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Abstract: Formal Concept Analysis (FCA) is a well founded mathematical
framework used for conceptual classi�cation and knowledge management. Given
a binary table describing a relation between objects and attributes, FCA con-
sists in building a set of concepts organized by a subsumption relation within
a concept lattice. Accordingly, FCA requires to transform complex data, e.g.
numbers, intervals, graphs, into binary data leading to loss of information and
poor interpretability of object classes. In this paper, we propose a pre-processing
method producing binary data from complex data taking advantage of similar-
ity between objects. As a result, the concept lattice is composed of classes being
maximal sets of pairwise similar objects. This method is based on FCA and on
a formalization of similarity as a tolerance relation (re�exive and symmetric).
It applies to complex object descriptions and especially here to interval data.
Moreover, it can be applied to any kind of structured data for which a similar-
ity can be de�ned (sequences, graphs, etc.). Finally, an application highlights
that the resulting concept lattice plays an important role in information fusion
problem, as illustrated with a real-world example in agronomy.
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Introduire une relation de tolérance dans un

treillis de concepts pour la fusion d'information

Résumé : L'analyse formelle de concepts (AFC) est un formalisme mathémati-
-que bien établi, utilisé pour la classi�cation conceptuelle et l'organisation des
connaissances. A partir d'une table binaire décrivant une relation entre des
objets et leurs attributs, l'AFC permet de construire un ensemble de concepts
organisés par une relation de subsomption, au sein d'un treillis de concepts. Mais
l'AFC a besoin de transformer les données complexes, par exemple composées de
nombres, intervalles, graphes, en données binaires. Cela peut aboutir à une perte
d'information et une pauvre interprétabilité des classes d'objets. Dans ce papier,
nous proposons une méthode de pré-traitement qui produit une table binaire à
partir de données complexes tout en béné�ciant d'une similarité entre objets.
De cette manière, le treillis de concepts est composée de classes representant des
ensembles maximaux d'objets similaires deux à deux. Cette méthode est basée
sur l'AFC et sur une formalisation de la similarité par une relation de tolerance
(re�éxive et symétrique). Cette méthode s'applique à des descriptions d'objets
complexes et particulièrement dans ce papier, à des données intervalles. De plus,
elle peut être appliquée à tout type de données structurées pour lesquelles une
similarité peut être dé�nie (séquences, graphes, etc.). Pour �nir, une application
argumente l'utilité d'un tel treillis pour des problèmes de fusion d'information,
et s'illustre sur un exemple réel en agronomie.

Mots-clés : Analyse formelle de concepts, similarité, tolérance, fusion d'information
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1 Introduction

Classi�cation methods are currently used in arti�cial intelligence for various
tasks, e.g. knowledge discovery, knowledge representation, and reasoning. One
main objective of a good classi�cation method is to work on complex data and
to extract classes having a maximal internal cohesion and a maximal external
separation with other classes. Moreover, classes have to be understandable
and interpretable for being embedded in knowledge systems for problem solving
purposes, e.g. decision support.

In this paper, we are interested in knowledge discovery and especially in
using classi�cation methods for analyzing complex real-world data, e.g., genes,
agronomic and medical measures, weather forecast, etc. Such data, are most of
the time described by objects whose attributes are valued by numbers, intervals,
lists of symbols, or graphs. Data can be analyzed or mined using knowledge
discovery methods among which Formal Context Analysis (FCA) [9]. FCA
is a mathematically well founded classi�cation framework allowing to derive
implicit relationships from a set of objects and their attributes. The main
structure which is built is a concept lattice, that can be represented by a diagram
where classes of objects and ordering relations between classes can be drawn and
interpreted.

FCA requires binary data but complex real-world data can be processed to
some extent after a discretization of data. This transformation is based on a
scaling process leading to the division of attributes and their ranges into a set
of binary attributes, i.e. a scale. A scaling process implies arbitrary choices
leading to a di�erent concept lattice and thus to a di�erent interpretation (no
�universal scale� is existing). In addition, scaling is not always consistent with
real-world knowledge: the same problem arises when working with crisp or fuzzy
values in problem solving and decision support.

In the following, we propose a classi�cation approach based on FCA that can
be applied to real-world objects described by numerical attributes and taking
into account similarity between attribute values. A scaling procedure is properly
de�ned. In addition, the main characteristics of this approach are:

� Maximal classes of similar objects with maximal set of similar attributes
are computed just as FCA concepts are based on maximal sets of objects
sharing maximal sets of attributes.

� Classes are made of pairwise similar objects: two objects in a class are
similar with respect to all attribute values shared by the two objects (and
by every other object in the extent).

� The FCA machinery, i.e. algorithms and mathematical theory, can be
reused with slight modi�cations.

In this paper, the mathematical formalization of similarity relies on a tol-
erance relation which is re�exive and symmetric. A tolerance relation can be
used for building tolerance classes of similar objects, and an associated con-
cept lattice. Tolerance classes are reused to properly de�ne a scaling for initial
numerical data allowing FCA to be applied.

Besides scaling, it is possible to directly process complex data using the so-
called pattern structure approach. This extension of the basic FCA formalism

RR n° 7353



Embedding tolerance relations in Formal Concept Analysis 4

Table 1: A numerical dataset.
m1 m2 m3

g1 6 0 [1, 2]
g2 8 4 [2, 5]
g3 11 8 [4, 5]
g4 16 8 [6, 9]
g5 17 12 [7, 10]

Table 2: A formal context.

m
1
≥
10

m
2
≤
6

m
3
≤
5

g1 × ×
g2 × ×
g3 × ×
g4 ×
g5 ×

is introduced here and applied to intervals. In addition, we show that tolerance
relations can be embedded from complex data in pattern structures for deriving
lattices with maximal classes of similarity.

Among the contributions of this paper, we show how to e�ciently embed sim-
ilarity within concept lattices by de�ning an appropriate scaling which makes
the extent of each concept a maximal set of similar objects. Contrasting the
large body of work on discretization for numerical classi�cation methods [21],
the present work is one of the few taking place in FCA and applicable to sym-
bolic classi�cation (a �rst attempt in this direction can be found in [18]). Ac-
cordingly, this paper introduces and explains the working relations between
standard FCA, scaling, pattern structures, and similarity. This original classi�-
cation framework is applied to complex data, i.e. intervals and numbers, in the
domain of agronomy. The resulting lattice materializes information fusion and
can be rather easily interpreted by agronomy experts for analyzing distributions
of agricultural practices and agreement between information sources.

