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ABSTRACTGiven a set of moving obsta
les in the plane, we propose amethod for maintaining eÆ
iently the visibility polygon ofa (possibly moving) viewpoint. We 
onsider both smooth-
onvex, and simply-polygonal obsta
les.
Categories and Subject DescriptorsF.2.2 [Theory of Computation℄: Analysis of Algorithmsand Problem Complexity|Non-numeri
al Algorithms andProblems
Keywordskineti
 data stru
ture, visibility polygon
1. INTRODUCTIONVisibility 
omputations are 
entral in many 
omputer graph-i
s algorithms and in robot motion planning. A very use-ful tool is the determination of the obje
ts visible from aviewpoint. Thus, in the plane, the visibility polygon is animportant visibility stru
ture. It is a star shaped polygon
entered at the viewpoint, whose edges are the visible partsof the obje
ts in the s
ene, and whose interior interse
ts noobje
t.EÆ
ient algorithms exist to 
ompute the visibility polygonin the stati
 
ase, but appli
ations of this problem may ap-ply to moving obje
ts. Computing the visibility polygonat various times on a stati
 \ snapshot " of the s
ene isineÆ
ient, sin
e we do not take into a

ount the temporal
oheren
e that arise from the 
ontinuity of the movementsof the obje
ts (and possibly the viewpoint): if the time stepis too small, we will 
ompute many times the very same(
ombinatorial) visibility polygon.We use the kineti
 data stru
ture framework introdu
ed byGuibas [2, 1℄ to propose a simple algorithm that maintainsthe visibility polygon of a view point in a 2-dimensionals
ene when all obje
ts may move. The stru
ture maintained

is in fa
t a weak radial de
omposition of the s
ene. Se
tion2 treats the 
ase of smooth 
onvex obsta
les. Se
tion 3 ex-amines the 
ase of simple (non auto-
rossing) polygons.Kineti
 data stru
tures (KDS) are a way to eÆ
iently anda

urately maintain an attribute built on top of 
ontinu-ously moving items (e.g. a 
onvex hull). In order to main-tain an attribute A over a set of moving items (items aregenerally points), ea
h test in the proof of 
orre
tness of the
onstru
tion of A is analyzed to dete
t the time at whi
hit will fail. The idea is that maintaining the validity of allthose tests (
alled 
erti�
ates) guarantees that the attributeA is maintained also, sin
e the 
erti�
ates provide a proofof 
orre
tness. Certi�
ates are ordered in a priority queue,a

ording to their failure time. When the simulation timepasses above the �rst 
erti�
ate's failure time, the attributeis modi�ed, and the proof is updated (i.e. some 
erti�
atesdisappear, others are 
reated, and their failure time is 
om-puted). This method only requires that the motion of theitems be known in the short term. For short, one 
ould saythat kineti
 data stru
tures get rid of step-by-step simula-tions, and implement in fa
t time sweep algorithms.We now get interested in maintaining the visibility polygonof a s
ene. Here, in the KDS terminology, the items are the
onvex smooth obje
ts, or the polygons' verti
es. We main-tain a weak radial de
omposition of the s
ene, thus, the
erti�
ates we use take 
are of the well ordering (i.e. 
y
li-
ally sorted) of the segments in the de
omposition. Finallythe radial de
omposition of the s
ene allows us to qui
klybuild the visibility polygon.
2. CONVEX OBSTACLESLet O be a set of n 
onvex obsta
les in the plane. Let Fbe the \ free spa
e ": the 
omplement of the union of theobsta
les in the plane. Let V be a point in F . We aim atmaintaining the visibility polygon of V when V and elementsof O move in the plane. We assume we 
an 
ompute in
onstant time the visibility tangents of an obsta
le, that arede�ned as the two tangents to the obje
t passing throughthe view point V . Let T = ft0; t1; : : : ; t2n�1g the t uple ofthe visibility tangents, sorted in the 
ounter-
lo
kwise order.Let u 2 S1 be a dire
tion. We denote by V (u) the obsta
leseen by V in the dire
tion u. V (u) 
an possibly be the \ bluesky " that we denote1. One important observation is thatV (u) is 
onstant between two 
onse
utive visibility tangents.Thus, a way to de�ne the visibility polygon around V , is to



see it as the fun
tion P : T 7! fO [ 1g so that P(ti) =V (t+i ) = V (t�i+1) where ti is seen as a dire
tion pointingaway from the view point V .
2.1 Kinetic visibility polygonThe visibility polygon (VP) 
hanges only when two visibilitytangents (VT) 
ross ea
h other (but two VTs may 
rossea
h other without a�e
ting the VP). Thus, we 
an maintainthe VP by dete
ting when two 
onse
utive VTs will 
ross,then updating the VP a

