts C1,Cs,Cs, if C1 < Cy and Cy < Cj, then
C1 < Cy NCs.

Proof. See appendix B.4. O

Theorem 8 (Congruence of refinement for A over the same alphabet). For all
delimited unambiguous contracts Cy, Cs, Cs, and C4 over the same alphabet, if
Cl S Cg and 03 S 04, then Cl A 03 S 02 A 04.

Proof. See appendix B.4. O

5 Case Study

We study a dependable computing system with time redundancy. The system
specification is expressed by the contract Cs of Figure [15] (top left), which
specifies that the computation comp should have a success probability of at
least 0.999. If the computation fails, then nothing is specified (state T). All the
contracts in this section are delimited.

The processor P the system is running on is specified by the contract Cp of
Figure [15] (top right). Following an execution request exe, either the processor
succeeds and replies with ok (with a probability at least p), or fails and replies
with nok (with a probability at most 1 — p). The failure rates for successive
executions are independent. The probability p is a parameter of the contract.

We place ourselves in a setting where the reliability level guaranteed by Cp
alone (as expressed by p) cannot fulfill the requirement of Cg (that is, 0.999),
and hence some form of redundancy must be used. We propose to use time
redundancy, as expressed by the contract Cr of Figure 15 (bottom). Each
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success

comp [~ exe
(@)

fail

nok’

Cr

Figure 15: (Top left) Specification Cg; (top right) Processor contract Cp;
(bottom) Time redundancy contract Cg.

computation comp is first launched on the processor P (exe’), either followed
by a positive (ok’) or negative (nok’) answer from P. In the latter case, the
execution is launched a second time, therefore implementing time redundancy.
The contract C'g finally answers with success if either execution is followed by
ok’, or with fail is both executions are followed by nok’.

In terms of component-based design for reliability, we want to determine the
minimum value of p that guarantees the reliability level of C's. To compute this
minimum value, we first compute the parallel composition Cg||zCp, with the
interaction set Z = {comp, exelexe’, ok|ok’, nok|nok’, success, fail}. The reduc-
tion modulo bisimulation of this parallel composition is shown in Figure[16](top),
where the interactions exelexe’, ok|ok’, and nok|nok’ have been replaced for con-
ciseness by exe, ok, and nok, respectively. We call this new contract Cgj|p. We
then compute the projection of C)p onto the set B = {comp, success, fail}.
The result Cr = m5(Cgj p) is shown in Figure (16! (bottom left).

nok exe

CrllzCr success k
: [15117\\‘\\[{)7\1]

[0,1—;;@ c, fail

Figure 16: Parallel composition Cr| p; Projection Cr; Transitive closure o
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We are thus faced with a contract C; having sequences of probabilistic tran-
sitions; more precisely, since some probabilistic states have several outgoing
transitions, we have DAGs of probabilistic transitions. We therefore compute
the transitive closure for each such DAG: that is, for each sequence of proba-
bilistic transitions from the initial state of the DAG (e.g., ¢} in Cy) to one of
its final states (e.g., ¢5 and ¢} in Cy), we compute the equivalent probabilistic
transition. Starting from ¢}, the probability interval of reaching ¢} (resp. q})
is given by {p' + (1 —p')p’ | p" € [p, 1]} (vesp. {(1—p')* | p' € [p,1]}), that is,
[2p — p?, 1] (resp. [0, (1 —p)?]). The resulting contract C, is shown in Figure|16
(bottom right).

The last step involves checking under which condition on p the contract C;
refines the specification C's. We have C,<Cse (1-p)? <0.001 < p > 0.968.
This means that, with time redundancy and a processor with a reliability level
of at least 0.969, we are able to ensure an overall reliability level of 0.999.

To demonstrate the versatility of our contract framework, we show in Fig-
ure [17 the alternative contract CJ, for spatial redundancy. This time, the ex-
ecution is launched both on processor 1 (exe;) and on processor 2 (exez). We
call Cp; the contract of processor 1, which is identical to C'p in Figure|15 (top
right). We call Cpy the contract of processor 2, which is identical to Cpy upto
a renaming of the index. The contract C, answers with success if either ok; or
oks is received, or with fail is both nok; and noks are received, in any order.

success

ok1 V nokq

comp /\ exe; /\ exes

oky V ok

nokz

oko V noks
fail ; @ nok

Figure 17: Spatial redundancy: the contract Cy.

We leave the intermediate computations as exercises for the reader. These
are:

e Cy = Cpy||zCpse with T = {exe], ok}, nok], exel, okh, nok)}.

o Op = Cul|lpCh withZ' = {comp, success, fail, exe; |exe], oky|ok], nok:|nok’,
exes|exel, oks|okl, noka|nokh}.

We then compute the projection m5(Cpg) onto the set B = {comp, success, fail}.
The reduction modulo bisimulation of the result, called C7, is shown in Fig-
ure[18 (left). Like with the time redundancy contract, we compute the transi-
tive closure for each DAG of probabilistic transitions. The result C”. is shown
in Figure[18] (right).

The last step involves checking under which condition on p; and ps the
contract C’. refines the specification Cs. We have C! < Cs < (1—p1)(1—ps) <
0.001. This condition is to be compared with the (1 — p)? < 0.001 condition
obtained with time redundancy.
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Figure 18: Projection C} = m(Cp) onto the set B = {comp, success, fail};
Transitive closure C’.

6 Discussion

We have introduced a design framework based on probabilistic contracts and
proved essential properties for its use in component-based design. Our definition
of contracts adapts ideas from [10, (17} 6], although the frameworks in |10} 6] do
not support interactions between contracts. This article extends the preliminary
work of [16] with several new results. In particular, the definition of similarity
has been weakened, so as to provide a less pessimistic definition of conjunction.
This enables us to provide a new result on completeness of conjunction if both
arguments share the same alphabet (Theorem [7).

6.1 Design choices

A fundamental syntactic choice in defining a symbolic contract framework is
to define a contract either as a pair (assumption, guarantee) as in [7] — call
them assume/guarantee contracts — or as a single implicit transition system
where the distinction of assumption and guarantee is made by means of a spe-
cific T state, as in the present article. Whereas assume/guarantee contracts
have the benefit of making explicit the assumptions of how a component is used
and the guarantees provided by the component in this case, they come at the
price of introducing some redundancy whenever the assumptions and the guar-
antees refer to the same sub-alphabet of the component. From a more technical
point of view, another downside of assume/guarantee contracts is that paral-
lel composition and conjunction of symbolic representations usually require the
computation of an equivalent implicit form of the contract, whose definition is
far from being obvious for probabilistic contracts.

A further choice is where to represent the probabilistic behavior: in the
model of a component (i.e., the implementation), in the contract (i.e., the spec-
ification), or both. We have chosen the last option, as it allows us to model
both the expected probabilistic behavior and the behavior offered by existing
components, and reason about how the specification can be realized.

Moreover, probability distributions can be local to contract states or global.
In this work we have adopted the first option, as state-dependent distributions
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occur naturally in models of physical behavior: e.g., the failure rate of a mi-
croprocessor increases as the processor ages. The price of distinguishing local
distributions are more involved definitions of refinement and conjunction.

A final parameter of the contract framework is the definition of parallel
composition. We have chosen to support the BIP interaction model for
its expressiveness. In this framework, the direction of communications is not
represented; it would be quite straight-forward, however, to add this information
by typing ports as input or output ports.

6.2 Related work

Several authors have proposed probabilistic extensions of Hoare triples and Di-
jkstra’s wp-calculus, see e.g. [14]. A trace-based theory of probabilistic system
with compositional semantics and refinement is introduced in [3]. Later on,
shared refinement of interfaces and conjunction of modal specifications over
possibly different alphabets have been defined in [5,/15]. A framework of modal
assume/ guarantee contracts is introduced in [7], for which both parallel compo-
sition and conjunction are defined. [11] introduces a compositional framework
based on continuous time IMCs, adopting a similar interaction model as done in
this paper. [11] supports projection, parallel and symmetric composition, but
not conjunction.