The paper is organized as follows. Section 2 presents preliminaries on FCA
and scaling procedures. Section 3 introduces tolerance relations, the way how
scales can be designed from numerical data, and how numerical concept lattices
are built. Section 4 describes pattern structures in FCA and the use of tolerance
relations in this framework. Section 5 describes a real-world experiment in
agronomy based on this classi�cation proposition. Finally, a discussion and a
conclusion end the paper.

2 Formal concept analysis

2.1 Basics

Formal concept analysis starts with a formal context (G,M, I) where G denotes
a set of objects,M a set of attributes, and I ⊆ G×M a binary relation between
G andM . The statement (g,m) ∈ I is interpreted as �the object g has attribute
m� (see Table 2). The two derivation operators (·)′ de�ne a Galois connection
between the powersets (2G,⊆) and (2M ,⊆).

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

For A ⊆ G, B ⊆ M , a pair (A,B), such that A′ = B and B′ = A, is called a
(formal) concept, e.g. ({g3, g4, g5}, {m1 ≥ 10}). In (A,B), the set A is called the
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Figure 1: Concept lattice associated with Table 2.

extent and the set B the intent of the concept (A,B). Concepts are partially
ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1), e.g. the concept
({g3}, {m1 ≥ 10,m3 ≤ 5}) is a sub-concept of ({g3, g4, g5}, {m1 ≥ 10}). With
respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G,M, I). Figure 1 shows
the concept lattice1 associated with Table 2. On the diagram, each node denotes
a concept while a line denotes an order relation between two concepts. Due to
reduced labeling, the extent of a concept has to be considered as composed of all
objects lying in the extents of its sub-concepts. Dually, the intent of a concept is
composed of all attributes in the intents of its super-concepts. The top concept
(>) is the highest and the bottom concept (⊥) is the lowest in the lattice.

The concept lattice provides a classi�cation of objects in a domain. It entails
both notions of maximality and generalization/specialization: (i) maximality as
a concept corresponds to a maximal set of objects (extent) sharing a common
maximal set of attributes (intent), and (ii) the generalization/specialization is
given by the partial ordering of concepts. Concept lattices can be used in many
application �elds (life sciences, semantic-web, . . . ) for a number of purposes
among which knowledge management (formalization, acquisition, extraction),
data mining, information retrieval, and visualization, see e.g. [20, 19, 4].

2.2 Conceptual and interordinal scaling

Non binary data are described by a many-valued context (G,M,W, I), where
W denotes a set of attribute values, such that (g,m,w) ∈ I, written m(g) = w,
means that �attribute m takes value w for object g�, e.g. the Table 1 is a many-
valued context and m1(g1) = 6. In this example, W is a set of numbers (for m1

and m2) or intervals (for m3).
For processing a context (G,M,W, I), a conceptual scaling is needed, where

a scale for a given attribute is given by the transformation of attribute-value
pairs into a set of binary attributes. For example, Table 1 can be transformed
into Table 2 where the scale for m1 is given by {m1 ≥ 10} and the scale for
m2 by {m2 ≤ 6}. The choice of a scale is arbitrary and usually leads to loss
of information (links and closeness between values) and border problems. For
Table 3, {m2 = 4} and {m2 = 8} yield two di�erent classes, but could also
be considered as close values and classi�ed together. Although scaling directly
a�ects the size and interpretation of the resulting concept lattice, it remains an
important technique for binarizing complex data [9].

Nominal scaling transforms a many-valued context (G,M,W, I) into a de-
rived formal context (G,N, J) where each n ∈ N is a pair (m,w) with m ∈ M

1In this paper, lattice diagrams are drawn with the ConExp software, http://conexp.

sourceforge.net/.
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Table 3: Two formal contexts obtained from Table 1, the �rst with nominal
scaling and the second with interordinal scaling for attribute m2.

m
2
=

0

m
2
=

4

m
2
=

8

m
2
=

12

m
2
≤

0

m
2
≤

4

m
2
≤

8

m
2
≤

12

m
2
≥

0

m
2
≥

4

m
2
≥

8

m
2
≥

12

g1 × × × × × ×
g2 × × × × × ×
g3 × × × × × ×
g4 × × × × × ×
g5 × × × × × ×

and g(m) = w (also written �m = w�) for some g ∈ G. For example, nom-
inal scaling transforms Table 1 into Table 3 (left, where for readability, only
attribute m2 is kept). Knowing that |N | = |Wm ×M | where Wm is the range
of the attribute m, when |W | is large, then N is also large, making the derived
context harder to process [13].

Interordinal scale yields a formal context capturing for each attribute a set of
intervals depending on the original values of the attribute. For example, Table 3
(right) shows the resulting binary context for attribute m2. As it can be seen,
the number of derived attributes grows very rapidly, i.e. |N | = 2.|Wm ×M |.
Accordingly, the number of concepts of the corresponding lattice will also grow
and lead to readability and interpretation problems.

In both scaling approaches and in scaling in general, arbitrary choices must
be made, rarely depending on domain knowledge. There does not exist a �uni-
versal scale� and two di�erent scales lead to di�erent concept lattices and thus
to di�erent interpretations. In the following, we discuss the notion of similarity
between objects having complex descriptions, and propose a scaling approach
that associates to any object classes of similar objects using a formalization of
similarity as a tolerance relation.

3 Formalizing similarity as a tolerance relation

3.1 Introduction and de�nitions

Similarity has been studied from many points of view in arti�cial intelligence
and pattern recognition [17, 14]. For example, considering documents being de-
scribed by their attributes, e.g. keywords, similarity of documents x and y can
be de�ned by non-emptiness of the set of their common attributes, x′ ∩ y′ 6= ∅.
The similarity is re�exive and symmetric, but not necessarily transitive. Follow-
ing this idea, a tolerance relation captures the characteristics of a similarity [12].