ording to the kind of both VT,and swapping the two VTs involved to keep them sorted in
ounter-
lo
kwise order.However, having 
omputed the VP at a given time is notsuÆ
ient to maintain it eÆ
iently when obsta
les move. Weneed some additional data that will have to be maintainedalso: for ea
h VT ti, we maintain its hit-item, whi
h is theobsta
le that is hit by the VT beyond the tangen
y point(it 
an be1). In fa
t, we maintain a weak radial de
ompo-sition of the s
ene, where only the far obje
t hit by a VT isre
orded and not the near obje
t.For ea
h 
rossing, the update of the visibility polygon isdone in 
onstant time, by distinguishing 8 
ases. First, weneed to 
hara
terize the VTs. Half of them will be Left if(seen from V ), they pass to the left of the obsta
le. Theother half will be Right visibility tangents.We explain the naming of the 
rossing events with an ex-ample. Figure 1a shows an bLR and an bLL 
rossing events(from left to right, the �gure presents the obsta
les involvedin the event, just before, \ during " and after the 
rossing).bLR means that the �rst VT (in 
ounter-
lo
kwise order) isa Left tangent, the 
onse
utive VT is a Right tangent, andthe hat on bL means that, when the 
rossing o

urs, the tan-gen
y point of the Left tangent is farther from V than thetangen
y point of the Right tangent. Hen
e, the 8 
ases arenamed LbL, bLL, L bR, bLR, RbL, bRL, R bR, bRR.

(a) (b)Figure 1: (a) example of a bLR event (up) and a bLL event(down); (b) all eventsNow we need to update the VP and the hit-items when thebLR 
rossing o

urs, see Figure 2. The VTs that 
ross ea
hother are 
onse
utive in our t uple of ordered VTs. Let tbe the time at whi
h the 
rossing o

urs. Then at timest� and t+, no other VT 
an lie between the two VTs weare interested in. Therefore we 
an be sure that any other

obsta
le (di�erent from G or D in Figure 2) either 
ompletely
rosses the angular se
tion E, or has no interse
tion with it.This ensures the 
orre
tness of the update pro
ess.First we 
he
k if an obje
t C exists between the two points oftangen
y at time t. To do so, we just need to 
he
k whetherg.hit-item (the hit-item of the Right tangent of obsta
leG) is the same as d.hit-item or not. If so, then C does notexists, else, C exists. Note that fg,dg.hit-item 
an be 1.This information is enough to update the hit-items.Seen from V , the foremost obsta
le among those in the �gureis G. Therefore, if there is a 
hange in the visibility for E,this 
hange makes G visible. To know whether G be
omesthe visible obje
t in E, we simply 
he
k whether there existsanother obsta
le in front of G at time t, by 
omparing theobsta
le visible in E to C or S (depending on the existen
eof C).The algorithm is des
ribed in Figure 3.
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Figure 2: Update of a bLR event, the arrows point to thehit-items in the 
ase C does not existsThe seven other 
ases are pro
essed in the very same way,by just 
hanging the roles in Figure 3.g.tangent-item == G;d.tangent-item == D;--------------------if ( G.hit-item == S ) f// C does not existsg.hit-item = d.tangent-item;if ( E.vis-item == S )E.vis-item = g.tangent-item;gelse f // C exists, C == g.hit-itemif ( E.vis-item == g.hit-item )E.vis-item = g.tangent-item;g Figure 3: Pro
essing an bLR eventWe know how to maintain the weak radial de
ompositionof our s
ene. Without more work, we 
an 
ompute the vis-ibility polygon only in linear time, by looking at the visi-ble item between ea
h visibility tangent, and \ merging "the same 
onse
utive values. This is not very eÆ
ient, butwe easily remove this problem by performing a �rst \ run-length-en
oding " of the 
onse
utive visible items, and bymaintaining this en
oding ea
h time the VP is 
hanged whena 
rossing-event o

urs. This is done in 
onstant time.



2.2 ComplexityWe express the 
omplexity of this kineti
 data stru
ture us-ing terms proposed by Guibas and Bas
h [2, 1℄. Our datastru
ture is optimal in size sin
e it is linear in the size of thes
ene (the set of all obsta
les). It is responsive, meaning thatthe 
ost of pro
essing a 
erti�
ate failure is small: 
onstant-time in our 
ase. This KDS is lo
al, meaning that the num-ber of 
erti�
ates that involve a single obje
t is small; it isO(1) in our 
ase, with max. 4 
erti�
ates per obsta
le.However, it is not optimal sin
e we may have to update many
erti�
ates in a move while none of these a�e
t the visibilitypolygon. Imagine lots of small dis
s verti
ally aligned abovea big dis
, and the view point traversing the plane horizon-tally under the big dis
. Using Guibas and Bas
h termi-nology, our KDS is not eÆ
ient, sin
e the total number ofevents pro
essed may be of a higher order as the number of
hangings in the VP. An optimal algorithm would updateas many 
erti�
ates as there are 
hanges in the visibilitypolygon during the animation. Hall-holt and Rusinkiewi
z[3, 4℄ propose su
h an algorithm, but are limited to 
onvexsmooth obsta
les. They do pro
ess only one 
erti�
ate fail-ure for ea
h 
hange in the VP, but the 
ost of pro
essingone event is not 
onstant in time. However, the overall 
ostof pro
essing all events for a simple motion (of the observeronly) is signi�
antly better in their algorithm.
3. SIMPLE POLYGONAL OBSTACLESWe now present an adaptation of the method to simplepolygonal obsta
les. A simple polygon 
an be 
on
ave, butnone of its edges 
ross one another. We 
onsider that obsta-
les in the initial set are in general position, meaning thatno pair of verti
es is aligned with the observer V .The basi
 idea is the same. For ea
h vertex v, we keep tra
kof the ray starting at V and passing through v, whi
h makes,by a slight abuse of language, our new visibility tangent. Forea
h vertex (or VT, sin
e verti
es and VTs are in bije
tion)we also keep tra
k of its hit-item and of the type of thevertex. Here, the type of a VT is a bit more 
omplex: Figure4 shows how we name the type of a vertex depending onthe position of both its adja
ent edges relatively to the VTpassing through it.

