Parametric polynomial minimal surfaces of arbitrary degree

Gang Xu 1 Guozhao Wang 2
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : Weierstrass representation is a classical parameterization of minimal surfaces. However, two functions should be specified to construct the parametric form in Weierestrass representation. In this paper, we propose an explicit parametric form for a class of parametric polynomial minimal surfaces of arbitrary degree. It includes the classical Enneper surface for cubic case. The proposed minimal surfaces also have some interesting properties such as symmetry, containing straight lines and self-intersections. According to the shape properties, the proposed minimal surface can be classified into four categories with respect to $n=4k-1$ $n=4k+1$, $n=4k$ and $n=4k+2$. The explicit parametric form of corresponding conjugate minimal surfaces is given and the isometric deformation is also implemented.
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00507790
Contributeur : Gang Xu <>
Soumis le : lundi 2 août 2010 - 00:07:14
Dernière modification le : jeudi 11 janvier 2018 - 16:50:44
Document(s) archivé(s) le : mardi 23 octobre 2012 - 11:56:43

Fichier

generalminimalsurface.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00507790, version 1

Collections

Citation

Gang Xu, Guozhao Wang. Parametric polynomial minimal surfaces of arbitrary degree. [Research Report] 2010. 〈inria-00507790〉

Partager

Métriques

Consultations de la notice

169

Téléchargements de fichiers

100