De�nition 3.1 For a set G, a binary relation T ⊆ G × G is called tolerance
if:

(i) ∀x ∈ G xTx (re�exivity)
(ii) ∀x, y ∈ G xTy → yTx (symmetry)

RR n° 7353
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Let us consider now a set of objects G, a tolerance relation T , and a formal
context (G,G, T ). First, some objects, say g1 and g2, are observed to be pairwise
similar, i.e. g1Tg2. Then pairs of the tolerance relation lead to a class of similar
objects or �class of similarity�. Moreover, among the classes of similarity, some
classes are maximal meaning that the class is not included in any larger class.

De�nition 3.2 Given a set G, a subset K ⊆ G, and a tolerance relation T on
G, K is a class of tolerance if:

(i) ∀x, y ∈ K xTy (pairwise similarity)
(ii) ∀z 6∈ K,∃u ∈ K ¬(zTu) (maximality)

An arbitrary subset of a class of tolerance is a preclass.

Now, let us consider the classes of tolerance associated with the formal con-
text (G,G, T ). The class of tolerance of an object g has to be considered along
two dimensions: (i) the class is de�ned as the set of all objects which are tol-
erant with g, (ii) the class is maximal in the sense that objects in the class are
pairwise similar, and adding any other object in the class results in some pairs
of non tolerant objects. A class of tolerance may be given a name which can be
further used as an �attribute name� that describes the object. The result is a
formal context (G,M, I) where I associates any object in G with its classes of
tolerance m ∈M .

Based on this observation, we show below how to use tolerance relations for
designing scales for complex attributes and for building formal concepts whose
extent are made of pairwise similar objects.

3.2 A tolerance relation for numerical data

Let us return to objects and numerical attributes of Table 1. Intuitively, two
objects g1 and g2 are similar for a set of attributes if the values for each attribute
are �similar�. Similarity (or closeness) of two numerical values can be measured
by the di�erence of these two values: |m1(g1) −m1(g2)|. Then, two numerical
values are similar when their di�erence is lower than a similarity threshold θ
expressing the maximal variation allowed between two similar values. More
precisely, given two numbers a, b ∈ R and a similarity threshold θ, a similarity
relation 'θ is de�ned as:

a 'θ b ⇔ |a− b| ≤ θ (1)

This similarity relation 'θ is re�exive and symmetric but not necessarily
transitive, i.e. 'θ is a tolerance relation. For example, with θ = 2, a = 1, b = 3
and c = 5, a 'θ b and b 'θ c but a 6'θ c (1 6'θ 5).

3.3 Classes of tolerance for numerical attributes

Let us consider a numerical many-valued context (G,M,W, I) where the range
Wm of an attribute m is such thatWm ⊆W ⊂ R. Each attribute has a di�erent
range and di�erent similarities and thresholds θ have to be de�ned. However,
data can be normalized (e.g. by subtracting the mean, followed by dividing the
standard deviation) and use a single threshold can be used for a given context.

Given an attributem ∈M , let us consider the formal context (Wm,Wm,'θ),
and the relation 'θ (Formula 1). Related objects in Wm are related are similar

RR n° 7353
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m1 6 8 11 16 17
6 × × ×
8 × × ×
11 × × × ×
16 × × ×
17 × ×

Figure 2: A tolerance relation formalized by a symmetric context (left) and its
corresponding concept lattice (right).

w.r.t. 'θ. For example, given θ = 5 and m1 in Table 1, the formal context
(Wm1

,Wm1
,'5) can be read in Figure 2 (left). As '5 is symmetric and re�exive,

so is (Wm1
,Wm1

,'5) and it contains a diagonal of crosses. Furthermore, the
associated concept lattice (see Figure 2 (right)) is also symmetric.

Proposition 3.1 Given a context (Wm,Wm,'θ) and the associated lattice, any
concept (A,B) is such that either A ⊂ B, B ⊂ A, or A = B. Then, for each
concept (A,B), there exists a unique concept (B,A).

Proof. In the context (Wm,Wm,'θ), the set of objects is the same as the set
of attributes. Then, for a concept (A,B), either A ⊂ B, B ⊂ A, or A = B.
Since both A,B ∈Wm and for any formal concept (A,B), A′ = B and B′ = A.
(B,A) is also a formal concept, as verifying B′ = A and A′ = B.

For example, the upper right concept on Figure 2 (right) can be read as
({8, 6, 11, 16}, {11}) and has a corresponding concept ({11}, {8, 6, 11, 16}) lower
still on the right. One consequence of the above proposition is that the concept
lattice can be separated in two parts w.r.t. the mapping (A,B) 7→ (B,A). In [9],
such a mapping is called a polarity, i.e. an order-reversing bijection inverse of
itself, and the resulting concept lattice is a polarity lattice. Then, we have the
notion of axis of polarity:

De�nition 3.3 (Axis of polarity) In a polarity lattice, the set of all concepts
(A,B) such that A = B forms an axis of polarity of the concept lattice.

For example, the set of concepts {({16, 17}, {16, 17}), ({11, 16}, {11, 16}),
({6, 8, 11}, {6, 8, 11})} is the axis of polarity of the concept lattice on Figure 2
(right). The set of all concepts (C,D) such that (A,B) ≤ (C,D), denoted by
U , forms the upper part of the concept lattice. Dually, the set of all concepts
(E,F ) such that (E,F ) ≤ (A,B), denoted by L, forms the lower part of the
concept lattice. If (A,B) ∈ U then (B,A) ∈ L and B ⊂ A. Dually, if (A,B) ∈ L
then (B,A) ∈ U and A ⊂ B.

Let us now consider the concept ({16, 17}, {16, 17}) of the axis of polarity
in the lattice on Figure 2 (right). The values in {16, 17} are all similar w.r.t.
'5 and {16, 17} cannot be extended with any other value without violating the
internal similarity, i.e. there does not exist any element that does not belongs
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to {16, 17} and that is similar with all elements in {16, 17}. This is true for all
concepts in the axis of polarity.

This means that the extent or intents of the concepts in the axis of polarity
are tolerance classes. Let us now consider the upper left concept ({11, 16, 17}, {16})
in the lattice on Figure 2 (right). This concept is in U and the values in the
extent {11, 16, 17} are similar to 16. Moreover, the intent {16} is contained
in the larger intent {16, 17} meaning that {16} determines a preclass of tol-
erance. Dually, we have the same interpretation for the symmetric concept
({16}, {11, 16, 17}) ∈ L.

