\

A Simple Kinetic Visibility Polygon

Samuel Hornus, Claude Puech

» To cite this version:

Samuel Hornus, Claude Puech. A Simple Kinetic Visibility Polygon. 18th European Workshop on
Computational Geometry, 2002, Varsovie, Poland. pp.27-30. inria-00510032

HAL 1d: inria-00510032
https://inria.hal.science/inria-00510032
Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00510032
https://hal.archives-ouvertes.fr

A simple kinetic visibility polygon

Samuel Hornus
IMAGIS-GRAVIR/IMAG-INRIA

Samuel.Hornus@imag.fr

ABSTRACT

Given a set of moving obstacles in the plane, we propose a
method for maintaining efficiently the wvisibility polygon of
a (possibly moving) viewpoint. We consider both smooth-
conver, and simply-polygonal obstacles.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity— Non-numerical Algorithms and
Problems

Keywords

kinetic data structure, visibility polygon

1. INTRODUCTION

Visibility computations are central in many computer graph-
ics algorithms and in robot motion planning. A very use-
ful tool is the determination of the objects visible from a
viewpoint. Thus, in the plane, the visibility polygon is an
important visibility structure. It is a star shaped polygon
centered at the viewpoint, whose edges are the visible parts
of the objects in the scene, and whose interior intersects no
object.

Efficient algorithms exist to compute the visibility polygon
in the static case, but applications of this problem may ap-
ply to moving objects. Computing the visibility polygon
at various times on a static “ snapshot ” of the scene is
inefficient, since we do not take into account the temporal
coherence that arise from the continuity of the movements
of the objects (and possibly the viewpoint): if the time step
is too small, we will compute many times the very same
(combinatorial) visibility polygon.

We use the kinetic data structure framework introduced by
Guibas [2, 1] to propose a simple algorithm that maintains
the visibility polygon of a view point in a 2-dimensional
scene when all objects may move. The structure maintained

Claude Puech
iIMAGIS-GRAVIR/IMAG-INRIA

Claude.Puech@imag.fr

is in fact a weak radial decomposition of the scene. Section
2 treats the case of smooth convex obstacles. Section 3 ex-
amines the case of simple (non auto-crossing) polygons.

Kinetic data structures (KDS) are a way to efficiently and
accurately maintain an attribute built on top of continu-
ously moving items (e.g. a convex hull). In order to main-
tain an attribute A4 over a set of moving items (items are
generally points), each test in the proof of correctness of the
construction of A is analyzed to detect the time at which
it will fail. The idea is that maintaining the validity of all
those tests (called certificates) guarantees that the attribute
A is maintained also, since the certificates provide a proof
of correctness. Certificates are ordered in a priority queue,
according to their failure time. When the simulation time
passes above the first certificate’s failure time, the attribute
is modified, and the proof is updated (i.e. some certificates
disappear, others are created, and their failure time is com-
puted). This method only requires that the motion of the
items be known in the short term. For short, one could say
that kinetic data structures get rid of step-by-step simula-
tions, and implement in fact time sweep algorithms.

We now get interested in maintaining the visibility polygon
of a scene. Here, in the KDS terminology, the items are the
convex smooth objects, or the polygons’ vertices. We main-
tain a weak radial decomposition of the scene, thus, the
certificates we use take care of the well ordering (i.e. cycli-
cally sorted) of the segments in the decomposition. Finally
the radial decomposition of the scene allows us to quickly
build the visibility polygon.

2. CONVEX OBSTACLES

Let O be a set of n convex obstacles in the plane. Let F
be the “ free space ”: the complement of the union of the
obstacles in the plane. Let V' be a point in F. We aim at
maintaining the visibility polygon of V when V and elements
of O move in the plane. We assume we can compute in
constant time the visibility tangents of an obstacle, that are
defined as the two tangents to the object passing through
the view point V. Let T = {to,%1,...,t2n—1} the t_uple of
the visibility tangents, sorted in the counter-clockwise order.

Let u € 8! be a direction. We denote by V(u) the obstacle
seen by V in the direction u. V() can possibly be the “ blue
sky ” that we denote co. One important observation is that
V (u) is constant between two consecutive visibility tangents.
Thus, a way to define the visibility polygon around V, is to

see it as the function P : T — {O U oo} so that P(t;) =
V() = V(ti,,) where t; is seen as a direction pointing
away from the view point V.

2.1 Kineticvisibility polygon

The visibility polygon (VP) changes only when two visibility
tangents (VT) cross each other (but two VTs may cross
each other without affecting the VP). Thus, we can maintain
the VP by detecting when two consecutive VTs will cross,
then updating the VP according to the kind of both VT,
and swapping the two VTs involved to keep them sorted in
counter-clockwise order.