A trace-based theory of probabilistic contracts has been introduced in [4],
where a contract consists of an assumption A and a guarantee G, both being sets
of traces. A trace is a sequence of valuations of global variables, a subset of which
is probabilistic. The probabilistic variables are supposed to obey a distribution
that is independent of the state. Two types of satisfaction of a contract C
by a (non-probabilistic) model S are defined: R-satisfaction (for reliability) is
the probability that S satisfies C; A-satisfaction (for availability) measures the
expected time ratio during which S satisfies C. Conjunction and refinement are
defined for both types of satisfaction. In contrast to our framework, probability
distributions are defined globally.

Assume/guarantee verification of probabilistic models is studied in [12].
Probabilistic automata are used to model probabilistic and non-deterministic
behavior. Several assume/guarantee rules are introduced using pairs (4, G) of
probabilistic safety properties, where a probabilistic safety property is itself a
pair of a (non-probabilistic) regular safety property and a probability.

The recently introduced Constraint Markov Chains (CMC) [2] generalize
Markov chains by introducing constraints on state valuations and transition
probability distributions, aiming at a similar goal of providing a probabilistic
component-based design framework. Whereas CMCs do not support explicit
interactions among components, they allow the designer to expressively specify
constraints on probability distributions. In this framework, conjunction is shown
to be sound and complete.
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A Contract Refinement

A.1 Transitivity of Refinement

Lemma 2 [Transitivity of <] For all contracts C;, Cs, and Cs, if C; < Cy and

02 § 03, then Cl S Cg.

Proof. Let
Ch
Cy
Cs

(Q1, A1, —1,01,70)
- (QQ?A27_>2)O—27SO)
= (Q3,A3,—3,03,t0)

To show C; < Cy and Cy < C5 implies C; < Cs, by Definition [5 [Contract
Refinement|, we must show 7y < so and so < to implies rg < tg. That is, for all
re Q,s € Qy,t € Qz, we must show that:

r<sAs<t=r<t

We have the following induction hypothesis: for all 7/,¢’ which are next

states of r and ¢ respectively,

(Fs' € Qo' <A <Ht)=01' <V [H1]

To show r < t, we check conditions in Definition[5 one by one as follows.

(1)

(3) If (r,t) € Qf x (Q§{T}), then

I
(a) for all ' # T € Qs,

tSq ¢

= (s <t,by Definition[5 (3a))
35’ € Qy,5 59 5" and &' <t/

= (' # 7T and s/ <t implies s’ # T,so by Definition [5] (3a))
35’ € Qy, T € Q1,r Sy 1" and ' < s’ and ' < ¢/

= (Since ' < ¢’ and s’ < t/, by induction hypothesis [H1])
I € Qp,r Sy and ' <t/

(b) for all r € O,

r 5!
= (By Definition [5] (3b))
s=Tor3s' € Qy,5 595" and 1’ < &'
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There are two cases to consider:

— Case s =T.

w

=T
= (By Definition|[5 (1))
T

S~~~

Since any state refines T, we have r < T.
— Case s # T.

3¢’ € Qg,8 598 and 1 < &
= (s < t, by Definition[5 (3b))
35’ € Qp,(t =T or It € Q3,t B3t and s’ < t') and 1/ < &'

There are two subcases to consider:

* Subcase t = T. Since any state refines T, we have r < T.
* Subcase t # T.

Js' € Qo, (3t € Q3,t B3t/ and s <t') and 1’ < s
= (Since ' < ¢ and ¢ < t/, by the induction hypothesis [H1])
3t € Q3,t S5t and ' <t/

(4) Now, let us consider Definition [5] (4). Given C; < Cs, by Definition [5] (4),
we know there is a probability distribution §15 C Q1 x Qg X [0, 1], such
that, Vf1(r') € o1(r)(r'), s’ € Qa,

(A) > (1) % 612(7)(s")) € o2(s)(5),
:nfdQlVr’ € Q1,012(r")(s') >0=1r" < ¢

Given Cy < C3, by Definition [5](4), we know there is a probability distri-
bution do3 C Q2 X Q3 X [0, 1], such that, Vfa(s") € a2(s)(s'),t' € Qs,

(B) Z (fa(s") * 23(s") (') € a3(t)(t),
;Ii?lQlVS/ € 9o, 523(5/)(t/) >0=s <t

We want to establish a d13 C Q1 x Q3 x [0, 1] such that Definition
holds. Let §;3 be

Si3(r)(t) = D S12(r')(s') x S23(s) (1)

s'€Qa

We want to check that d13 satisfies the condition Definition [5] (4) for all
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fi(r") € 81(r)(v"), ¢ € Qs.
> (10 *b13(r)(1))

r’eQq
= (By deﬁnition of d13)

S (0% Y 12(r)(s) * b23(s) (1))

e s'€Q2
= (By distribution of * over +)

D73 A7) % 612(r) () # as(s) ()

r'€Q1 s'€Q2
= (By commutat1v1ty and associativity of +)

D> A0 % S12(r)(8) * Saa(s)(F)

s'€Qar'€Qy
= (By (A), 3f2 € oa(s = > AW x612()(5)
ey
D7 fa(s) # a3(s)(t)
s'€Qa

€ (By (B), which holds for all f5 € o2(s))
a3(t)(t')

So we have the desired result Z (f1(r") = 813(r")(t)) € as(t)(t').
r€Q;

(5) If re Qf and t € Qg and r < s and s < t, then there are two subcases to
consider: s € Qf and s € QF.

— Subcase s € QF.

r<sands<t
<= (By Definition [5] [Contract refinement| (5))
+
1"§sand5|ta€Q§:t—>—q>3 t* A s < t% and
0
Vt' € Qs, (t —>—+3 t = s< t’)
= (Since r < s and s < t%, by induction hypothesis [H1]
where ' =1, s = s5,t' =t%)
>0t
r<sand H* € QF : ¢t --»5 t* Ar <t* and
VE € Qs (t rat = s<t)
=  (Since r < s and s < t/, by induction hypothesis [H1]
where ' = 1,8 = s,t' =1t')
>0t
Jqt* e QF it S-55 t* Ar < t* and
vt € Qs, (t —>—°+3 t = r<t)
<= (By Definition [5] [Contract refinement] (5))
r<t
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— Subcase s € OF.

r<sands<t
<= (By Definition [5] [Contract refinement| (5))

>0
Js* € QF 15 =35 s* Ar < s* and

Vs’ € Qo, (s —>—q>2 s = r< s’) and s <t
<= (By Definition [5] [Contract refinement] (4))
+
(1) 3s* € Q% : s —>—0»2 s* Ar < s%and
(2) Vs’ € Qa, (s iq)g s = r<s)and
(3) 36: Q2 x Q3 — [0,1],Vf(s') € o3(s)(s’) and
V'€ Qs > (f(s) x8(s)(t)) € os(t)(t') and
s'€Q2
Vs' € Qo : (6(s)(t') >0 = &' <)
=  (By (1), s <t and Definition [5] (4/5)), we have (4);
from (2) and (3), we know Vs',¢/,r < s’ and s’ <,
thus we apply induction hypothesis [H1| where
v =rs =¢,t' =1, we have (5))
>0t
(1) 3s* € QF : s -3, s® Ar < s* and
+
(4) 3t € Q% 1t 5y 1% A 5% < 19 and
(5) Vt' € Qs, (¢ ot = r< t)
= (From (1) and (4), we know r < 5% and s* < %,
thus we can apply the induction hypothesis [H1] where
r'=rs =5t =t%)
>0 T
Jt* € Qf 1t ——»5 t* Ar < t® and
Vi’ € Qs, (t st = r < t)
<= (By Definition 5] [Contract refinement| (5))
r<t

(6) Similar to the proof in (5).
O

Remark: The converse of Corollary [1] item [2 does not hold, as shown by the
counter example in Figure[19. There is no model for Cy, i.e., M(C7) = 0, while
there are models for Cy. Thus, we have M(C1) C M(Cs) and Cy £ Cs.

