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The 3D Visibility Complex: a unified data-structure for global visibility
of scenes of polygons and smooth objects

Frédo Durand, George Drettakis and Claude Puech
iMAGIS-GRAVIR/INRIA ∗

Abstract

In this paper we describe a unified data-structure, the 3D Vis-
ibility Complex which encodes the visibility information of a
3D scene of polygons and smooth convex objects. This data-
structure is a partition of the maximal free segments and is
based on the characterization of the topological changes of
visibility along critical line sets. We show that the size k of
the complex is Ω(n) and O(n4) and we give an output sen-
sitive algorithm to build it in time O((n3 + k) logn).

This theoretical work has already been used to define a
practical data-structure, the Visibility Skeleton described in
a companion paper.

1 Introduction

Visibility is a crucial issue; motion planning in robotics, ob-
ject recognition in computer vision, lighting simulation or
view maintenance in computer graphics are some examples
where global visibility computations are required. The no-
tion of ”coherence” is often cited as the key to treat these
problems efficiently and not restart every computation from
scratch, but its characterization is not straightforward.

The usual space-subdivision methods do not translate the
line nature of visibility, since a line of sight intersects many
cells of any subdivision.

Computational geometers have characterized sets of lines
in space by using Plücker duality. It is an oriented projec-
tive 5D dual space in which lines of space are naturally and
linearly embedded (lines intersecting a given line are asso-
ciated with hyperplanes). Its main drawback is the necessity
of an intersection with the Plücker hypersurface [CEG+96,
Pel90]. The scenes considered have always been polygo-
nal and are mainly restricted to isothetic or c-oriented poly-
gons. (In fact there exists a few results on ray-shooting with
spheres involving parametric search without Plücker coordi-
nates [MS97]). These techniques have been used by Teller
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in computer graphics to compute the antipenumbra cast by
an area light source through polygonal portals [Tel92]. The
problem with these methods is that intersections of lines
with the entire scene are considered; occlusion is not really
treated.

In computer vision, the aspect graph has been developed
to characterize the viewpoints from which the scene has the
same topological aspect. The viewing space (S2 for ortho-
graphic projection, R3 for perspective projection) is parti-
tioned along visual events. Construction algorithms have
been developed for polygons and algebraic objects, both for
orthographic and perspective projection, and some of them
have been implemented; see [EBD92] for a good survey. A
main drawback of aspect graphs is their size: O(n6) for or-
thographic projection, andO(n9) for perspective projection.

To build the aspect graph, Plantinga and Dyer [PD90] de-
fined an intermediate data structure called the asp. For the
orthographic case, it is a partition of the 4D space of oriented
lines of space according to the first object they hit, and for the
perspective case it is a partition of the 5D space of oriented
half lines (rays). This approach has been limited to polygo-
nal scenes. It was applied to maintain views, but the degrees
of freedom allowed by the implementation were limited to
rotation along a predefined axis [PDS90].

In lighting simulation, researchers have computed the dis-
continuities of the lighting function (which correspond to
the limits of umbra and penumbra) also called disconti-
nuity meshes. This characterizes the visibility of a light
source. Initially only a subset of discontinuities where com-
puted (e.g., [LTG93]), followed by algorithms computing all
the discontinuities, together with a structure, the backpro-
jection, which encodes the topological aspect of the light
source[DF94, SG94]. These approaches are nonetheless re-
stricted to a single light-source at a time.

Recently, a data-structure which encodes all the visibility
information of a 2D scene called the Visibility Complex has
been defined [PV96]. This structure is a partition of the set
of maximal free segments according to the object they touch.
Optimal construction algorithms have been developed for
smooth convex objects [PV96] as well as polygons [Riv97]
and used for lighting simulation [ORDP96].

In [DDP96] we introduced the 3D Visibility Complex for



scenes of convex smooth objects (the polygonal case was
simply mentioned). An O(n4 logn) brute-force algorithm
was roughly sketched, and applications for lighting simula-
tion, walkthroughs and aspect graph computation were pro-
posed.

In this paper, we present a unified version of the 3D vis-
ibility complex for scenes of polygons and smooth convex
objects. It is based on a complete catalogue of critical line
sets which are lines where visibility changes. We derive
bounds for the size of the complex and present an output sen-
sitive construction algorithm.