Proposition 3.2 Let (A,B) be a concept of the axis of polarity, i.e. A = B.
Then, A (or B) is a set of maximal pairwise similar values, i.e. A determines
a class of tolerance. Let (C,D) a concept in U but not in the axis of polarity,
i.e. D ⊂ C. D is a preclass of tolerance and C is the set of all values similar
to values in D.

Proof. Both derivation operators (·)′ have same domain and range Wm, and
(·)′ associates with a subset A of values in Wm the maximal subset of similar
values inWm, i.e. related through 'θ. Then, for a concept (A,B) where A = B
and A′ = B or A = B′, then A = A′ or B = B′ are maximal and de�ne a same
tolerance class. Moreover, the set of all extents A or all intents B from concepts
of the axis of polarity covers the set Wm. For a concept (C,D) with D ⊂ C,
since C ′ = D, all values in C are similar to values in D. Now, relying on the
preceding proposition, as the concept (C,D) does not verify C = D but instead
D ⊂ C, it exists a class of tolerance say F such as D ⊂ F ⊂ C and thus D is a
preclass of tolerance.

The intents of the concepts in the upper part of the lattice �or dually the
extents in the lower part� are partially ordered and determine sets of similar
values. Among these intents, the intents in the axis of polarity are maximal and
are classes of tolerance, and the other intents are only preclasses of tolerance.
For example, taking θ = 5 and m1 in Table 1, there are 5 intents, namely {16},
{11}, {16, 17}, {11, 16}, and {6, 8, 11}, where the three last intents are tolerance
classes. When there is no ambiguity, we use the term of �class of similarity� for
a class or a preclass of tolerance.

These classes of similarity are used to de�ne a scale allowing the applica-
tion of FCA algorithms to a numerical many-valued context. Classical FCA
algorithms can be used to compute classes of similarity and require slight modi-
�cations for generating the upper (dually lower) part of the concept lattice only
(discussed later).

3.4 From numbers to intervals

The preceding approach is generalized to intervals by de�ning a similarity 'θ
as follows. Given a, b, c, d ∈ R and a threshold θ ∈ R:

[a, b] 'θ [c, d] ⇔ max(b, d)−min(a, c) ≤ θ (2)

provided that |a − b| ≤ θ and that |c − d| ≤ θ. Then, two numerical intervals
are similar if the length of their �convex hull� is not larger than a threshold
θ. The similarity 'θ on intervals is a re�exive and symmetric relation and is
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Figure 3: Partial order of classes of similarity.

therefore a tolerance relation. The framework developed for numbers is adapted
to intervals for computing classes of similarity. For example, the similarity '5

for attribute m3 in Table 1 yields the partial concept lattice on Figure 3. This
lattice is equivalent for m3 to the lattice given on Figure 2 for m1. Classes of
similarity can be read with reduced labelling.

The de�nition of similarity in Formula 2 is discussed now. There are three
main choices that can be envisioned: union of intervals, intersection of intervals,
and convexi�cation. These three ways of considering similarity of intervals can
be interpreted in terms of consensus, i.e. a general agreement between intervals
and thus between attributes associated with these intervals. Union re�ects a
minimal consensus as it takes all values of the class of similarity. Intersection
returns a maximal agreement but the constraint may be too strong, as intersec-
tion may be empty. The convexi�cation of a set of intervals returns the smallest
interval containing all its arguments (convex hull) and is used here in formula 2.
Convexi�cation can be seen as equivalent to union of intervals when �lling the
holes between intervals. Then convexi�cation shows the larger consensus as it
gives an agreement between all original intervals and the holes between these
values. Thus, the choice of convexi�cation allows a greater �exibility and proba-
bly o�ers the best consensus. Accordingly, the convex hull of intervals was used
with positive results in [10] for classifying objects with attributes valued by in-
tervals FCA. We go back to the choice of convexi�cation in Section 5, where an
application based on an information fusion problem is detailed.

3.5 Building a �numerical concept lattice�

At present, we have made precise how a partially ordered set of classes of sim-
ilarity can be built from attributes valued by numbers or intervals of numbers
in a many-valued context. Now, classes of similarity have to be named before
being used as attribute names for scaling the original many-valued context and
derive a scaled binary context from which the �nal concept lattice is built. Ac-
tually, the name of the elements of the scale can be related to the content of
the corresponding class of similarity and to the name of the original attribute
that is scaled. In the present case, an element of the scale is named by a pair
associating the name of the original attribute and either the content of the class
of similarity in case of numbers, e.g. {16, 17} for m1, or the convex hull in case
of intervals, e.g. [7, 10] for m3.

Let us consider the numerical many-valued context (G,W,M, I) in Table 1.
Three sets of classes of similarity, one for each attribute m1, m2, and m3, are
computed thanks to three tolerance relations relying on three di�erent similari-
ties 'θ, and extracted from the symmetric concept lattices associated with each
tolerance relation. The transformation of the original (G,W,M, I) context into
the derived (G,N, J) reads as follows:
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Table 4: A formal context obtained from Table 1 handling classes of tolerance
of attributes m1 and m2.
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g1 × ×
g2 × × × ×
g3 × × × × × ×
g4 × × × × × ×
g5 × ×

Figure 4: Concept lattice raised from Table 4.

� G is the set of original objects,

� N =
⋃
m∈M ({m} × Cm) with Cm is the set of all classes of similarity of

attribute m,

� (g, (m,Cm)) ∈ J means that the value of object g in the many valued
context, i.e. m(g), belongs to class Cm,

For example, the derived binary context associated with Table 1 is given in
Table 4 for attributes m1 and m2 where the thresholds are θ = 5 for m1 and
θ = 4 for m2 (and θ = 5 for m3). Figure 4 shows the resulting concept lattice.

4 Embedding tolerance relations in pattern struc-

tures

The preceding formalization of similarity based on a tolerance relation allowed
us to design concept lattices whose concept extent are composed of pairwise
similar objects. This work takes place in standard FCA and applies to binary
formal contexts. One �rst extension consists in applying this work directly
on complex data, i.e. formal contexts where attribute values can be symbolic,
numbers, intervals, graphs, etc.

