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The 3D visibility complex :
a new approach to the problems of accurate visibility.

Frédo Durand, George Drettakis and Claude Puech
IMAGIS *

Abstract: Visibility computations are central in any computer graghappli-
cation. The most common way to reduce this expense is thefugpmximate
approaches using spatial subdivision. More recently dicabpproaches effi-
ciently encoding visibility have appeared for 2D (the vilijp complex) and for
certain limited cases in 3D (aspect graph, discontinuitghmes). In this paper
we propose a new way of describing and studying the visjhift3D space by
a dual space of the 3D lines, such that all the visibility éseave described. A
new data-structure is defined, called @@ visibility complex, which encapsu-
lates all visibility events. This structure is global andrmete since it encodes
all visibility relations in 3D, and is spatially coherentating efficient visibility
queries such as view extraction, aspect graph, discotimesh, or form factor
computation. A construction algorithm and suitable datacstires are sketched.

Keywords: visibility, visibility complex, spatial coherence, discontinuityeshing,
form factor

1 Introduction

Visibility calculations are central to any computer graphics applicationddi®, no
approach has been presented to encode all visibility information in a 3D scene.

In this paper we will present a new approach, which we calBihgisibility complex,
which encodes all visibility information contained in a three dimensi@eene. This
research is in a preliminary phase, since an implementation has not yet beetakeoler
but we believe that the importance and potential use of such a strucitity jits
presentation even at the stage of conception.

Related works The first attempts to cope with the cost of visibility computatians i
volved space partitioning structures but they provided only locabiitsi information.
Arvo and Kirk [1] subdivide the 5D ray-space for ray-tracing. TelleB][lises the 5D
Plucker duality to compute the antipenumbra cast by an area light sourcesdldeal
veloped algorithms for scenes naturally divided into cells [15] wherevigibility is
propagated through portals. In computer visionahlgect graph [7, 6] has been devel-
oped to group all the viewpoints for which an object has the same “aspect”.pattas
changes along visibility events which are the same as for the discdgtineshing tech-
niques [8]. These techniques have thus been extendedadiprojections [3, 12] to
provide the aspect of the source. Recently, efficient data structures havedvedoped
for the 2D case [10, 5] and have inspired our research, although the nevaapgras
been developed from scratch with the specifically three-dimensional probleriméh
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2 Description of the 3D Visibility Complex

In this discussion we will consider scenes of general convex objects, dabticepts
will also be given for the polygonal scenes where appropriate. Visibilill be defined
in terms of ray-objects intersections. If we consider the objects todnsparent, a ray
is not blocked and all the objects a line intersects must be considerenlvéver we
want to take occlusions into account, we will consider maximal free segmdrith
are segments having no intersection with the inside of the objects anskvidngth is
maximal (their two extremities lie on the boundary of two objects or arefatity).
In what follows we will often refer to them simply asegments. Segments can be
interpreted as rays which cage the two objects on their extremities. A 3D line can be
collinear to many segments, separated by the objects the line intersebts dager, we
will introduce concepts first in terms of line visibility (where dilet objects intersected
by a line are considered) and then in terms of segment visibility (wineret¢clusions
are taken into account).

We wish to group the segments (or the lines) which see the same oBjgeition
of the set of segments into connected components according to theiritjisibihus
required. Since sets of segments are not intuitive objects, we wit tgpresentthem in
a dual space which will afford a better understanding of intricate Vitsiloelationships.
A suitable duality will thus be used for the purposes of illustiatind presentation.

2.1 Duality

We have chosen to decompose the 4 dimensions of line space into twosthmer
direction (the spherical coordinaté€g, ) of the director vector of the lines) and a
projection(u, v) onto the plane perpendicular to the line and going through therorigi
The axes of the planes are chosen such &salongt A y 2. The intersections of a
line with two parallel planes could also be used. Nonetheless, we beliavstibh an
approach makes the interpretation of lines sharing one coordinate harder.
Visualizing 4D space is very hard. It can be seen as a moving 3D world veithtth
dimension being time. One approach is to use slices (in this paper wiwjil= ct)
which can be seen as frames in time. Such a slice will be calleglice. Since each
slice will be a 3D spacéd, u, v), it will sometimes be useful to cut one more time and
considerp andd constant. We will obtain a 2D slice where onlyandwv vary, composed
of all the lines which are parallel and have the direct{ény). Such a slice will be
called afy-slice. These 2@ p-slices are easier to handle and visualize. They justify in
part the choice of the duality because they can be interpreted as orthogragaations
of the scene.