002.(2) 00z,

4’@\[0.6, 0.7 b 7 08,1 4

(a) Contract Cy (b) Contract Cs

Figure 19: Counter example for the converse of Corollary[1, item [2.
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A.2 Contract Projection

Lemmal4 [Projection and refinement| For all contracts C; = (Q;, 4, —1,--+1
,80) and Coy = (Qa, A, —9,--22,1p) and for all B C A such that 75(Cy) and
m5(Cs) are defined, if C; < Oy then m5(Cy) < mg(Cs).

Proof. Let m3(C1) = (Qs,.A, —3,03,80) and m3(Cs) = (Q4, A, —4, 04, t0).

Given states s and t in Q; and in Qy, respectively, let s € Q3 and t € Q4
be states with s € s and t € t. Notice that the states of Q3 and Q4 are not
equivalence classes of the states in Q1 and Qs: s may be part of several states
of Q3. To show that so < tg = sg < tg, we show the general case: for all
s € Q1,t € Qo,if s < t, then s < t. We prove this lemma by structural
induction. We have the following induction hypothesis: for all s’ € Qi,t' €
Qs,s' € O3,t' € Q4, such that s’ € s’ and t/ € t/,

<t = ¢ <t [H]
We have the following cases to consider:

e Case s = T. Actions leading to a T state are kept in the projection. There
is no state in the projection containing other states than T. Therefore,
both s and t are T.

e Caset = 1. Actions leading to a L state are kept in the projection. There
is no state in the projection containing other states than L. Therefore, in
both cases, s and t are L.

e Case s € Qf,t € Q3 U{T}. There are two cases to consider. The case
that Ja € Q1,5 1 T is taken care in case (b).

(a) Yt/ #T € Qy, (t Do t) = (I € Qy, s 518 Ns' < ).

If « € B, this action transition is kept in 75(C7) and 75(Cs). So we
have s %3 s’ and t %, t/. From s’ < #', by induction hypothesis [H|,
we have s’ < t’. So we have Vt’ # T € Q4, (t 54 t/) = (3¢’ €
Qs3, s 38 As’ < t') which meets Definition 5/ (<) (3a).

If a ¢ B, this action transition does not appear in 73(C1) and 75(C3).
We have {s,s'} C s and {¢t,¢'} C t. By induction hypothesis [H], we
have s < t.

(b) Vs' € Q1, (s 51 8) = (t=TVIH € Qy, t St A5’ < ).
For the case t = T, since actions leading to a T state are kept in the
projection, there is no state in the projection containing other states
than T. Therefore, t is T. By Definition [5, any state refines T, so
we have s < t.

For the case Jt' € Qy, t 55 t/ A8’ < t/, we have two subcases to
consider:

* If o € B, this action transition is kept in 75(C1) and 7m5(Ch).
So we have s 53 s’ and t 54 t. From s < t/, by induction
hypothesis [H], we have s’ < t’. So we have Vs’ € Q3, (s 3 §')
= 3t € Q4, t B9 t' A8’ < t/, which meets Definition 5 (<)

(3D).
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« If o ¢ B, this action transition does not appear in m3(C1) and
m(C2). We have {s,s'} C s and {t,t’} C t. By induction
hypothesis [H]|, we have s < t.

P P,

e Case s € QP t € QF. By Definition [5 (4), we know s —-»; s/, t ~—35 t'
and s’ < t/. Projection only has effect on action states, the probabilistic
transitions remain the same (up to their target states). That is, we have

P P,
(1) s -53 8" and (2) t --»4 t’. From &' </, by induction hypothesis [H],
we have (3) s’ < t’. From (1), (2), (3), by Definition 5] (4), we have s < t.

o+
e Case s € Qf,t € QF. By Definition [5 (5), 3t* € QF : ¢ —>—+2 t*Ns < t®
0
and V' € Q,, (t —>—->2 t = s< t’). If we have ¢’ € QF, we have s < t'.
Projection does not have effect on probabilistic transitions, by induction
hypothesis [H], we are done. If t' € Q%, then we have s < ¢®. Since s € QF,
this falls into the case s € Q%,t € QF, which has been proved above.

e Case s € QF,t € Q%. Similar reasoning as the case s € Q,t € Q.

B Contract Composition

B.1 Congruence of Refinement for Parallel Composition

Lemma 5 (Congruence of refinement for ||7). For all contracts Cy, Cs, and
Cs, and for all interaction set T, if C1 < Cy, then C1]|7C5 < Co||zCs.

Proof. Let
i = (Ql7¢41,—>1,01,80)
Cy = (Qa2,As,—2,09,t9)
Cs = (Qs,A3,—3,03,up)
Cillz C3 = (Qi3,A13,—13,013, (50, u0))
Collz C3 = (Qas, A2z, —23, 023, (to, uo))

Let 6§ C Q1 x Q> be the refinement relation stating that s < t. Let 8 C
Q13 X Qa3 be a binary relation such that ((s,u), (t,u)) € 6" if (s,t) € 6. We now
prove that ¢’ allows us to establish that (s,u) < (¢,u).

Notation: For all interval o, let ¢ and & denote respectively the lower bound
and the upper bound of o.

First, we consider the 3 cases involving the state T;.

(a) Cases = Tj. Since s < t, by Definition[5 (<) (1), ¢t = T2. By Definition[13
(Parallel composition), both composed states are T. Since T < T, we have
the desired result.

(b) Case t = To. By Definition [13 [Parallel composition], the composed state
(t,u) is replaced by T. Since any state refines T, we have the desired
result.

(c) Case u = T3. By Definition [Parallel composition|, both composed
states are T. Since T < T, we have the desired result.
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Second, we consider the 3 cases involving the state L;:

(a) Case s = 1. By Definition[13 [Parallel composition], the composed state
(s,u) is replaced by L. Since L refines any state, we have the desired
result.

(b) Caset = Lg. Since s < t, by Definition[5 (<) (2), s is L;. By Definition[13
[Parallel composition], both composed states are L. Since 1. < 1, we have
the desired result.

(c) Case u = 13. By Definition [Parallel composition|, both composed
states are 1. Since L < |, we have the desired result.

Now, we consider cases where states s,t,u are neither T; nor 1;. We have
the following co-induction hypothesis: for all s’,t', 4’ such that s',¢,u’ are the
next states of s, t and u respectively, and ((s',u’), (t',u')) € &',

s <t = (s) <t ) [H]
Given ((s,u), (t,u)) € 0, we have the following cases to consider.

e Cases € Qf,t€ Q%,u € Qf. Since s < t, we have (1) s 1 55 (2) t Sq t/;

(3) u ﬁ)3 u’; (4) 8" <t'. There are three subcases to consider:

(a) Subcase | € T.
By (1), (3) and rule [R3], we have (5) (s, u) (X—>M312 (s',u’).
By (2), (3) and rule [R3], we have (6) (¢,u) Oi'?gg ', u').
From (4), by co-induction hypothesis [H|, we have (7) (s',u') <
(t',u"). By Definition 5| (3), we thus have (s,u) < (t,u).
(b) Subcase a € 7.
By (1), (3) and rule [R1], we have (5) (s, u) gqg (', u).
By (2), (3) and rule [R1], we have (6) (t,u) a3 (t',u).
From (4), by co-induction hypothesis [H], we have (7) (s',u) < (¢, u).
By Definition 5 (3), we thus have (s,u) < (¢, u).