For this purpose, a pattern structure is de�ned as a generalization of a formal
context including complex data [8]. First a similarity operation is de�ned on
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object descriptions, allowing to organize these descriptions within a partial or-
dering. Then, as in FCA, a Galois connection between two ordered sets (objects
and descriptions) gives rise to a concept lattice.

For summarizing, two important outputs can be considered. Firstly, the
use of pattern structures allows to avoid binarization and to keep the same
data formalism during the analysis, known to be a critical issue in knowledge
representation and reasoning systems with concept lattices [8, 1]. Secondly,
the introduction of a tolerance relation in pattern structures allows to obtain
concept extents made of pairwise similar objects and obtained from directly
from complex data.

4.1 Pattern structures

Formally, let G be a set of objects, let (D,u) be a meet-semi-lattice of potential
object descriptions and let δ : G −→ D be a mapping associating an object
with its description. Then (G, (D,u), δ) is called a pattern structure. Elements
of D are called patterns and are ordered by the subsumption relation v: given
c, d ∈ D, c v d ⇐⇒ c u d = c. A pattern structure (G, (D,u), δ) gives rise to
the following derivation operators (·)�, given A ⊆ G and d ∈ (D,u):

A� =
l

g∈A
δ(g) d� = {g ∈ G|d v δ(g)}

These operators form a Galois connection between (2G,⊆) and (D,v). (Pat-
tern) concepts of (G, (D,u), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,u),
such that A� = d and A = d�. For a pattern concept (A, d), d is called a pattern
intent and is a common description of all objects in A, called pattern extent.
When partially ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 v d1), the
set of all concepts forms a complete lattice called a (pattern) concept lattice.

Since pattern structures are de�ned in full compliance with FCA, i.e. based
on a Galois connection between two ordered sets, many FCA algorithms (de-
tailed in [13]) can be used to compute the pattern concept lattice.

4.2 Interval pattern structures

Now we show how to build a concept lattice from numerical data without dis-
cretization. We instantiate the general de�nition of pattern structures for nu-
merical data, called interval pattern structures and introduced in [10].

Considering only one numerical attribute. Numbers and intervals of
numbers are patterns: they may be ordered within a meet-semi-lattice making
them potential object descriptions. A possibility is to de�ne the meet u of
two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R as a convexi�cation
operator: [a1, b1]u [a2, b2] = [min(a1, a2),max(b1, b2)], i.e. the smallest interval
containing them. Indeed, when c and d are intervals, c v d ⇔ c u d = c holds:
[a1, b1] v [a2, b2]⇔ [a1, b1] ⊇ [a2, b2].

Figure 5 gives an example of meet-semi-lattice of intervals. The interval
labelling a node is the meet of all intervals labelling its ascending nodes, e.g.
[4, 8] = [4, 4] u [8, 8], and is also subsumed by these intervals, e.g. [4, 8] v [4, 4].

Note that several meet operations can be chosen, e.g. intersection, union,
minimum, maximum, etc., inducing partial order of intervals (more details
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Figure 5: A meet-semi-lattice of intervals. The meet operation consists in a
convexi�cation.

in [7]). We use here convexi�cation for being in accordance with the previ-
ous section.

Considering a numerical dataset. A numerical dataset is represented by
a many-valued context (G,M,W, I). Objects are described by several numbers
or intervals, each one standing for a given attribute, and hence interval vectors
are introduced as patterns. When c and d are interval vectors, we write c =
〈[ai, bi]〉i∈[1,|M |] and d = 〈[ci, di]〉i∈[1,|M |]. Interval vectors may be partially
ordered within a meet-semi-lattice as follows. Given two interval vectors c =
〈[ai, bi]〉i∈{1,...,|M |}, and d = 〈[ci, di]〉i∈{1,...,|M |},

c u d = 〈[min(ai, ci),max(bi, di)]〉i∈{1,...,|M |}

meaning that a convexi�cation of intervals on each vector dimension is operated.
The meet operator induces the following subsumption relation v on interval
patterns

〈[ai, bi]〉 v 〈[ci, di]〉 ⇔ [ai, bi] ⊇ [ci, di], ∀i ∈ {1, ..., |M |}.

In this way, a numerical dataset is a pattern structure. In Ta-
ble 1, description of g1 is δ(g1) = 〈[6, 6], [0, 0], [1, 2]〉. We have
δ(g1) u δ(g2) = 〈[6, 8], [0, 4], [1, 5]〉, and therefore 〈[6, 8], [0, 4], [1, 5]〉 v
〈[6, 6], [0, 0], [1, 2]〉. The Galois connection is illustrated as follows. {g1, g3}� =
〈[6, 11], [0, 8], [1, 5]〉 and 〈[6, 11], [0, 8], [1, 5]〉� = {g1, g2, g3}, making the pair
({g1, g2, g3}, 〈[6, 11], [0, 8], [1, 5]〉) a pattern concept.

Actually, it was proved that the resulting pattern concept lattice is iso-
morphic to the one obtained after interordinal scaling in classical FCA [10].
However, pattern structures avoid binarization and are shown to be much more
e�cient to process [10]. Nevertheless, the problem of combinatorial explosion
of number of concepts outlined in Section 2.2 still holds. This is due to the
convexi�cation that allows to build too general concept intents. For example,
the top concept intent is always composed of intervals of maximal size, i.e. the
whole domain of each attribute. It seems then quite natural that the convex-
i�ation should be controlled, i.e. two intervals or numbers can be convexi�ed
i� their di�erence is not �too large�. Interestingly, this involves a notion of
similarity between complex descriptions as related before. In fact, we show in
the following that a tolerance relation can also be directly embedded in a pat-
tern structure and its pattern concept lattice, thus avoiding binarization and
controlling convexi�cation as in the previous section.
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4.3 Tolerance relation in pattern structures

Basically, pattern structures consider the meet operator u as a similarity oper-
ator [8]. Given two objects g and h, and their respective descriptions d = δ(g)
and e = δ(h) from a meet-semi-lattice, d u e gives a description representing
similarity between g and h. As a meet-semi-lattice is de�ned on the existence
of a meet for any pair of elements, it follows that any two objects are sim-
ilar and that their �level� of similarity depends on the level of their meet in
the semi-lattice. However, such symbolic notion of similarity is at the heart of
lattice-based classi�cation for its ability to distinguish if one description is more
general than another.

