Behavior Abstraction in Malware Analysis - Extended Version

Philippe Beaucamps 1, * Isabelle Gnaedig 1 Jean-Yves Marion 1
* Auteur correspondant
1 CARTE - Theoretical adverse computations, and safety
Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
Abstract : We present an approach for proactive malware detection by working on an abstract representation of a program behavior. Our technique consists in abstracting program traces, by rewriting given subtraces into abstract symbols representing their functionality. Traces are captured dynamically by code instrumentation in order to handle packed or self-modifying malware. Suspicious behaviors are detected by comparing trace abstractions to reference malicious behaviors. The expressive power of abstraction allows us to handle general suspicious behaviors rather than specific malware code and then, to detect malware mutations. We present and discuss an implementation validating our approach.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00509486
Contributeur : Isabelle Gnaedig <>
Soumis le : samedi 23 octobre 2010 - 18:50:57
Dernière modification le : lundi 17 septembre 2018 - 13:42:01
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 10:38:37

Fichier

rv-HAL-V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00509486, version 2

Collections

Citation

Philippe Beaucamps, Isabelle Gnaedig, Jean-Yves Marion. Behavior Abstraction in Malware Analysis - Extended Version. 2010. 〈inria-00509486v2〉

Partager

Métriques

Consultations de la notice

415

Téléchargements de fichiers

538