However, having computed the VP at a given time is not
sufficient to maintain it efficiently when obstacles move. We
need some additional data that will have to be maintained
also: for each VT ¢;, we maintain its hit-item, which is the
obstacle that is hit by the VT beyond the tangency point
(it can be co). In fact, we maintain a weak radial decompo-
sition of the scene, where only the far object hit by a VT is
recorded and not the near object.

For each crossing, the update of the visibility polygon is
done in constant time, by distinguishing 8 cases. First, we
need to characterize the VTs. Half of them will be Left if
(seen from V'), they pass to the left of the obstacle. The
other half will be Right visibility tangents.

We explain the naming of the crossing events with an ex-
ample. Figure la shows an LR and an LL crossing events
(from left to right, the figure presents the obstacles involved
in the event, just before, “ during ” and after the crossing).
LR means that the first VT (in counter-clockwise order) is
a Left tangent, the consecutive VT is a Right tangent, and
the hat on L means that, when the crossing occurs, the tan-
gency point of the Left tangent is farther from V than the
tangency point of the Right tangent. Hence, the 8 cases are
named LL, LL, LR, LR, RL, RL, RR, RR.

— —
— o —
ad d [F #
/
J—
— —
— o —
ad d [
= o <
@ (b)

Figure 1: (a) example of a L.R event (up) and a LI, event
(down); (b) all events

Now we need to update the VP and the hit-items when the
LR crossing occurs, see Figure 2. The VTs that cross each
other are consecutive in our t_uple of ordered VTs. Let ¢
be the time at which the crossing occurs. Then at times
t~ and tT, no other VT can lie between the two VTs we
are interested in. Therefore we can be sure that any other

obstacle (different from G or D in Figure 2) either completely
crosses the angular section E, or has no intersection with it.
This ensures the correctness of the update process.

First we check if an object C exists between the two points of
tangency at time ¢. To do so, we just need to check whether
g.hit-item (the hit-item of the Right tangent of obstacle
G) is the same as d.hit-item or not. If so, then C does not
exists, else, C exists. Note that {g,d}.hit-item can be cc.
This information is enough to update the hit-items.

Seen from V/, the foremost obstacle among those in the figure
is G. Therefore, if there is a change in the visibility for E,
this change makes G visible. To know whether G becomes
the visible object in E, we simply check whether there exists
another obstacle in front of G at time ¢, by comparing the
obstacle visible in E to C or S (depending on the existence
of C).

The algorithm is described in Figure 3.

S .
<D ‘s
LR |
g \\\ C\ . N Tl
G ~d e

Figure 2: Update of a LR event, the arrows point to the
hit-items in the case C does not exists

The seven other cases are processed in the very same way,
by just changing the roles in Figure 3.

g.tangent-item == G;
d.tangent-item == D
if (G.hit-item == S) {
// C does not exists
g.hit-item = d.tangent-item;
if (E.vis-item == §)
E.vis-item = g.tangent-item;

else { // C exists, C == g.hit-item
if (E.vis-item == g.hit-item)
E.vis-item = g.tangent-item;

Figure 3: Processing an LR event

We know how to maintain the weak radial decomposition
of our scene. Without more work, we can compute the vis-
ibility polygon only in linear time, by looking at the visi-
ble item between each visibility tangent, and “ merging ”
the same consecutive values. This is not very efficient, but
we easily remove this problem by performing a first “ run-
length-encoding ” of the consecutive visible items, and by
maintaining this encoding each time the VP is changed when
a crossing-event occurs. This is done in constant time.

2.2 Complexity

We express the complexity of this kinetic data structure us-
ing terms proposed by Guibas and Basch [2, 1]. Our data
structure is optimal in size since it is linear in the size of the
scene (the set of all obstacles). It is responsive, meaning that
the cost of processing a certificate failure is small: constant-
time in our case. This KDS is local, meaning that the num-
ber of certificates that involve a single object is small; it is
O(1) in our case, with max. 4 certificates per obstacle.

However, it is not optimal since we may have to update many
certificates in a move while none of these affect the visibility
polygon. Imagine lots of small discs vertically aligned above
a big disc, and the view point traversing the plane horizon-
tally under the big disc. Using Guibas and Basch termi-
nology, our KDS is not efficient, since the total number of
events processed may be of a higher order as the number of
changings in the VP. An optimal algorithm would update
as many certificates as there are changes in the visibility
polygon during the animation. Hall-holt and Rusinkiewicz
[3, 4] propose such an algorithm, but are limited to convex
smooth obstacles. They do process only one certificate fail-
ure for each change in the VP, but the cost of processing
one event is not constant in time. However, the overall cost
of processing all events for a simple motion (of the observer
only) is significantly better in their algorithm.