(¢c) Subcase 5 € Z.
By (1), (3) and rule [R2], we have (5) (s, u) ilg (s,u’).
By (2), (3) and rule [R2], we have (6) (t,u) a3 (t,u').
From (4), by co-induction hypothesis [H], we thus have (7) (s,u’) <
(t,u').
For each subcase, from (5), (6), (7), and Definition[5/(3), we have (s,u) <
(t,u).
e Cases € Qf,t€ Q%,uc Q% Sinces <t, wehave (1) s = s'; (2) t o t/;
(3) u -y ul; (4) 8 <t
By (1), (3) and rule [R6], we have (5) (s, u) —1112 (s,u’).

By (2), (3) and rule [R6], we have (6) (¢, u) —63923 (t,u).
From (4), by co-induction hypothesis [H|, we have (s,u’) < (¢

,u'). Let
0(s,u’)(t,u’) = 1. By Definition[5 (4), we thus have (s,u) < (¢, u).
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e Case s € Qf,t € Qh,u € Q%. Since s < t, we have (1) s =, 55 (2)
+
t 2t ) u B ()T € Q% it Ty 1P As < 1% W € O,
(t —>—0+2 t = s<t). By (2), (3) and rule [R6], we have (¢,u) —122923
(t',u). From (4), by co-induction hypothesis [H], we have (s,u) < (¢, u).
By Definition 5! (5), we have (s,u) < (¢, u).

e Case s € Q¢,t € Qh,u € QF. Since s < t, we have (1) s = s'; (2)

+
B 3y PR @) 3 e Qg it TS, 1t as < 19 W € Qs

(t 5t — s<t).
By (1), (3) and rule [R6], we have (s, u) [ps_,zfdm (s,u’).

By (2), (3) and rule [RA4], we have (¢,u) " 25, (¢, uh).
This yields:

(1) ?23(5 )(tﬂ/)
t,u
o2 ()(t') ( )W), T (t)(t) * o3 (u)(u')]

By Lemma [1 [Reflexivity of refinement], v < u. This means that there
exists a probability distribution d3 that satisfies the condition (4) of Def-
inition [5 for all f3(u') € o3(u)(v') and v’ € Q3. By definition of f3, we

have:
(f2) Y fs(w)  ds(u) () € os(u)(u)
u'€Q3
= > o)) x3(u)(w) C og(u)(w)
u'€Q3

We want to check that there exists a 6 that satisfies the condition Def-
inition [5] (4) for all f(s,u’) € o13(s,u)(s,u’) and (t',u') € Q3. Let
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((s, u))((t', ) € oa(t)(t') * b3 (u') (')
(By definition [F2] in Figure 4t [a,b] * [¢,d] = [a * ¢, b * d])
o2 (t)(t') * o3(u)(u') € [o2(t)(t) * g3(u)(u'), T2 () (t') * T3(u) (u')]

=  (By t2 and by set theory
[aab] * [Cvd] g [e;f] A [Cladl} g [C7d] = [a7b] * [01,d1] g [ev.ﬂ)

D o) (t) * os(u) () * S5(u')(u)
u' €Q3
C [oa(t)(t") * a3(u)(u'), o2(t)(t') * T3 (u) (u')]
= (By definition of § and commutativity of *)

> (os(w) (W) 5(s,u) (', u'))
u' €Q3
C [o2(t)(t) * a3(u)(u'), T2() (¥') * T3 (u) (u')]

< (By (1), (3), rule [R6], Z o13(s,u)(s,u') = Z os(u)(u'))

(s,u')€Qus u'€Q3
D (ows(s,u)(s, ) x 8(s, ) (¥ u))
(s,u')€Q13
C [oa(t)(t") * a3(u)(u'), o2(t)(t') * T3 (u)(u')]
< (By (1))
Z (o13(s,u)(s,u') x 8(s,u')(t',u')) C ooz (t,u) (', u'),
— E%l;)(eie%;ition of f)

Do (flsou) #8(s, ) (t ) € oas(t, u) (', )

(s,u')€Q13
So we have the desired result (s,u) < (t,u).
e Case s € Ot € Q%,u € Q%. Similar to the case s € Qf,t € Qb u € QF.
e Case s € O, t € Q%,u € QF. Similar to the case s € Qf,t € QF, u € OF.
e Case s € QY t € Q% u € Q3. We have (1) s BN s’y (2) t 2, t';

(3) u %3 /. By (1), (3) and rule [R5], we have (5) (s,u) —Iil-)lg (s',u).
By (2), (3) and rule [R5], we have (6) (s,u) —1112 (s',u). We know
that there is a probability distribution § C Q; x Qs x [0, 1], such that,
Vf(s') € o1(s)(s),t' € Qq,

() S () #8(s")(t) € o2(t)(t') and Vs' € Q1,6(s) (') > 0= s’ < ¢’

s'€Q1

Let 0’ = 0. We want to check that §’ satisfies the condition Definition[5](4)
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for all f(s',u) € o13(s,u)(s',u) and (', u) € Qas.

(By definition of §’)
D (s w (s

(s",u)€Q13
— (By (3) andrule R3], > f(s’\u)= Y f(5))
(s’,u)€Q13 s'€Q
D () *8(s) ()
(s, u)€Q13
€ (By (1))

o2 () ()
= (By (3) and rule [R5], oa3(t, u)(t',u) = o2(¢)(t'))
oa3(t,u)(t',u),
So we have the desired result (s,u) < (t,u).
[p1,p2] [Ps,p4]

e Case s€ Q,t € Q% u e QF. We have (1) s --»1 ¢ and (2) u --» 3.

From (1), (2), by rule [R4], we have (s,u) [pl*p—sﬁﬂpdlg, (s',u’). This

yields:
(f1)  o1s(s,u)(s',u') = o1(s)(s") * o3(u) (u)

Since s < t, by Definition 5/ [Contract Refinement] (4), we know ¢ e 113)6]2 t

for some t’,ps,ps and ' < t'. By u [pfilz)4]3 v’ and rule [R4], we know

[p5*D3,P6*Pa)

(t,u) -=» o3 (¢,u’). This yields:
(f2)  o2s(t,u) (', u') = o2(t)(t') * o3(u) (u)

By Definition[5 (4), we know there is a probability distribution § C Q; x
Q2 X [O, 1], s.t.,

(t3) VF(s) €ar(s)(s),t' € Qa, D (f(s') * 6(s)(t')) € aa(t)(¥),
and &' <t if §(s")(t') >0 e

We want to show that there is a probability distribution §’ C Q13 x Qa3 X
[0,1], such that Definition[5 (4) holds. Let ¢’ be

8 (s u") (' u!) = {(5(8/)@’)’ if u =

0, otherwise

We want to check that ¢’ satisfies the condition Definition [5] (4) for all
[ € o13(s,u)) and (t',u') € Qa3. We prove it for all ¢ € Q, as follows.
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s'€Qy

1
Vol € Q5 3 oa(s)(s') * os(u) )
s'€Q1
< (By (f1) and (f2))

Yu' € Qs, Z o13(s,u)(s,u") x 8 () (t') C oas(t, u)(t',u’)

s'€Qy

<— (For u” #/, Z does not add any non-zero term.

(Slvu/l)egls
Also by definition of §.)

Vu' € Qs, Z o13(s,u) (s, u") 8" (8, u") (' u") C oas(t,u)(t',u')

(s',u”)€Qu3
<= (By definition of f’)

V'€ Qs, Y (F(s ) (s u) () € oas(tu)(t )

(s’ ,u'")€Qi3

We have the desired result (s,u) < (t,u).