By contrast, numerical notion of similarity allows to quantify (measure, or
approximate) with a continuous value the proximity between two descriptions,
for a large spectrum of complex data, see e.g. [15]. However, pairs of descrip-
tions having the same similarity value may correspond to radically di�erent
generalization levels. For example, with θ = 2, we have [30, 30] '2 [30, 32] and
[30, 32] v [30, 30] while [2, 2] '2 [4, 4] and neither [2, 2] v [4, 4] nor [4, 4] v [2, 2].

Now, we are interested in introducing in a pattern concept lattice a notion
of similarity relation 'θ, combining calculability and �exibility of the numer-
ical aspect, and the intelligibility of the symbolic aspect. Tolerance relations
allow this combination, since they are de�ned by a binary relation encoding a
similarity.

Going back to numerical data, a similarity relation 'θ was introduced for
numbers in Formula 1 and for intervals in Formula 2. Then, we state that two
descriptions are similar or not as follows. Given a,b,c,d ∈ R, a parameter θ ∈ R,
and an additional pattern denoted by ∗ representing �non similarity�,

[a, b] uθ [c, d] =

{
[min(a, c),max(b, d)] if [a, b] 'θ [c, d]
∗ otherwise,

and
∗ uθ [a, b] = ∗ ⇔ ∗ vθ [a, b].

More generally, given x, y ∈ D two patterns, then x and y are said to be similar
i� x 'θ y ⇐⇒ x uθ y 6= ∗ where ∗ materializes the pattern that is subsumed
by any other pattern. This pattern is added in D and can be interpreted as
the pattern denoting �non similarity� between two patterns. In this way, the
convexi�cation is controlled and it is not possible to have intervals whose length
exceeds θ.

This means that though each interval from a semi-lattice (D,uθ) describes
a preclass of tolerance (except ∗), some intervals may not be �maximal�, i.e. do
not describe classes of tolerance. Below, we show how to replace any interval
by its �maximal� interval thanks to a so-called projection in a meet-semi-lattice

�Similarity balls� as sets of similar patterns. Firstly, consider the meet-
semi-lattice (D,uθ) of interval values for a given attribute. Then, for any inter-
val x ∈ D, we de�ne the ball B(x, θ) as the set of intervals in D similar to x as
follows.

B(x, θ) = {y ∈ D | y 'θ x}

This ball of center x and diameter θ contains all intervals y whose meet with x
is di�erent of *, meaning that x and y are similar.
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�Tolerance balls� as classes of tolerance. Now, among this set of intervals,
we should remove any pair of intervals that are not pairwise similar, and build an
interval with left border (resp. right border) as the minimum (resp. maximum)
of all intervals. This can be done by replacing any x of the meet-semi-lattice
of intervals by the meet of all intervals y from the ball B(x, θ) that are not
dissimilar with another element y′ of this ball, i.e. y uθ y′ 6= ∗:

ψ(x, θ) =
d

θ e∈B(x,θ) y uθ x
such as @y′ ∈ B(x, θ) with y uθ y′ = ∗

ψ is a mapping that associates to any element a representation of its class of
tolerance, i.e. the associated maximal set of pairwise similar elements. For
example, with attribute m3, we have ψ([2, 5], 5) = [1, 5] and [1, 5] is the convex-
i�cation of all elements of the class of tolerance containing [2, 5], i.e. the class
{[1, 2], [2, 5], [4, 5]}. When the size of an interval exceeds θ, the ball of similar
patterns is empty and ψ returns the element ∗.
Projecting pattern structures. ψ is a mapping that associates to any x ∈ D
an element ψ(x) ∈ (D,u) such that ψ(x) v x, as ψ(x) is the meet of x and all
intervals similar to x and pairwise similar. The fact ψ(x) v x means that ψ is
contractive. In sense of [8], ψ is a projection in the semi-lattice (D,u) as also
monotone and idempotent. Moreover, any projection of a complete semi-lattice
(D,u) is u-preserving, i.e. for any x, y ∈ D, ψ(x u y) = ψ(x) u ψ(y) [8].

Thereby, the projection may be computed in advance, replacing each pattern
by a �weaker� or �more general� pattern. It comes with a loss of information,
e.g in previous example [2, 5] replaced by [1, 5] which is more imprecise. How-
ever, this loss of information is controlled by θ: the projected pattern structure
preserves the similarity between descriptions in the original pattern structure,
and keeps the same representation formalism while embedding a tolerance rela-
tion. We develop in the following an application of concept lattices embedding
a tolerance relation, in presence of information fusion problems.

5 An information fusion problem

The problem of information fusion is encountered in various �elds of applica-
tion, e.g sensor fusion, merging multiple sources, etc. Information fusion con-
sists of merging several sources of information for answering questions of interest
and make proper decisions [6]. Accordingly, a fusion operator is an operation
summarizing information given by sources into a consensual and representative
information. In this section, we introduce a real-world information fusion prob-
lem in agronomy, concerning pesticide application to �elds. Then, we show how
this fusion information problem can be solved with a concept lattice involving a
tolerance relation. The output is an analysis and an evaluation of agricultural
practices w.r.t. pesticide application and subsequent ecological problems.

5.1 Data and problem settings

Agronomists compute indicators for evaluating the impact of agricultural prac-
tices on the environment. Questions such as the following are of importance:
what are the consequences of the application of a pesticide given the character-
istic of this pesticide, the period of application, and the characteristics of the
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Table 5: Characteristics of pesticide glyphosate.

DT50 koc ADI
day L/kg g/kg/day

BUS 47 24000 0.3
PM10 [3,60] [25,68000] 0.3
INRA [38,60] 167 0.05
Dabene [38,60] 167 0.05
ARSf [2,174] [500,2640] [0.05,0.3]
ARSl [2,174] [500,2640] [0.05,0.3]
Com96 [2,174] [25,68000] 0.3
Com98 [38,60] [500,2640] 0.3
RIVM [18,66] [3566,40420] [0.05,0.3]
BUK [3,60] [25,68000] 0.3
AGXf [8,30] [301,59000] 0.3
AGXl [14,111] [301,59000] 0.3

�eld? The risk level for a pesticide to reach groundwater is computed by the
indicator Igro in [3]. Based on the value of Igro, agronomists try to make a
diagnosis of agronomic know-how w.r.t. the use of pesticides. Pesticide charac-
teristics depend on the chemical characteristics of the product while pesticide
period application and �eld characteristics depend on domain knowledge. This
knowledge lies in information sources among which books, databases, and ex-
pert knowledge in agronomy. Moreover, values for some characteristics may
vary w.r.t. information sources.