2.2 Tangency curves

Line Visibility Visibility changes when a line becomes tangent to an object. The set of
lines tangentto one objectis a 3-D set in the 4D dual space. This meansntaaieely,
that a line has 3 degrees of freedom to stay tangent to one object. We wiheallgl
of the set of lines tangent to an object thagency volume of this object.

Figure 1b shows a representation of the tangency volume of a spherea¢toy-
slice, the set of tangents is a sort of 2D “cylinder”, forming a 3D stnecituthe 4D dual
space. If we consider a 2@p-slice (horizontal in figure 1b) the set of tangents sharing

2 Discontinuities occur ap = %, but since we use this duality for the purpose of presentatio
and visualization we can ignore them without loss of geiitgral



Fig. 1. (a) Duality (b) Tangency Volume of a sphere. Thexis @ = 0, v = 0) is shown for
each-slice providing a better 3D visualization. In the left-ldap-slice, which corresponds to
the discontinuity in the duality fap = 7, the “cylinder” just turns around thgaxis. The lineD
intersects the object and has its dual inside the tangeriayneo

that direction is a circle in the dual space. This is general: because of thdidefof
u andw, the set of tangents to one object in one direction is the outlinesobltject in
this direction.

If a line has its dual on the tangency volume, it is tangent to the objettie Idual
is inside the 4D set bounded by the tangency volume, it intersects phet ofimilarly
to line D on figure 1b.

Segment Visibility Let us now consider visibility with occlusion. A line which in-
tersects the object is collinear to at least two segments, one before and emtheaft
object.

Consider &-slice such as that on the lower left of figure 2. The sets of lines that
intersect and that do not intersect the object are bounded by the outlthe object.
For segment visibility we have to consider the segments that see titeofrthe object
and those that see its back. Since such segments are collinear to the satheyiaee
projected on the same point in the 4D line dual space. Consequently tifessgments
that see the front and the set of segments that see the back of the objeojestegronto
the same position of the 4D dual space as shown in the right of figuraeoutline,
which is the set of tangents to the object for the chasandy, is incident to the three
sets (front, back and no intersection). This means that a segment tangesloject
has topological neighbours that do not intersect the objects, somethétesfront, and
some that see the back.

To differentiate the segments, we add a pseudo-dimension. It is natt@mwous
dimension since we just have to sort all the collinear segments. If \gese? = ct,



¢ = ct andv = ct, the sets of segments can be represented by a grahbwn on
the lower right. Each tangent corresponds to a vertex of the graph. Tdpsdés a 1D
structure embedded in 2D. Similarly, foda-slice, the sets of segments are represented
by a 2D structure embedded into 3D. We call the partition of the segroédisection
(8, ) according to their visibility theuxiliary complex for (9, ) (see also figure 4).

In a similar manner, g-slice is in fact a 3D structure embedded into 4D, and the
sets of segments is a 4D space embedded into 5D.

line visibility segment visibility
ron
scene
acl
do not intersect do not intersect

dual8¢-slice C ' ¢ ¢ back

| | ! |

| | |

slice for v=ct of |
the B¢-slice

back

Fig. 2. Visibility for 8 = ¢t andy = ct. If we consider lines (on the left), visibility can be
described by a planar structure (below). But if we considgnsents (on the right) we have
different levels on this plane depending on the side of theatbThe set of segments which do
not intersect and the sets of those that intersect the firaiecback of the object share the same
boundary, the tangents to the object which correspond toutsne. Recall that the Auxiliary
Complex shown on the lower right is a 2D structure embeddexdb, i.e. it is “empty “, since
the points outside the surfaces have no meaning.