O

Theorem 2] (Congruence of refinement for ||7) For all contracts Cy, Cy, C3, Cy
and an interaction set Z, if C1 < Cy and C5 < Cy, then Ci||z C3 < Csl|z Cy.

Proof.
Cl S 02 and C3 S 04

= (By Lemma 5 (Congruence of < for ||7) twice)
C1]|zC3 < Col|zC5 and Cs|zC2 < C4||7C2)

= (By commutativity of ||7)
C4||zC5 < Cs]|zC5 and Cs||zCs < Cyl|zC2)

= (By Lemma 2 (Transitivity of <))
C1]|zC3 < Cul|zCq

= (By commutativity of ||7)
C1[zC5 < Col|zCy

B.2 Conjunction of Contracts

Theorem 6 (Soundness of conjunction) For all contracts Cy and Cy, 74, (Cq A

Cy) < C;fori=1,2.

Proof. We only show the proof for w4, (C1 AC2) < Cy as the proof for m4,(Cy A
Cy) < Cy is similar. If Cy A Cy = C then m4,(Cy A Cy) = C, and the claim
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follows. We now consider the cases where C; A Cy # C . Let

Ci = (Q1,A1,—1,--*1,50)
C2 - (Q27A27_)2,__')27t0)
T4, (C1ACo) = (Qi2, A1, —12,--*12, (S0, t0))

Let 6§ C Q12 X Q1 be a binary relation such that {((s,t),s) | s € Q1,t €
Qo, (s,t) € Q12}. We want to show that § C <. Since projection is only done
for action transitions where the action is in Ay and not in Aj, it only affects
the case [LiftR].

First, we consider the 2 cases involving the state T;.

e Case s = T1. As any state refines T, we are done.

e Caset = To. We define a mapping p from Qq x Qs to Q1, p: (s, Ta) — s.
According to rules [C2L] and [C4L], the macro-state (s, Tz2) follows the
transitions of s for any state s, hence p is a bijection. So (s, T3) < s.

Now, we consider cases where states s and ¢ are neither T; nor 1;. We have the
following induction hypothesis: for all s’,#' such that s’, ¢’ are the next states of
s and t respectively, and (s',t') € 6,

(s, ) <5 [H]
Given ((s,t), s) € 0, we have the following cases to consider.

o Case s € Qf,t € Q3. We have There are 3 subcases to consider.

— Subcase s 5, s’ and t >, t’. We have the following induction
hypothesis:
(st < s [HC1]
Since we have s —; s and (s,t) 12 (s',¢') and [HC1], it is easy to
check that Definition 5][<| (3a) and (3b) are satisfied, and since (s, t)
is not T, Definition 5|[<] (1) is vacuously true. So we have (s,t) < s.
— Subcase s 51 s’ and a € A;. We have the following induction
hypothesis:
(s',t) <& [HLiftL]
Since we have s %1 s" and (s,t) 12 (s, t) and [HLiftL|, it is easy to
check that Definition 5/[<] (3a) and (3b) are satisfied and since (s, )
is not T, Definition[5 (1) is vacuously true.

— Subcase t S5 t' and o € A;. We have the following induction hy-
pothesis:
(s,t') <s  |HLiftRJ

Since s € Qf, s is not T1. We thus know (s,#’) is not T. After
projection on Aj, we have (s,t) = (s,t'). By [HLiftR], we know
(s,t) < s, so we are done.

e Case s € Q7 t € Q. We have s —1—391 s',t € Q% and s’ ~ t. By rule [C4L],
we have (s,1) —1—3+12 (s',t). We have the following induction hypothesis:

(s',t) <& [HCA4L]
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Since < is reflexive (by Lemmall), we have s < s. We know that there is
a probability distribution 6 C Q1 x Q1 x [0,1], such that, Vf € o(s) and
S/ S Qla

() > (f(s) % 6(s)(s") € oa(s)(s'), and §(s')(s") >0 = &' <&

s'€Q1

We want to establish a ¢’ such that for all f/(s',t') € d12(s,t)(s', '), Defi-
nition 5 (4) holds. Let ¢’ C Q12 x Q1 x [0,1] be defined as §'(s',¢')(s") =

o(s")(s").

(By (t2))
Y (f(8) *8(s)(s") € a(s)(s)

s'€Q1
<= (By definition of f)

> ([ou(s)(s),71(s)(s)] * 6(5') (")) € o1 (s)(s)
s'€Qq
<= (By rule [C4L], [o12(8', '), T12(s', )] = [o1(s)(s),T1(s)(s")])

Y (ol ), 7m(s )] % 6(s')(s) € ou(s)(s")

(s',t')€Q12
<= (By definition of §’)

Yo (loua(s' 1), 712(s" )]+ 8'(s, ¢)(s) C oa(s)(s))
= ((SB;/ )Ejilriition of )
Y. ()8 E)() € auls)(s)

(s",t")€Q12

Together with the induction hypothesis [HC4L], we thus have the desired
result.

e Case s € Qf,t € OF. Similar to the proof in case s € OF,t € Q3.

]

[p1,p2] [p3,p
e Case s € Ot € OF. We have s Y s and t oy

5,p6
By rule [C3], we have (s,t) [p——g]lg (s',¢') where ps = max(p1,ps) and

pe = min(p2,ps). We have We have the following induction hypothesis:

5 t' and s’ ~ t.

(s',t) <s [HC3|

Since < is reflexive (by Lemma (1), we have s < s. We know that there
is a probability distribution § C Q1 x Qp x [0,1], such that, Vf(s") €
U(S)(S/)VS/ € Qla

() Y (f(s) *8(s)(s) € o1(s)(s), and §(s)(s') >0 = &' <&’

s'€Q1

We want to establish a ¢’ such that for all f/(s',t') € d12(s,t)(s', '), Defi-
nition[5 (4) holds. Let ¢’ C Q12 x Q1 X [0, 1] be defined as &'(s',t')(s) =
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o(s")(s").

By (11))
Y () #3(s)(s) € aa(s)(s)
= EBeledeﬁnition of f)
> (ou(s)(s), 1) ()] * 6(s)(s") S o1 (s)(s))
s'€Q
< (By rule [C3], [o12(s', ), T12(s", )] C [o1(s)(s), 71 (5)(5")])
> (lonals'.#).77a(s . 1)] * 6(")(s") € 01 (s)(s"),
= E]?f}? 1Deﬁnition!ﬁ [Unambiguous contract], the similarity between
s" and ' is a bijection, so the number of (s’,t') states is the same
as the number of s states.)
>- (ol 1), 75(s )] # 6()(s) € 1 (3)(s).
(s',t')€Q12
<— (By geﬁnition of ¢')
Y (lona(s 1), 7ma(s )] % 6'(s #)(5") € oa(s)(s),
(s',t)€Q12
<= (By definition of f”)
Yo () 8 (s E)(s) € o1 (s)(s)

(s',t")€Q12

Together with the induction hypothesis [HC3|, we thus have the desired
result.

O

B.3 Proofs for Similarity

Lemma 6 (Refinement implies similarity). For all unambiguous contracts Cy
and Cy such that 1 & Cq, if C1 < Cy, then Cy ~ Cs.

Proof. Let C; = (Q1,A1,—1,01,80) and Cy = (Qa, Az, —2,09,t9). To show
so < to implies sg ~ tg, we prove the general case, for all states s € Q; and
te Qo if s <t, then s ~t.

Since there is no L state in C; and C; < Cy, by Definition |5 [Refinement],
there is no L in C5. We also know that any state is similar to the T state, so
we have four cases to distinguish:

e Case s € Q% and t € Q°. Tt is easy to check that Definition 5/ (3a) implies
Definition [14 (1b); Similarly, Definition [5] (3b)), where ¢ is not T, implies
Definition 14 (1a).

e Case s € QP and t € QP. Since s and t are states in an unambiguous
contract, by the induction hypothesis, s’ <t = s ~t = s =1,
which means that the refinement relation between s’ and ¢’ is a bijection.
It follows that the 6 in the Definition [5] (4) is 6(s')(¢t') = 1 for &' < ¢.