Here, we are interested in the analysis of practices through the use of glyphosate
in di�erent countries w.r.t. farmers habits. Glyphosate is a widespread product
used by farmers in temperate areas, actually one of the mostly used herbicide
in USA2. In 2006, IFEN, for French Institute for the Environment, observed
that glyphosate is the most encountered substance in French waters, possibly
leading to long-term adverse e�ects in the aquatic environment3.

Below, three characteristics of glyphosate, namely DT50, koc, and ADI, are
given in Table 5 (simpli�ed data), according to 12 di�erent information sources.

� DT50 represents �half-life� of the pesticide, i.e. time required for the pes-
ticide concentration to decrease of 50% under some conditions. Pesticides
with DT50 value lower than 100 days can be considered as having a weak
impact on groundwater quality in general temperate conditions.

� koc characteristic represents the mobility of the pesticide and depends
on pesticide properties and type of soil. Pesticides with high koc values
typically stay in upper level of soil and do not reach groundwater. By
contrast, pesticides with koc value less than 2200 have good chances to
contaminate groundwater.

2http://www.epa.gov/
3http://www.ifen.fr/
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� ADI (for �Acceptable daily intake�) represents toxicity for humans. Glyphosate
is considered as having a low toxicity, i.e. no toxic e�ects were observed
for doses of 400 mg/kg/day according to specialized studies.

In Table 5, information sources are not always in agreement. Then, it can
be interesting for experts in agronomy to analyse such a table from the point
of view of information fusion: which are the sources being in agreement and at
which level are they in agreement? This is done using a concept lattice involving
a tolerance relation as explained below.

5.2 Methodology and �rst results

Now, we apply our framework on similarity and scaling to build a concept lattice
from Table 5. Three thresholds are de�ned according to the above observations:
θ = 100 for DT50, θ = 2200 for koc, and θ = 0 for ADI. Then, for each
attribute, classes of similarity and the scale for each attribute are computed
and can be read on the lattice in Figure 6.

The lattice shows an interesting classi�cation of information sources w.r.t.
information fusion. Each concept in the lattice is composed of an extent with a
maximal set of sources in agreement w.r.t. the interval of values in the intent.

The operator used for managing information fusion is convex hull, controlled
by a similarity parameter θ, i.e. for two similar intervals the lower bound is the
minimum of the two lower bounds and the upper bound is the maximum of the
two upper bounds. Let us examine the lattice in detail. The highest concept in
the lattice, >, has the intent with the larger intervals (since ∗ is subsumed by any
other interval): [2, 174] for DT50, [25, 68000] for koc, and [0.05, 0.3] for ADI.
The higher a concept is in the lattice, the more information sources in the extent
agree on the values to be veri�ed by the attributes. This could be considered
as the maximal agreement of all sources but this does not provide any precise
information (indeed, the calculation of Igro, which cannot be detailed here, does
not allow any recommendation). Moreover, the concepts in the lower levels of
the lattice have more restricted intervals. Going further, we can observe that
there are four descendants of > that determine four main parts of the lattice.
On the left, there are mainly French and UK information sources, namely AGXf,
AGXl, PM10 (French), and BUK and BUS (UK), with com96 denoting an expert
committee. In the middle of the lattice, there are mainly French sources, namely
RIVM, Dabene, and INRA. Finally, on the right, there are US information
sources, namely ARSl, ARSf, and the committee Com98. Interestingly, there
is an agreement between European sources as English or French sources share
some upper level values such as [3, 66] for DT50 or 0.3 for ADI. By contrast,
there is no agreement between European and US sources except for the expert
committee com98. This shows that practices are actually di�erent and allowed
values for pesticide characteristics are not the same w.r.t. the country. Among
the possible explanations, it remains very di�cult to harvest agronomic data (in
cost and time) in every country. For example, the circumstances in which these
data are collected are very di�erent w.r.t. climate, soil type, measure devices,
etc. In this sense, according to experts in agronomy, the lattice on Figure 6 is a
good witness (con�rmation) of this diversity of practices and of the agreement
degree between sources as given by the lower level concepts.
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Figure 6: Concept lattice raised from Table 5

6 Discussion

Concept lattices and similarity. Tolerance relations in connection with
FCA were studied in several papers [9, 2, 12]. In [12], tolerance relations are
introduced from an historical perspective and their role in the formalization
of similarity of documents is detailed. In the basic reference [9], it is shown
that starting from any complete lattice and a tolerance relation between its
elements (from any arbitrary set), there exists a formal context encoding tol-
erance (pre-)classes. In this work, the statement is used in the opposite way:
starting from an arbitrary numerical context, a tolerance relation formalizes
the similarity between numerical values and the resulting classes of similarity
are then reused for de�ning scales and a concept lattice encoding the initial
numerical context. Other important related work can be found in [2], where
fuzzy formal concept analysis introduced. A fuzzy context contains truth values
and both attribute and object sets are considered as fuzzy sets. Then a fuzzy
concept lattice can be built in the same way as this is done here by grouping
pairwise similar objects or attributes with a tolerance-like relation. However,
the research work in [2] is much more oriented on the study of mathematical
properties of similarity within a concept lattice, contrasting our work on the em-
bedding of constrained tolerance relations in FCA for classifying objects with
complex numerical attributes.

Discretization approaches. The scaling procedure proposed in this paper
transforms quantitative data into qualitative data. Following [21], this method
is: unsupervised since class membership of objects is unknown ; parametric
since a similarity parameter θ has to be given and relies on domain knowledge ;
univariate as processing each attribute separately ; ordinal since taking advan-
tage of the implicit ordering information in quantitative attributes ; and �nally
and most importantly, hierarchical as it builds a partially ordered set (poset)
of similarity classes. This poset is actually given by a concept lattice from
a formal context encoding a tolerance relation (Section 3) and by a projected
meet-semi-lattice of object descriptions (Section 4). This poset is �nally used to
raise a concept lattice giving a conceptual classi�cation of objects of a domain.
Thereby, it can be applied to any kind of structured data for which a similarity
can be de�ned (sequences, graphs, etc.) Cluster-based discretization methods
are close to our scaling (see [21]). First, some clusters are searched for, then
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their intents are used to de�ne intervals for the discretization process. In this
paper, we focused on showing how discretization can be automated and con-
trolled (with tolerance relation), with two di�erent approaches, while resulting
concept lattices keep the same interpretation.