2.3 Bitangents

Line Visibility Now consider two objects. If a line has its associated dual point inside
the tangency volumes of both objects, it intersects them both. The tangehueyes
give us a partition of the dual space ofthe 3D lines according to tleetsthey intersect.
We call this partition thelual arrangement. Its faces are 4D sets of lines which intersect
the same objects. They are bounded by portions of the tangency voluriodsam 3D.
The intersection of two tangency volumes is a 2D set corresponding lioésgangent
to the two objects (bitangents).

For ap-slice the set of bitangents is a space curve (shown as dashed lineéen3igar
the twop-slices on the right). It corresponds to the intersection of the twdiridgrs”
which are thep-slices of the tangency volumes. The slice of a 4D face is a volume
corresponding to the intersection of the inside of the two cylinders

3 Itis in fact an embedding of a graph since the points on thegdtso have a meaning
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Fig. 3. Dual arrangement for two spheres.

Segment visibility An auxiliary complex for two objects is shown on figure 4 for a
given direction. It is still delimited by the outline of the objedsit for example the
outline of the upper sphere has no influence on théset segments that see the back
of the lower sphere. Note that the two bitangents (shown in fat blaek)iare incident
to all faces.

Figure 5 is ap-slice for o = 0 of all the faces of the scene composed of two
spheres of figure 3. The view in a given direction is shown on the Igft@tylinders,
and we consider the associated auxiliary complex shown six times on thaf thp
schema. Each time, a face is hatched and a volume is drawn below which corresponds
to the p-slice of the face of the visibility complex @ = 0. Note that the union of
these volumes is more than the entire 3D space, sineslice of the complex is a 3D
structure embedded into 4D.

2.4 Tritangents

Consider now a scene of three objects. A line tangent to the three obgexits ldual at
the intersection of the three tangency volumes. A set of connected tritarnigentLD
set in the 4D dual space. Its projection op sslice is a point. The set of tritangents can
be also interpreted as the intersection of the three sets of bitangents.

Figure 6 shows part of the visibility complex of a scene of three ghedn the
p-slice ¢ = 0 two orthographic views of the scene fr= 0 (View 0) and forf = 6.
(View 2) are drawn next to the corresponditiin the p-slice. The sef” of segments
that see the spherdsand B is shown by its two sliced, andF,;. Note that it is the
intersection of the tangency volume Bfand B minus the tangency volume 6f. The
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Fig. 4. Auxiliary Complex for two spheres. Recall that the auxyiaomplex is a 2D structure
embedded in 3D. In the lower representation, only the paintshe surfaces represented are
associated with segments. In the upper view, the faces @iutkiéary complex have been moved
out to make their incidences easier to understand.
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Fig. 5. ¢-slice forp = 0 of the faces of the visibility complex of the previous sceAds the set
of segments that see the front Bf B is the set of segments that see the back.of is the set
of segments betweeh and R. It can be interpreted as the intersection of set of linessbal
and the set of lines that sé& and in the dual space it has the shapeddfi B. D is the set of
segments that see the frontf Since the visibility is occluded bR in this direction,D has the
shape ofB — A. Similarly, E is the set of segments that see the backoFinally, F' is the set
of segments that see none of the two spheres. It is the corapteshA U B.



tritangents are the points in white. Note also that because of the antlngihe sphere
G, lines that are bitangents of tif@ and B do not correspond to bitangent segments.
This is shown in figure 7 which is a zoomed view of theslice ¢ = 0. The set of
bitangentsB, is cut because bitangent lines such/asntersectG and correspond to
no bitangent segment. We can thus see that the tritafdyearntd7; are the intersection
of the p-slices of the three tangency volumes, and are also incident to the threxd sets
bitangentsB,, B} and B},

Note that a scene does not necessarily contain tritangents in the general case.

Fig. 6. Visibility Complex of a scene of three spheres.

3 Data Structure and Storage Complexity

3.1 Overview of the Data Structure

We have defined the dual arrangement which is the partition of the lines 8D space
into connected components according to the objects they intersect. It istatise.