Suppose s D o and t 5 ¢ where ' < t'. To satisfy the Definition[5 (4),
we must have P; C P, which indeed implies P; N Py # (), which satisfies
Definition [14 (2).
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e Case s € Q% and t € QP. It is easy to check Definition [5] (5) implies
Definition [14 (3).

e Case s € QP and t € Q. Tt is easy to check Definition [5] (6) implies
Definition [14 (4)

O

Lemma 7 (Commutativity of ~). For all contracts Cy,Cs, C1 ~ Cy iff Cy ~
C1.

Proof. By inspecting Definition[14, we see that the conditions for s and ¢ to be
similar are symmetrically defined. Thus, for all states s,t, s ~ t iff t ~ s. If
states sp and ¢ are initial states of C; and C5 respectively, we then have sg ~ ¢
iff to ~ 50- Thus, Cl ~ 02 iff 02 ~ Cl. O

Lemma 8 (Monotonicity of similarity over the same alphabets). For all unam-
biguous contracts Cy, Cs, and C5 over the same alphabet, such that C1 < Cs, if
Cl ~ 03, then CQ ~ 03.

Proof. By logic A = B <= -B = —A, we prove Cy ¢ C3 = Cy # C3.
If Cy # C4, the initial states of Cy and Cj3 are not similar. Since C; < Cj,
by Definition [5, the initial states of C; and C3 are not similar either. Thus,
C1 # C3 and we are done.

O

Remark: We do not have transitivity of similarity. That is, the following
statement does not hold: for all contracts C1, Cs, and Cs, if C; ~ Cy and
Cy ~ C3, then C1 ~ Cy. Here is a counter example:

0,0.3 0,1 0.5,1
(Q)SO [**-)] S1 ﬂ) S1 (b)to [**-)] tl & tl (C)UO [**9] U1 ﬂ) Ul

Here, sg ~ tg and tg ~ ug, but sg % up.

B.4 Completeness of conjunction

Lemma 9 (Commutativity of A). For all contracts C; and Co, Cy A Cy =
Co N Ch.

Proof. It is obvious because the rules for conjunction are symmetric. O
Lemma 10 (Idempotency of A). For any contract C, CANC = C.

Proof. For any contract C, C' is similar to itself. As C' and C share the same
alphabet and the same structure and we want to establish that the initial state of
C refines itself, only conjunction rules [C1] and [C3] in Figure[12]can be applied.
Examining [C1], the resulting transition (q1,q1) = (q1,q1) has the same action
transition as ¢, — ¢ for all ¢;. Examining [C3], since P, N P, = Py, the

P
resulting transition (qi,q1) --» (¢1,¢1) has the same probabilistic transition as

PP,
q1 ~—» q for all ¢;. So we have idempotency. O

Lemma 11 (Congruence of refinement for A over the same alphabets). For all
delimited unambiguous contracts Cy, Co, Cs, if Cy < Co, then C1A C3 < CoA Cs.
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Proof. Note that, if C; ¢ C3, then C1ACs5 is C' (recall that C'| has been defined
in Definition [3)). Since L refines any state, we have C; A C3 < Cy A C5. So we
only have to consider the case where C; ~ C3. By Lemma [8] (Monotonicity of
similarity), we know Cy ~ C3. Let

o
Cs
Cs
Ci N Cy
CoN Cy

(Q1,A,—1,01,50)
(Q2, A, —2,09,t)
(
(

Q13,«4 —13, 013, (50, U0))
(Qa3, A, —23, 023, (to, ug))

Notation: for all interval o, let 0 and & denote respectively the lower bound

and the upper bound of o.

Let 6 C Q1 x Qs be the refinement relation such that (s,t) € 6 iff s <t. Let
0’ C Q13 X Qa3 be a binary relation such that ((s,u), (t,u)) € 0" iff (s,t) € 6,
s ~u and t ~ u. We now prove that ' allows us to establish that (s,u) < (¢,u).
First, we consider the 3 cases involving the state T;.

(a) Cases = Tj. Since s < t, by Definition[5 (<) (1), ¢t = To. By Definition[16
(Conjunction), the conjunction of C; and Cj is in the state T and the
conjunction of Cy and Cj is also in the state T. Since T < T, we have

the desired result.

(b) Case t = T2. By Definition (Conjunction), the state (¢,u) in the
conjunction is replaced by T. Since any state refines T, we have the

desired result.

(¢) Case u = T3. By Definition 16 (Conjunction), the conjunction of C; and
Cj5 is in the state T and the conjunction of Cs and Cj is also in the state
T. Since T < T, we have the desired result.

Second, we consider the 3 cases involving the state L;:

(a) Case s = 1. By Definition [16] (Conjunction), the state (s,u) in the
conjunction is replaced by L. Since L refines any state, we have the

desired result.

(b) Caset = L,. Since s < ¢, by Definition|5 (<) (2), sis L;. By Definition|16
(Conjunction), the conjunction of Cy and Cj is in the state L and the
conjunction of Cy and Cj is also in the state L. Since 1 < 1, we have

the desired result.

(c) Case u = L3. By Definition (16 (Conjunction), the conjunction of C; and
Cj5 is in the state L and the conjunction of C5 and Cj is also in the state
1. the state of conjunction for both sides is L. Since | < 1, we have the

desired result.

Now, we consider cases where states s, t,u are neither T; nor ;. We have the
following co-induction hypothesis: for all s’,¢', v’ such that s’,¢,u’ are the next
states of s, t,u respectively, and ((s',u'), (t,u')) € &',

s <t = (su)< W) |H]

Given ((s,u), (t,u)) € 0, we have the following cases to consider.
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e Case s € Qf,t € Q%,u € Q3. Since s < t, we have (1) s =, 55 (2)

RR n°

t B9t (3) u 3 w5 (4) s < . From (1) and (3), by rule [C1], we
have (5) (s,u) 13 (s',u’). From (2) and (3), by rule [C1], we have (6)
(t,u) So3 (t',u’). From (4), by the co-induction hypothesis [H|, we have
(7) (¢',u') < (t',u'). The conditions (5), (6) and (7) meet Definition [5
(<) (3)-

Case s € Qf,t € Q3,u € QF. We have (1) u —€3+3 u’. Since Cy ~
Cs, (2) v/ ~ s. From s € Qf, (1) and (2), by rule [C4R], we have (3)

P
(s,u) --»13 (s,u’). (Note that, since u' is a state in an unambiguous
contract (Definition [15), it is impossible to have more than one «’' such
that s ~ u'.) Since Cy ~ C5, we have (4) t ~ «'. From (1), t € Q%

and (4), by rule [C4R], we have (5) (¢, u) 7{3_)13 (t,u’). As s <t by the
co-induction hypothesis |H|, we have (6) (s,u’) < (¢,u'). From (3) and
(5), we can find a probability distribution 8’ C Q13 x Qa3 x [0, 1], such that
Definition[5](<) (4) holds, that is: (s, u’)(¢,u') = 1. Thus, (s,u) < (¢, u).

Case s € Qf,t € Ob,u € Q% Given s < t, by Definition [5 (<) (5),

>0 T , >0, ,
Jt¢ € QF 1t -3, t“/\sgt“anthEQQ,(t——+2t — sgt).
From s < ¢ and s < ¢/, by the co-induction hypothesis [H], we have (1)
(s,u) < (t*,u) and (2) (s,u) < (¥, u) respectively. By applying rule [C4R]

+
multiple times, we have (3) (¢,u) —>—q>23 (t*,u). From (3), (1) and (2), by
Definition[5 (<) (5), we have (s,u) < (¢, u).