Moreover, the formalism described in this article has been
used to develop and implement a global visibility data-
structure called the Visibility Skeleton [DDP97]. It is a sim-
plified version of the 3D visibility complex for polygonal
scenes built using a brute-force algorithm.

2 Scenes and maximal free segments

We consider scenes of polygons and algebraic smooth con-
vex objects. Concave objects and piecewise smooth objects
are beyond the scope of this article but could be handled by
considering other critical line sets described by the theory
of singularity [PPK92, Rie87]. The algebraic objects are as-
sumed to have bounded degree. In what follows, n repre-
sents the overall complexity of the scene which is the total
number of objects, polygons, edges and vertices. The ob-
jects are assumed to be in general position; degeneracy is-
sues are not addressed in this paper.

In this work we do not consider lines but maximal free
segments to take occlusion efficiently into account. Intu-
itively, a segment represents a class of rays, and we want to
group the rays that “see” the same objects. Since many seg-
ments can be collinear, we need a fifth dimension to distin-
guish them. But it is not a continuous dimension: there is
only a finite number of segments collinear to one line. See
figure 1(a) where a 2d equivalent is shown. The segments a
and b are collinear, t is tangent to the object and is adjacent
to segments above and below the object. Topologically we
have a branching structure represented in fig. 1 for parallel
segments. Note that almost everywhere the graph is locally
1-dimensional. Similarly in 3D, the segment space is a 4D
space embedded in 5D. This can be seen as a unification of
the spaces used by Plantinga and Dyer [PD90]: in the ortho-
graphic case they deal with a 4D space and in the perspective
case with a 5D space.

We use the same parameterization for lines as [PD90,
DDP96]: they are represented by two coordinates of direc-
tion, the angles θ (azimuth) and ϕ (elevation) which are the
spherical coordinates of the director vector, and the coordi-
nates (u, v) of the projection onto the plane perpendicular to
the line and going through the origin (the axes of of the plane
are chosen such as u is orthogonal to both the director vec-
tor and the vertical). See figure 1(b). Note that if ϕ is fixed
we obtain all the lines contained in a set of parallel planes.
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Figure 1: (a) 2D equivalent of the segment space: Parallel
segments in the scene and local topology with branchings.
(b) Parameterization of lines in space.

We call it a ϕ-slice. If we also fix v, we obtain the lines of a
plane in which θ and u are the polar coordinates. We call it
a ϕv-slice.

3 Critical segments

We define a segment to be in general position if it touches ob-
jects only at its extremities. A segment that touches objects
in its interior will be called critical. At such an intersection
there is a local event. If a segment touches more than one
object in its interior, we call this a multilocal event. Critical
segments are grouped into critical segment sets. The dimen-
sion of such a set can be seen as the number of degrees of
freedom a segment has to keep the events. We can also refer
to the codimension of such a set, which is the complement
to the dimension of the space (the number of fixed degrees
of freedom).

For the class of scenes we consider, there are two kinds of
local events: tangency events and vertex events. The object
or the vertex are called the generators of the event. To stay
tangent to an object, a segment has three degrees of freedom.
It is of codimension 1. It is of course the same when a seg-
ment goes through the edge of a polygon. We call this a T
event from tangency (also referred to as E from edge in the
aspect graph or discontinuity meshing literature which deals
with polygonal scenes). A segment that goes through a ver-
tex has two degrees of freedom (rotation), and thus has codi-
mension 2. We call it a V event.

The combination of many local events causes a multilocal
event, and the codimensions are added. We use the notation
+ to describe such a combination. For example, a segment
that is tangent to an object and that goes through a vertex be-
longs to a T + V critical line set of codimension 1 + 2 = 3
(it is a 1D set).

There is also a different kind of multilocal event that was
not described in [DDP96]. A segment can be tangent to two
objects and belong to one of their common tangent planes. In
this case, the common tangent plane adds one codimension
and we use the notation ++. For example T + +T critical



Dimension Type Configuration

3 T

2 T+T

V

1 T+T+T

T++T

T+V

0 T+T+T+T

T++T+T

T+T+V

V+V

Table 1: faces of the visibility complex.

segment sets have codimension 1+1+1 = 3 (1D set). (One
may think of the example of two parallel cylinders and notice
that lines contained in a bitangent plane have two degrees
of freedom. This case is not considered here because it is
degenerated.) These events are crucial for dynamic mainte-
nance of views, aspect graphs and discontinuity meshes. For
example a sphere hidden behind another sphere will appear
when their outlines are tangent, that is when the viewpoint
lies on a T ++T segment.