Similarly, the 3D visibility complex is the partition of the maxénfree segments
of 3D space into connected components according to the objects they towsch.4bi
structure embedded into 5D. The dimensions and incidences of the bamofthe
faces are summarised in table 3.1.



Fig. 7. Zoomed view of thep-slice = 0.

Note that the elements of the visibility complex and those of the duahgement
are not the same. A line can be tangent to two objects and correspond t@ngeuit
segment because of occlusions.

In the general case, a scene can have a degenerate visibility complex with no vertex
and no tritangency edge.

Dim|Scene configuratigp-slice in the dual spage  Name
4 GEO 0 face
3 (PR @ tangency face|
2 90 @) bitangency face
1 S g€ o tritangency edge
0 f& vertex

Table 1. Elements of the visibility complex

3.2 Polygonal case

In the case of polygonal scenes, the outlines of the objects can be deconmtosed
edges and vertices. Consequently the tangency volumes of a polygon carideel div
into sets of lines going through the edges which are 3D sets, and séte®fjoing
through the vertices which are 2D sets. A 2D component of the complex porrds
to a segment touching two edges, or to a segment touching one vertex bfgamo
In the same manner, the 1-faces of the complex correspond to segmentshgoirgh
three edges (th& EE events of the aspect graphs or of the discontinuity mesh) or to
segments going through an edge and a vertexftfieevents). Vertices of the complex
canbeEEEFE or EEV or VV events. In particular a line (or a segment) going through
the vertex of a polygon can be interpreted as being tangent to the two edgksirto
this vertex.

In the polygonal case the visibility complex is always non-degenenate shere
are alwaysd/V vertices andE'V 1-faces.



3.3 Complexity

In the general case, there exist convex objects for which the number of faces of th
complex is unbounded. However, in the polygonal case, the storage cotypméx
the visibility complex isO(n*), wheren is the number of edges of polygons. This
complexity depends strongly on the configuration of the scene. We sklow that the
proposed construction algorithmd¥(n log n.

As mentioned in the introduction, practical experience with discortyimaeshing
has shown that the scenes studied in computer graphics tend to have mimistipt
visibility complexity than that predicted by the theoretical worst cae [3

4 Applications of the approach

4.1 View computation

A view around a point is defined by the extremities of the set of segmeimg tiwough
this point. The set of segments going through a point is a 2D suifiabe dual space
(v andwv can be expressed wittin(f) andsin(¢)). The view can be expressed as the
intersection of the visibility complex with this surface. Each face seeted corresponds
to an object seen. An intersection with a tangency volume corresponds tdlize au
the image. The ray-tracing algorithm is equivalent to a sampling of siscinface.

In figure 8, the surface described by the lines going through viewgdirs rep-
resented by itgp-slices which are curves. The intersections of these curves with the
tangency volumes are the points of the view on the outline of the ahjseth ad,
Ds, D3, D, and D5. However,all the intersections do not necessarily correspond with
an outline since the objects are not transparent, and points sughmasst not be taken
into account. Consider the-slice ¢ = 0 and the slicél}y of the lines going through
V with ¢ = 0. Figure 9 shows the-slices of the faces of the visibility complex and
their traversal. We traverse the visibility complex up and down algngdnitially, the
segments see nothing, since we are in the facAt D, we leave face” and have to
chose between facé andE. SinceV lies in the front of the spherB, we now traverse
A from Dy to Ds. D' lies on no boundary of facd and is thus not considered. We
then traverse fac® and finally faceF' again. Once the-slice has been traversed, the
intersections with the boundaries of the faces are maintained wilewept. Visibility
changes will appear wheli, meets a bitangency edge or a new tangency volume.

For a walkthrough, the view can be maintained since the events wheresthiityi
changes correspond to intersections of the surface describéd Wwith the 1-faces
of the visibility complex. This approach is similar to the one desttiin [2] where
conservative visibility events are lazily computed.