3. SIMPLE POLYGONAL OBSTACLES

We now present an adaptation of the method to simple
polygonal obstacles. A simple polygon can be concave, but
none of its edges cross one another. We consider that obsta-
cles in the initial set are in general position, meaning that
no pair of vertices is aligned with the observer V.

The basic idea is the same. For each vertex v, we keep track
of the ray starting at V' and passing through v, which makes,
by a slight abuse of language, our new visibility tangent. For
each vertex (or VT, since vertices and VTs are in bijection)
we also keep track of its hit-item and of the type of the
vertex. Here, the type of a VT is a bit more complex: Figure
4 shows how we name the type of a vertex depending on
the position of both its adjacent edges relatively to the VT
passing through it.

Left Right Down

Up
Convex ﬁ/ /#
V— Point of view

Figure 4: Various types of vertices

Concave

Note that the hit-item of a vertex v can be irrelevant (and
even wrong) if the part of its VT beyond v goes through
the interior of the adjacent polygon of v. It is yet correctly
updated when the VT gets anew in free space.

The certificates that must stay true are the same as in
the case of convex smooth obstacles: we schedule a cross-

ing event when two consecutive vertices (which are kept
sorted in counter-clockwise order around the view point)
get aligned with the observer V. In Section 2, both VTs of
the same obstacle could not cross each other. This is not
the case here, since two consecutive vertices (consecutive in
the cyclic order and on a polygon boundary) can get aligned
with V.

Thus, we have two kinds of update when a certificate fails.
If the certificate concerns vertices consecutive on the bor-
der of a polygon, then we have to update their type, and
possibly their hit-items and the VP; this again, is done in
constant time. In other cases, the update is similar to those
in Section 2, with some more cases because we have to take
into account other types for a vertex, namely Up and Down.

Figure 5 shows how the type of a vertex changes when V
crosses the supporting line of one of its adjacent edges.
Edges of a polygon are oriented so that the inside of the
polygon lies to the left of its edges. When the crossing oc-
curs, one vertex is nearer to V' than the other: it will be
said near, and the other, far; one vertex is following the
other on the polygon’s boundary: it will be said nezt, and
the other, prev. This is the terminology used in Figure 5 to
decide which transition we should target.

r convex near
- concave far

- convex far !
~ concave near |

concave far -
convex far -

Figure 5: Updating a vertex’s type. Fat arrows repre-
sent transitions where hit-item must be updated

The complexity of the structure for polygonal objects is the
same as for convex smooth objects.

Hall-Holt proposes a refinement of this method, which pro-
cesses exactly as many events as there are changes in the
VP. The cost of processing one event is larger, but for the
same motion of all items (obstacles and the viewpoint), his
algorithm is less costly in time because of a relaxation on the
constraints on the shape of the scene decomposition. How-
ever, he designed his algorithm only for convex obstacles.

The algorithm proposed by Hall-Holt can in fact be adapted
to simple polygonal obstacles using a radial decomposition

of the polygonal scene where each edge of a polygon is con-
sidered separated of the others, so that the radial segments
would lie “ in ” the polygons as well, and not only in free
space.

4. CONCLUSION AND FUTURE WORK

We have presented a simple kinetic data structure that main-
tains the visibility polygon of a moving point in a planar
scene of moving obstacles (convex-smooth or simply-polygonal).
A change in the visibility polygon is processed in constant
time. The size of the structure is optimal (linear in the size

of the scene). However it processes too many events: among
all the events processed, lots can have no effect on the VP.
However the number of events processed remains optimal

if the scene is sparse, because nearly all obstacles become
visible.

These algorithms could perhaps be accelerated by represent-
ing polygons with various level of details (perhaps even ag-
gregating polygons that are closed to each other and far
away from the view point), and using a sufficiency criteria
to increment or decrement the LOD for some (groups of)
polygons.

We may also want to describe a 3-dimensional visibility poly-
hedron, and extend it to the KDS framework. This looks
much more difficult than in the 2d case.

5. REFERENCES
[1] J. Basch. Kinetic Data Structures. PhD thesis, Stanford
University, June 1999.

[2] J. Basch, L. Guibas, and J. Hershberger. Data
structures for mobile data. In Proc. 8th Symposium on
Discrete Algorithms (SODA’97), pages 747-756, 1997.

[3] O. Hall-Holt. Kinetic visible set maintenance in the
plane. submitted for publication, 2001.

[4] O. Hall-Holt and S. Rusinkiewicz. Visible zone
maintenance for real-time occlusion culling. submitted
for publication, 2001.