Each local event corresponds to an algebraic equation: a
line tangent to an algebraic object or going through a ver-
tex. A set of critical segments can thus be associated with
the connected set of lines verifying the corresponding set of
equations.

Events caused by faces are considered as T + T events
since they involve two edges. In the same way, segments go-
ing through an edge are V + V events. The reason why the
case of vertices (which could be seen as two edges events) is
distinguished is that they introduce “discontinuities” at the
end of edges and require a specific treatment as we shall see
in section 5.4.

4 The 3D Visibility Complex

The 3D visibility complex is the partition of maximal free
segments of 3-space into connected components according
to the objects they touch. Its faces of dimension 4 are max-
imal connected components of segments in general position
with the two same objects at their extremities.

The different faces of lower dimension correspond to crit-
ical segments as summarized in table 1.

(a) (b)

Figure 2: (a) Scene with an O(n) Visibility Complex (b)
Scene with an O(n4) Visibility Complex (an example of
T + T + T + T critical line is shown).

Theorem 1 The size of the 3D visibility complex is Ω(n)
and O(n4) where n is the complexity of the scene.

Proof (sketched)

The number of (k+1)-faces adjacent to a k-face is bounded.
For example a 1-faceT1+T2+T3 is adjacent to five 2-faces:
two faces T1+T2 (there are two different faces because one
extremity of the segments can lie on the object tangent at T2
or not. See [DDP96]), T1 + T3 and two T2 + T3.

Each 4-face is adjacent to at least one 3-face, a 3-face to at
least one 2-face, and a 2-face to at least one 1-face. We just
sketch the demonstration. For a given faceF of the complex,
we consider the associated critical line set S. This set of lines
contains a line set S′ with one more codimension (one of the
lines tangent to one object is also tangent to a second object,
one of the lines tangent to two objects belongs to one of their
common tangent plane, and one line going through a vertex
is tangent to an object). Consider a continuous path from the
line associated with a segment s of F to one of S′, and the
corresponding continuous path over the segments. If all the
segments of this path have the same extremities, F is adja-
cent to the face with one more codimension associated with
S, otherwise when the extremity changes there is a tangency
local event and one more codimension.

Note that a 1-face may be adjacent to no 0-face (we give
an example below of a scene without a 0-face).

So the size of the complex is bounded by the number of
1-faces which are not adjacent to a 0-face plus the number
of 0-faces. For each kind of events, the number of possible
systems of algebraic equations depends on the number of ob-
jects implicated, the T +T +T +T critical line sets are thus
the most numerous with O(n4).

We show in figure 2(a) an example of a scene with a vis-
ibility complex of size O(n): there is one T + +T face for
each pair of neighbour spheres. Note there is no 0-face in
that case. The scene in figure 2(b) is the same as in [PD90]
and has anO(n4) visibility complex. There are two “grids”,
each one composed of two very slightly distant orthogonal
sets of n

4
parallel rectangles (this is also valid with thin el-

lipsoids). Consider a rectangle in each of the four sets: there
is always a T + T + T + T critical segment.
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Figure 3: (a) Parameterization of the directions. (b) Initial v
sweep (c) ϕ sweep.

Visual events considered in the aspect graph literature
[EBD92, PD90] correspond to the 1-faces of the visibility
complex. For example the topology of a view changes when
a vertex and an edge are aligned from the viewpoint. The
aspect graph is in fact the arrangement of those events in the
viewing space. This explains its size: O(n6) in the ortho-
graphic case where the viewing space is S2 andO(n9) in the
perspective case where the viewing space is R3.

In [DDP97] we presented a data-structure called the Vis-
ibility Skeleton which corresponds to the graph of the 0 and
1-faces of the visibility complex. First experiments with a
few typical computer-graphics scenes show that the number
of these faces (and thus the size of the complex) is about
quadratic in the number of input polygons.

5 Output-sensitive sweep

Our algorithm is a double sweep with a preprocessing phase.
First the scene is swept by a horizontal plane and a 2D Vis-
ibility Complex [PV96] of the ϕv-slice is maintained (fig-
ure 3(b)). We then sweep ϕ (figure 3(c)), but some 0-faces
can not be detected during this sweep and have to be prepro-
cessed.