4.2 Form-Factors

The form factorF;; * involved in radiosity computation is the proportion of light that
leaves patchiwhich arrives at patcj. It can be expressed as the measure of lines which
intersect; andj divided by the measure of lines which intersécin the dual space,

it is the measure of the fadg; divided by the measure of the inside of the tangency
volume ofi. See [9] [4] for the equivalent interpretation of the form factors wlith 2D
visibility complex.

4 The same notation is used for the form factor and for the fateden and; though the form
factor is a scalar and the face is a set of segments.
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Fig. 8. The View around a point is the intersection of the visibildgmplex and the surface
described by the set of segments going through this point.
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Fig. 9. Traversal of thep-slice = 0 of the complex to compute the view around pdifit



4.3 Other applications

The 1-faces of the visibility complex correspond to the visibilityeris of the aspect
graph. The complex can thus help in its construction. The complexithefaspect
graph isO(n) though the visibility complex is “only®)(n*) because the aspect graph
is an arrangement of th@(n?) 1-faces of the complex.

In the same way, the 1-faces inside the tangency volume of the scene ocodésp
the discontinuity surfaces of the discontinuity meshing metholds visibility complex
gives all the events to compute a discontinuity mesh where all the objeatensidered
as sources.

In the context of hierarchical radiosity, whenever a link between two objeatsl
Jj is to be refined the boundary of the fakg of the visibility complex provides all the
visibility information pertinent to this energy exchange. This imfiation can be used to
effect progressive discontinuity meshing and to improve the qualitite form-factor
calculation.

5 Implementation

We give here a general outline for the implementation of this datatsirel for scenes
of polygons. The development of the actual implementation will presssitnical
difficulties which we have not yet addressed. We simply sketch an outlitreedorm
the data structure will have and give a general idea of how the constmweifi proceed.

5.1 Data Structure

To represent the 3D visibility complex, we can use a polytope strectachk-face
has pointers to its boundaries (faces of a lower dimension) and to the faadarger
dimension itis adjacent to. A tangency face has for example a list of thegeitay face
of its boundary, and three pointers to its adjacent faces. For/edabe we also store
the two objects it can see and the objects to which its segments are tangent.

5.2 Algorithm

We present here the outline of an algorithm to build the visibiitynplex. It consists
of a direct enumeration of the vertices of the complex inspired by [6], laed & sweep
of these vertices.

All the potentialO(n®) EV and EEE events are first enumerated, and we then
compute the intersection of the corresponding discontinuity surfaiteghen objects
of the scene. This gives us all the vertices of the visibility complextviare then sorted
in ¢ and stored in a priority queue.

We then maintain g-slice of the complex during the sweep of the vertices. For
each vertex swept we link all tHefaces incident to this vertex.

The algorithm presented 3(n* logn), but experience in the field of discontinuity
meshing and backprojections has shown that the cost can be much reduced ¢hanks t
accelegrations techniques [3]; the numbeFdf E actually considered is usually far less
thann®.



6 Conclusions

We have presented a new approach for visibility computation and descritedeafpl
data-structure which encapsulates all the visibility information ibes8ene. The dual
space used affords a better understanding of the visibility eventghwtdve been
presented in detail. Moreover, this representation gives all the relatfoadjacency
between these events.

The 3D visibility complex is a very promising data structure fonmarous com-
puter graphics applications: we have briefly outlined its potential asthe visibility
computation of a view, its use in form-factor computations and discoity meshing
as well as the computation of aspects or backprojections.

We have presented a first outline of the data structure and a constratgimrithm.
Current work focuses on the completion of the algorithm and the datetgte and its
subsequent implementation for polygonal scenes.

Itis nonetheless evident that the when applied to large scenes, the 3iltyistm-
plex will suffer from combinatorial growth in storage. To cope witlistbombinatorial
complexity, two strategies will be explored. Lazy construction can alleavabmpu-
tation of only the most important visibility events and faces of thebifity complex
when they are actually needed by the application. A hierarchical extension obthe 3
visibility complex will be studied.

Finally the visibility complex, like its 2D equivalent, seems very mpising for
dynamic environments due to its inherently coherent construction.
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