Processing symmetric contexts. There are many e�cient algorithms for
generating a concept lattice from a binary context [13]. The e�ciency of these
algorithms mainly depends on the density of the formal context (G,M, I), i.e.
|I|/|G ×M |. In the present case, computational complexity is related to the
similarity and the range of each attribute. These algorithms may also be used
to obtain the partially ordered set of classes of similarity. We propose here two
optimizations of FCA algorithms to process symmetric contexts.

Recall that computing classes of similarity for a given attribute can be done
either with the upper part or the lower part of the corresponding lattice. Then, a
concept is not generated if its dual concept has already been generated. Bottom-
up (dually top-down) algorithms are well adapted for this task: concepts (A,B)
are generated from bottom to top until the concept veri�es A = B, i.e. (A,B)
belongs to the axis of polarity. Then, interesting concepts are computed by
standard FCA algorithms with a modi�ed backtracking condition. This task
can be also achieved using well-known and e�cient closed itemset mining algo-
rithms [22, 16]. A second optimization relies on the fact that the set Wm ⊂ R
is totally ordered. For intervals, given a, b, c, d ∈ R, we have [a, b] ≤ [c, d] when
a ≤ c, and if a = b when b ≤ d. Then, similarity has a monotony property:
given v1 < v2 < v3, when v1 6'θ v2 then v1 6'θ v3. Intuitively, monotony
means that the corresponding binary table contains lines and columns of con-
secutive crosses, e.g. Figure 2 (left). Then, the scan of a context by an FCA
algorithm can be reduced accordingly. For example, Figure 7 shows how the
performances of the bottom-up algorithm CloseByOne [13] are modi�ed in this
case (random data with θ = 20 are used here, but other values of θ give the
same result). Worst-case upper bound time complexity of CloseByOne for com-
puting an arbitrary formal context (G,M, I) is O(|G|2 · |M | · |L|), with L being
the set of generated concepts. With both optimizations, complexity becomes
O(|G| · n2 · |K|), whith n the average number of similar elements per element
and K similarity classes.

Projecting and processing a pattern structure. Processing interval pat-
tern structures with adaptation of classical algorithms of FCA [13] has been
developed in [10]. The authors showed the scalability of concept lattice de-
sign from large data, e.g. with thousands objects and dozens attributes. The
projection computation is highly related with the maximal clique problem in
graph theory, known to be a hard problem. However, since we are dealing with
numerical data, and that attribute values can be totally ordered (see above),
the projection algorithm detailed in section 4 is of complexity |W | · n2 with W
the set of unique data values and n the average number of similar elements per
value. A simple algorithm consists in, for each data value, (i) looking for similar
elements from a totally ordered set and (ii) testing each pair of the resulting set
to keep the maximal set of pairwise similar values. Finally, projected pattern
structures are easier to process than non-projected pattern structures, as shown
in [8] for graph patterns, while preserving subsumption relations.

Concept lattices and information fusion. Several fusion operators were
proposed for combining uncertain information [5]. According to previous works [6],
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Figure 7: Processing speed of the algorithm CloseByOne with CPU 2.40 Ghz
and 4 GB RAM (in ms).

there are three kinds of fusion operators, based respectively on conjunctive, dis-
junctive and trade-o� behaviours. The conjunctive operator is equivalent to set
intersection and makes the assumption that all sources are reliable and returns
a precise result. The disjunctive operator is equivalent to set union and makes
the assumption that at least one source is reliable and returns an imprecise
result. The trade-o� operators vary between the conjunctive and disjunctive
behaviours, and are used when sources are partly con�icting.

Generally, the fusion operator is applied on all information sources, i.e. con-
sidering all sources simultaneously, and for one particular variable or attribute
at a time, see e.g. [5]. However, this leads to some problems. In our applica-
tion, a conjunctive operator corresponds to interval intersection and may lead
to an empty set when considering all sources. Dually, a disjunctive operator
corresponds to interval union leading to a very imprecise fused information. By
contrast, the trade-o� operator based on maximal coherent subsets (MCS for
short) was used in [5]. For numerical information, a MCS is a maximal set of
intervals having a non empty intersection. The fusion method based on MCS re-
turns the union of all MCS. In our application, the computation of Igro requires
convex inputs, and we propose to control the convexi�cation with the variation
of θ. Our method considers maximal subsets of sources with their fusion results
and organizes them in a concept lattice. The concept lattice allows to identify
which maximal subsets of objects support the most precise results. This opens
further research for the use of concept lattices in information fusion.

7 Conclusion

In this paper, we showed how to embed a similarity relation between complex
descriptions in concept lattices. We formalized similarity by a tolerance rela-
tion. In this way, complex objects are grouped within a same concept when
having similar descriptions, extending the ability of FCA to deal with complex
data. For that purpose, we proposed two di�erent approaches. A �rst clas-
sical manner is to de�ne a scaling or discretization procedure. This leads to
formal contexts from which tolerance preclasses and classes can be obtained, ei-
ther with FCA algorithms (two optimizations in this case have been developed)
or with itemset mining algorithms. A second way, more marginal, consists in
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representing data by pattern structures, from which a concept lattice can be
directly risen. In this case, considering a tolerance relation can be mathemat-
ically de�ned by a projection in a meet-semi-lattice. This allows to use FCA
for its knowledge representation and reasoning abilities while working on the
same formalism. Moreover, this method is generalizable to any structured data
for which a similarity measure can be de�ned. It remains to carry out a deep
analysis on links between existing discretization methods and projections of
semi-lattices. Finally, we showed that a concept lattice embedding a tolerance
relation is useful for information fusion issues, allowing to characterize subsets
of sources with similar and precise information. Further research concerns the
embedding of existing fusion operators in concept lattices.
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