5.1 Sweeping the initial slice

To build the initial ϕ-slice, we first maintain a ϕv-slice of
the 3D visibility complex which corresponds to the 2D vis-
ibility complex [PV96] of the sweeping plane. We briefly
review the 2D visibility complex. It is the partition of the
segments of the planes according to the objects they touch.
Its 2D faces are connected components of segments touch-
ing the same objects (they are ϕv-slices of the 4-faces of the
3D visibility complex). They are bounded by edges which
correspond to segments tangent to one object (ϕv slices of
the 3-faces T ) and vertices which are free bitangents of the
2D scene (ϕv-slices of 2-faces T +T ). Since a view around
a point corresponds to the extremities of the segments go-
ing through this point, it corresponds to the traversal of the
2D visibility complex along the 1D path of these segments.
The object seen changes when the path traverses a new face,
which occurs at an edge of the 2D complex. In the case of a
polygon, the chain of edges of the 2D complex going through
one of its vertices is the view around this vertex.

Figure 4: When the first vertex of a polyhedron is swept, the
2D view is computed in the sweeping plane and is restricted
for each edge adjacent to the vertex by considering the angle
formed by the direction of the two adjacent polygons.
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Figure 5: Fusion-restriction of a view around edges when a
vertex is swept

The 2D visibility complex has to be updated when the
sweeping plane is tangent to an object or contains a vertex
and when three 2D slices of objects share a tangent.

When the sweeping plane starts intersecting an object, we
have to “insert” this object in our 2D complex. This is done
by computing a view around the point of tangency or around
the vertex using the current 2D visibility complex. This can
be done in O(v logn) where v is the size of the view using
the techniques described in [Riv97]. When the path of this
view crosses an edge of the 2D complex it corresponds to a
new T + T or V + T face of our 3D complex. In the case
of the first vertex of a polygon, the view has to be restricted
for each edge of the polyhedron, corresponding to the view
seen by a vertex of the 2D slice (see figure 4).

Symmetrically, when an object stops intersecting the
sweeping plane, the corresponding faces of the 2D visibil-
ity complex are collapsed. These faces are those along the
chains of edges corresponding to segments tangent to this
object. Their removal can be done in O(v) where v is again
the size of the view.

When a vertex in the middle of a polyhedron is encoun-
tered the 2D views around the points corresponding to the
edges under the vertex have to be merged, and then the view
around this vertex has to be restricted for each edge above
the vertex, in the same manner as first vertex sweep-events,
see figure 5. Each operation is linear in the size of each view.

As the plane moves, three slices of objects can share a tan-



gent (corresponding to a T+T+T face of the 3D complex),
in which case the 2D visibility complex is updated using the
technique of [Riv97]. Basically, for each bitangent we com-
pute the value of v where it will become tangent to a third
object and store these sweep-events in our queue which re-
quires time O(log n) whenever a bitangent is created.

Finally, a bitangent of the 2D complex can correspond to
a common tangent plane. For each bitangent, we compute
the value of v for which it will lie on a bitangent plane and
insert this sweep-event in the queue. Of course, these sweep-
events have to be discarded if the bitangent is collapsed be-
fore.

5.2 Principle of the ϕ sweep

We now have computed a ϕ-slice of the 3D visibility com-
plex. It is the partition of the segments contained in the set
of horizontal planes. In this ϕ-slice, 1-faces of the complex
have dimension 0, 2-faces have dimension 1, and so on.

During the ϕ-sweep (fig. 8(c)) we maintain this ϕ-slice
as well as a priority queue of sweep-events. In what fol-
lows, we will only describe the update of the 1-faces of the
visibility complex, the update of the upper dimensional is
done at each sweep-event using a catalogue of adjacencies of
the 1-faces which for reason of place cannot be given here.
As stated before, the number of adjacent upper-dimensional
faces is bounded; their update does not affect the complexity.

We first prove that some sweep-events are regular: a 1D
component of the ϕ-slice is collapsed as its two extremities
merge. These sweep-events can be detected by computed for
each 1D component of the ϕ-slice the value ofϕ for which it
will collapse. We will then study the case of irregular sweep-
events.

