Bounds on the minimum distance of the duals of BCH codes

Abstract : We consider primitive cyclic codes of length p^m-1 over Fp. The codes of interest here are duals of BCH codes. For these codes, a lower bound on their minimum distance can be found via the adaptation of the Weil bound to cyclic codes. However, this bound is of no significance for roughly half of these codes. We shall fill this gap by giving, in the first part of the correspondence, a lower bound for an infinite class of duals of BCH codes. Since this family is a filtration of the duals of BCH codes, the bound obtained for it induces a bound for all duals. In the second part we present a lower bound obtained by implementing an algorithmic method due to Massey and Schaub (1988)-the rank-bounding algorithm. The numerical results are surprisingly higher than all previously known bounds
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 1996, 42 (4), pp.1257 - 1260. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=508853〉. 〈10.1109/18.508853〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00509478
Contributeur : Daniel Augot <>
Soumis le : jeudi 12 août 2010 - 16:58:11
Dernière modification le : mardi 17 avril 2018 - 11:34:35
Document(s) archivé(s) le : samedi 13 novembre 2010 - 02:41:10

Fichiers

i3e2newmat.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Daniel Augot, Françoise Levy-Dit-Vehel. Bounds on the minimum distance of the duals of BCH codes. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 1996, 42 (4), pp.1257 - 1260. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=508853〉. 〈10.1109/18.508853〉. 〈inria-00509478〉

Partager

Métriques

Consultations de la notice

381

Téléchargements de fichiers

630