Case s € Qf,t € Q8 u € QF. We have (1) ¢ _112 t' and (2) u —1i3+3
u’. Since C7 ~ C3, we have (3) s ~ u/. Since Cy ~ Cj5, we have (4)
P,NP;#0and ¢’ ~u'. From s € Qf, (2) and (3), by rule [C4R], we
have (s, u) —63913 (s,u’). From (1), (3) and (4), by rule |C3], we have

(t,u) Pzrjfsgg, (t',u’). Since s < ¢, by Definition 5] (<) (5) we have (5)

s < t’. Note that, s <t = s ~ t'. Now, since t’ is a state in an
unambiguous contract, it is impossible to have more than one ¢’ such that
s ~t'. So the t’ is unique. From (5), by the co-induction hypothesis [H]|, we
have (s,u') < (¥,u'). As Cy is delimited (Definition[4) and unambiguous
(Definition 15) and Cy < Cb, there is only one t' from ¢. As Cj is also
delimited and unambiguous and Cs ~ Cj3, there is only one u’ from u.
That is, P, = P3 = [0,1]. So P3 C P2N P3. We can find a probability
distribution ¢’ C Q13 x Qa3 X [0, 1], such that Definition 5] (<) (4) holds,
that is: §(s,u)(¢',u’) = 1. Thus, (s,u) < (¢, u).

Case s € Q’f,t € 9%,u € 9Q%. Similar reasoning as in Case s € 9f,t €
o8 ue 0F.

Case s € Q,t € Qf,u € Qf. Similar reasoning as in Case s € Qf,t €
Poue OF.

Case s € Q) t € QY u € Qf%. Similar reasoning as in Case s € Qf,t €
Q%,u € QF, but with a probability distribution ¢’ C Q5 x Qa3 x [0,1],
such that Definition[5 (<) (4) holds, that is: §'(s",u)(t',u) = 6(s")(t').
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e Case s € Q. t € Qb u € QF. We have (1) s SN s, (2) t 2, t', (3)
U —F—)3+3 u'. Since Cy ~ Cs, (4) s’ ~ /. Since Cy ~ C5, (5) t' ~ «/. From
(1), (3) and (4), by rule [C3], we have (6) (s,u) Pl@fslg (s',u'). From (2),

P>NPs

(3) and (4), by rule [C3], we have (7) (t,u) =->"23 (t,u'). We know:

(Tl) 013(57’“)(8/’”/) = [@(87u)(slvul)7o'713(87u)(8/7u/)]
= [max(o1(s,s'), o3(u, u')), min(51(s, s'), 73(u, u'))]

(f2) oas(t, w) (', ') = [oas(t, u)(t', ), oa5(t, u) (¥, )]

= [maa(os(t, ), o5 (u, u')), min(@3(t, '), 73 (u, )]

By Definition [5] (4), we also know that there is a probability distribution
4 C Q1 x Qy x [0,1], such that, Vf(s') € o1(s)(s'),t € Qo,

() #8(s)(H)) € o2(t)(t') and Vs’ € Qu,8(s)(t') > 0= 5" < ¥/

s'€eQ

Moreover, we have:

(ts) D (F(s) % 8(s)(t)) € o2(t)(t))

s'€Q1

= Y ([oa(s)(s),71(s) ()] % 8(s) () S aa(t)(t)
s'€Q1

=Y o)) # 6 (E),Tr(s)(s) # 8(s) ()] € oa(t) (1), T2 (1) (1))
s'€Q1

We want to show that there is a probability distribution ¢’ C Q13 x Qa3 X
[0,1], such that Definition 5 (4) holds for all f/(s',u') € o13(s,u)(s’,u/)
and all (¢,u’) € Qag. Let |¢'| be the number of outgoing states from s
where 6(s")(¢') > 0. Let ¢’'(s',u/)(t',u") = §(s")(t') * |s'].
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(By (13))
D loa(9)(s) % 8(s) (1), 7a(s)(s") % () ()] € o2 ()(), 73 () (¢))]
— zé}?lset theory, if [a, b], [c,d], [e, f] € [0,1], then
[a,b] C [¢,d] <= [max(a,e),min(b, )] C [max(c,e), min(d, f)].
By distributivity of * over max and min.
We also know that o3(u)(u) C [0,1])
Vu' € Q3, Y [max(o1(s)(s'), oa(u)(w)) # 6(s')(t'),
s'€Qq
min(e1(s)(s"), o3(w)(u')) * 6(s")(t')]
C [max(o2(t)(t'), o3(u)(w)), min(oz(t)(t), 75(u) (u'))]
<= (By definition of Z, we can apply Z to both sides of C)
u'€Q3

Yo Y max(ou(s,s), o3(u)(u ) * ()((’)

WEQs s'€Q mm(dl( )(s"), 73 () () * 6(s) (2]
C Y [max(oz(t)(t'), o5(w)(u)), min(@z (1) (t'), 75(u) (u))]
u' €Q3

<= (By definition of Z)

(max(a1(s)(s"), a3(u)(u)) * 5(s") ('),
(s, u")EQ13 mln(ﬁ(s)(sl),ﬁ( )( ))*5< )(t )]
C [max(ay(t)(t'), a3(u)(u')) * (1/]s']), min(az(t)(t), 73(w)(u)) * (1/]5'])]
<= (By multiplying both sides of C by |s'|)
[max(a1(s)(s"), a3(w)(u)) * 6(s")(¢') * |s'],
(s',u)€Qus min(ﬂ(S)(S'),?sEU)(u’)) *#0(s")(t') [ ']}

C [oa()(t) * a3 (u)(u'), 72(t) t’g * o(u) (u')]

(max(c1(s)(s"), o3(u) (u')), min(1(s)(s"), 73(u) (u'))]
(s';u)eQis * 6(s")(t') |5
C [max(ay(t)(t'), a3(u)(u')), min(az(t)(t), o3(u) (u'))]
<= (By definition of §")
Y. [max(au(s)(s)), os(u)(u')), min(@i(s)(s'), 5 (u) ()]
(s'u)eQis *0' (s, u)) (¢,
C fmax(oa(#)('), o3(u) (u'), min(@3(2) (¢), 73 (w) ()]
= (By§2))
([max(o1(s)(s
(s',u')€Quz * 5/( ! )(
C oo3(t,u)(t',u')
—  (By (1))
Z (013(s,u) (8", u’) 6" (s, u' ) (', u)) C oo (t,u)(t',u')
(s',u')€Qu3
<= (By definition of f’)
Z (f'(s" ) = 8" (s", ") (', u')) € oas(t,u)(t',u')

(s”,u")€Q13
L]

Theorem 8 (Congruence of refinement for A) For all delimited unambiguous
contracts Cp, Cs, C3, and Cy4 over the same alphabet, if Cy < C5 and C3 < (Y,
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then C1 AC3 < Coy A Cy.
Proof.

Cl < CQ and 03 < 04

= (By Lemma [11] (Congruence of refinement for A) twice)
CiNC3<COy3ANC3and C3NACy < Cy NCy

= (By Lemmal9 (Commutativity of A))
Cl /\03 SCg/\CQ and Cg/\Cg §C4/\Cg

= (By Lemma[2 (Transitivity of <))
CiNC3 < CyNCo

= (By Lemmal9 (Commutativity of A))
CiNC3<CyNCy

O

Theorem [7 (Completeness of conjunction over the same alphabet) For all
delimited unambiguous contracts C7,Cs,Cs, if C7 < Cy and C; < Cj, then
C1 < CyNCs.

Proof.