Left Right Down Up

Convex

Concave

Point of viewFigure 4: Various types of verti
esNote that the hit-item of a vertex v 
an be irrelevant (andeven wrong) if the part of its VT beyond v goes throughthe interior of the adja
ent polygon of v. It is yet 
orre
tlyupdated when the VT gets anew in free spa
e.The 
erti�
ates that must stay true are the same as inthe 
ase of 
onvex smooth obsta
les: we s
hedule a 
ross-

ing event when two 
onse
utive verti
es (whi
h are keptsorted in 
ounter-
lo
kwise order around the view point)get aligned with the observer V . In Se
tion 2, both VTs ofthe same obsta
le 
ould not 
ross ea
h other. This is notthe 
ase here, sin
e two 
onse
utive verti
es (
onse
utive inthe 
y
li
 order and on a polygon boundary) 
an get alignedwith V .Thus, we have two kinds of update when a 
erti�
ate fails.If the 
erti�
ate 
on
erns verti
es 
onse
utive on the bor-der of a polygon, then we have to update their type, andpossibly their hit-items and the VP; this again, is done in
onstant time. In other 
ases, the update is similar to thosein Se
tion 2, with some more 
ases be
ause we have to takeinto a

ount other types for a vertex, namely Up and Down.Figure 5 shows how the type of a vertex 
hanges when V
rosses the supporting line of one of its adja
ent edges.Edges of a polygon are oriented so that the inside of thepolygon lies to the left of its edges. When the 
rossing o
-
urs, one vertex is nearer to V than the other: it will besaid near, and the other, far ; one vertex is following theother on the polygon's boundary: it will be said next, andthe other, prev. This is the terminology used in Figure 5 tode
ide whi
h transition we should target.
if convex

if convex

next
prev
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concave far
convex near
concave far
convex far
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Figure 5: Updating a vertex's type. Fat arrows repre-sent transitions where hit-item must be updatedThe 
omplexity of the stru
ture for polygonal obje
ts is thesame as for 
onvex smooth obje
ts.Hall-Holt proposes a re�nement of this method, whi
h pro-
esses exa
tly as many events as there are 
hanges in theVP. The 
ost of pro
essing one event is larger, but for thesame motion of all items (obsta
les and the viewpoint), hisalgorithm is less 
ostly in time be
ause of a relaxation on the
onstraints on the shape of the s
ene de
omposition. How-ever, he designed his algorithm only for 
onvex obsta
les.The algorithm proposed by Hall-Holt 
an in fa
t be adaptedto simple polygonal obsta
les using a radial de
omposition



of the polygonal s
ene where ea
h edge of a polygon is 
on-sidered separated of the others, so that the radial segmentswould lie \ in " the polygons as well, and not only in freespa
e.
4. CONCLUSION AND FUTURE WORKWe have presented a simple kineti
 data stru
ture that main-tains the visibility polygon of a moving point in a planars
ene of moving obsta
les (
onvex-smooth or simply-polygonal).A 
hange in the visibility polygon is pro
essed in 
onstanttime. The size of the stru
ture is optimal (linear in the sizeof the s
ene). However it pro
esses too many events: amongall the events pro
essed, lots 
an have no e�e
t on the VP.However the number of events pro
essed remains optimalif the s
ene is sparse, be
ause nearly all obsta
les be
omevisible.These algorithms 
ould perhaps be a

elerated by represent-ing polygons with various level of details (perhaps even ag-gregating polygons that are 
losed to ea
h other and faraway from the view point), and using a suÆ
ien
y 
riteriato in
rement or de
rement the LOD for some (groups of)polygons.We may also want to des
ribe a 3-dimensional visibility poly-hedron, and extend it to the KDS framework. This looksmu
h more diÆ
ult than in the 2d 
ase.
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