5.3 Regular 0-faces

Consider a T1 + T2 + T3 + T4 segments with extremities
O0 andO5 and elevation angle ϕ0 (fig. 6). Consider the 1D
critical line set T1 + T2 + T3. We locally parameterize it by
ϕ and call it l(ϕ). The ruled surface described by l(ϕ) cuts
O4 at ϕ0. Two 1-faces of the complex are associated with
l(ϕ), one for ϕ < ϕ0 and one for ϕ > ϕ0; one has O5 at
its extremity, the other O4. It is the same for T2 + T3 + T4.
Moreover the two 1-faces before ϕ0 are adjacent to a 2-face
T2 + T3. In the ϕ-slice, this 2-face is a 1D set bounded by
the slices of T1 + T2 + T3 and T2 + T3 + T4. This 1D set
collapses at ϕ0, it is thus a regular sweep-event. It can be
detected by considering the adjacent T +T +T faces in the
ϕ-slice and maintaining a priority queue.

The T ++T + T faces can be handled the same way be-
cause they are adjacent to a pair of T + +T and a pair of
T + T + T 1-faces, and the faces of a pair are associated
with the same line set.

O1

O2

O3

O4ϕ0

T1+T2+T3+T4

T1+T2+T3

T1+T2+T3

O5

O0

Figure 6: T + T + T critical line set adjacent to a T + T +
T + T critical line.

ϕ0V1

V2

O1

O2

Figure 7: None of the T + V critical segment sets adjacent
to this V + V critical segment exist before ϕ0

5.4 Irregular 0-faces

Unfortunately, all the 0-faces are not regular sweep-events.
The T + T + V and V + V events cannot be detected in
this way. The main reason is that vertices represent discon-
tinuities at the end of edges, and we have no guarantee that a
1-face adjacent to such a 0-face exists forϕ < ϕ0. See figure
7 where the four T +V faces appear at ϕ0; this corresponds
in the dual space to situation (b) of fig. 8.

These events thus have to be preprocessed by considering
all the V V pairs and all the Object-Object-V triplets.

Fortunately, at least one slice of an adjacent 2-face exists
before such 0-faces appear (face V1 in fig 7). The proof is
omitted from this version. This face is found using a search
structure over the 1D components of the ϕ-slice ordered by
their generators. The 0-face is then tested for occlusion: we
test if the generators (V2 here) lies between the extremities
(O1 and O2) of the 2-face. It can then be inserted.

5.5 Non monotonic 1-faces

There is another kind of irregular sweep-event. A 1-face of
the complex can appear during the sweep without a 0-face
event. This is obviously the case for T + +T events since
they can be adjacent to no 0-face, but this can also be the
case for T + T + T events. Consider the associated line
set, it is not necessarily monotonic with respect to ϕ (see fig.
8(c)). These sweep-events also have to be preprocessed and
inserted in theϕ-slice with a search over the 1D components.

5.6 Complexity of the algorithm

Theorem 2 The visibility complex can be built in time
O((k + n3) logn) where n is the complexity of the scene,
and k the number of 0-faces of the complex.
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Figure 8: Different sweep-events represented in the dual
space. The T+T+T+T event (a) is regular, but the V +V
event (b) has to be preprocessed as well as the null derivative
with respect to ϕ of the T + T + T events (c).

During the initial v sweep, each view computation re-
quires time O(v logn) where v is the size of the view. A
view corresponds to the number of 3-faces of the 3d visibil-
ity complex adjacent to the appearing/disappearing 2 faces.
The total cost is thus bounded byO(k logn). Each tritangent
event requires time O(log n), here again the cost is bounded
by O(k logn).

During the ϕ sweep, each regular event requires O(log n)
to maintain the priority queue.

The preprocessing of the other 0-faces and non-monotonic
1-faces requires the enumeration of all the triplets of objects
and the insertion of the computed faces in the priority queue,
it is therefore O(n3 logn).

The output-sensitive nature of this algorithm is very
important since experiments on a few polygonal scenes
[DDP97] have shown that the number of T + T + T + T
segments which is responsible of the theoretical O(n4) is in
fact much less than the number of T + T + V segments.

6 Conclusions and future work

We have introduced a unified data structure, the 3D visibility
complex, which encodes the global visibility informations
for 3D scenes of polygons and convex smooth objects. Its
size k is Ω(n) and O(n4) and we have presented an output-
sensitive algorithm to build the structure in time O((n3 +
k) logn).

Future work includes the use of the visibility complex to
maintain views around a moving viewpoint, a study of the
events involved by concave and piecewise smooth objects,
the development of a better construction algorithm, and the
incremental update of the visibility complex when an object
is moved, added or removed.
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