C<Cjand C <Oy

= (By Theorem [§] (Congruence of refinement for A))
CNANC<CiNCy

= (By Lemma[10 (Idempotence of conjunction))
C<CiNCy

O

Corollary 2. For all IMC M and delimited unambiguous contracts C1 and Cs,
ZfM ): CZ‘,Z' = 1,2 then M ': Cl /\Cg.

We do not have completeness for conjunction if two contracts have different
alphabets; that is, the following statement does not hold:

For all IMC M and contracts Cy = (Q1,.A1,—1,01,80) and Co = (Qa, A2, —2
,O'Q,to), Z.fTI'_Ai(M) ): C;,i=1,2 then M ': Ci N Cs.

A counter-example is shown in Figure where A1 = {a,c}, Ay = {b}, and
P, = [pi,pi] for i = 1,2,3,4. For the ease of checking 7w 4,(M) E C;, we
simply let the C; be |m4,(M)]| and rename the labelling of the states accord-
ingly. Intuitively, it is impossible for M to produce a sequence ba. Specifically,

s1 £ (to,Ug), S0 sg £ (to, {u07u1}) and M F& Cq1 N Cs.

B.5 Associativity of Conjunction

Before proving Theorem 5] let us show that we do not have associativity of
conjunction if two contracts have different alphabets. That is, the following
statement does not hold:

For all unambiguous contracts C7,Cs, and Cs, (C1 AC2)AC3 = C1 A(Co ACs).
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b
o
pz@%

(a) An IMC M.

N c
NG Q P?;__,@—c.@

(b) A contract Cy where A; = {a,c} and 74, (M) = C;.

H‘k&

(c) A contract Cy where As = {b} and wa,(M) | Cs.

B

(d) Conjunction C; A Cy where M = Cy A Cl.

Figure 20: A counter example for completeness of conjunction for contracts.
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Figure [21 shows a counter example. In Figure 21! (e), there is no transition
from state ((T1,%0),up) because the action transition ¢ from state (T1,tp) in
Cy A Cs is in the set of actions of C5 (i.e., we cannot apply the conjunction rule
[LIFTL]). However, in its corresponding state (T, (to,uo)) in Figure 21l (g), we
can have transitions that follow the contract Co A C3 due to the conjunction
rule [C2R].

MOGORGERO 0RO B OCO

(a) C1 (b) C2 (c) Cs

o ontahd D= oo >

-

s >

(g) part of C1 A (Cay A 03)

Figure 21: Counter example for associativity of conjunction

Definition 17 (Equality of contracts). For all contracts C; = (Q1,A,—1
,01,80) and Co = (Qa, A, —9,09,1), Cy is equal to Cy (written C; = Cy) iff
there exists a bijection p : Q1 — Qo such that to = p(sg) and for all s,s" € Qy,
P P
we have: s % s <= p(s) > p(s'), and s ——+ s <= p(s) --» p(s).
Theorem [5 [Associativity of conjunction over the same alphabet| For all
unambiguous contracts C; = (91,4, —1,01,80), Ca = (Q2, A, —2,09,t3), and

C3 = (937-'4’ _)370—37’“0)7 (Ol A 02) A 03 = Cl N (CQ AN 03)
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Proof. Let

¢, = (Q1,«4,—’1,0'1,50)
Cy (Qa2, A, —2,02,10)
C3 = (Q37A7 —>3,0’3,U0)
CiN Cy = (Qi2, A, —12,012,(50,%0))
CoN C3 = (Qa3, A, —23,023, (to, uo))
(CiN Co)N C3 = (Qi23,A,—123,012.3, ((50,%0), Uo))
CiN (ConN C3) = (Qi.23, A, —1.23,01.23, (S0, (to, u0)))

Let p be the state mapping from Q123 to Q1 .23 such that p(L123) = L1 23,
p(T12.3) = T1.a3, and for all ((s,t),u) € Q12,3 such that s ~ ¢t ~ u, we have
p(((s,t),u)) = (s, (t,u)). We must show the following property:

a a P P
Vq,q' € Qi23, ¢ = ¢ <= plq) = p(¢') and ¢ --» ¢ <= p(q) - p(¢') [P]

If g = L1953 or ¢ = Ti23, then the property [P] is trivially satisfied. Oth-
erwise, ¢ is of the form ((s,t),u) with s ~ ¢ ~ u, and we have the following

cases:

(1) Case

where ¢’ = 1. We thus have the following (not necessarily exclusive)

subcases:

(1a)

(1d)

(2) Case

s — 13. According to Rule [2]of Definition [16, we have (s,t) — La.
Hence ((s,t),u) — Lj23. Similarly, whatever the transition from
(t,u) in Ca3, we have (s, (t,u)) — L1.023. Since p(Li2.3) = L1923, the
states ¢ and ¢’ satisfy [P].

The subcases t — 11 and/or u — L; are analogous to (1a).

The three states are action states with s — s’, t — ¢/, and u — /,
and are such that s’ £ t. Firstly, according to Rule[2 of Definition[16]
we have (s,t) — Lli12. Hence ((s,t),u) — Lia2.3. Secondly, either
t/ ~ ' ort £ u'. The first case implies that (t,u) — (¢',u’). It
follows that s’ ¢ (¢,u'). The second case implies that (¢,u) — Lo3.
So in both cases, (s, (t,u)) — Lji23. Since p(Llia3) = Lj.a3, the
states ¢ and ¢’ satisfy [P].

The subcases where some states are probabilistic states and/or an-
other pair of destination states is not similar are analogous to (1c).

where one or two states among s, ¢, and u is equal to T;. We have

the following subcases:

(2a)

(2b)

RR n°® 7328

s=Tq,t LA t', and u -5 u'. Firstly, since t ~ u, we necessarily have
8 = . Thus, according to Rule [C1], (¢,u) LA (t',u’). Secondly, ac-
cording to Rule [C2R], (s,t) 2 (T1,¢/) and (s, (t,u)) 2 (T, (', ')
Thirdly, according to Rule [C1], ((s,t),u) LA ((T1,¢),u'). In other
words, p(((T1,t),u)) LA p(((T1,t),u’)) and the states g and ¢’ sat-
isfy [P].

The other subcases, including with probabilistic transitions, are anal-
ogous to (2a).
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(3) Case where ¢ = ((¢/,t),v') with s’ ~ t' ~ w/. We have the following
subcases:

(3a) The three states are action states with s % s/, ¢ LA t', and u > u'.
Firstly, since s ~ t ~ wu, we necessarily have « = 3 = . Thus, accord-
ing to Rule |C1], (s,t) = (s',¢') and (t,u) = (¢, u’). Secondly, apply-
ing again Rule [C1] gives ((s,t),u) = ((s',t'),u’) and (s, (t,u)) =
(s',(t',u')). In other words, p(((s,t),u)) = p(((s',t'),u)) and the
states g and ¢’ satisfy [P].

(3b) The other cases with probabilistic transitions are analogous to (3a).

O

Theorem 9 (Distributivity of || over A). Let C; be an unambiguous contract
over alphabet A;, i = 1,2,3, such that (A1 U A3) N A3 = 0, and let T C
A UAs U A3 U (A a1 Ag), where S xSy ={alb|a € Sy Abeg Sy}. Then,

(C1 N Co)|IzCs < (C1l|zC3) A (Cal|zCs)
Proof.

(By Theorem 6/ [Conjunction is a common refinement))
CiNCy <(Cqand C1 ACy < Oy

(By Lemma [5] [Congruence of refinement for ||7])

(C1 A C2)||zC5 < C4]]zC5 and (Cy A C)]|7C5 < Cal|zC5

(By Theorem [8] [Congruence of refinement for A])

((C1 A C)[[zC3) A ((C1 A C2)[12C3) < (ChzC3) A (C2|2Cs)
(By Lemma |10 [Idempotence of conjunction])

(C1 N C2)[IzC3 < (C1]|zC3) A (Cal|zC3)
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