
HAL Id: inria-00510143
https://inria.hal.science/inria-00510143

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of fractals using formal languages and
matrices of attractors

Joëlle Thollot, Eric Tosan

To cite this version:
Joëlle Thollot, Eric Tosan. Construction of fractals using formal languages and matrices of attractors.
Conference on Computational Graphics and Visualization Techniques (Compugraphics), 1993, Alvor,
Portugal. pp.74–81. �inria-00510143�

https://inria.hal.science/inria-00510143
https://hal.archives-ouvertes.fr


Construction of fractals using formal languages and

matrices of attractors

J. THOLLOT and E. TOSAN

LIGIA-LISPI, bât 710

43, boulevard du 11 Novembre 1918

69622 VILLEURBANNE Cedex { France

jthollot@ligia.univ-lyon1.fr

ABSTRACT

LRIFS's (Language-Restricted Iterated Function Systems) generalize the original de�ni-

tion of IFS's (Iterated Function Systems) by providing tools for restricting the sequences

of applicable transformations.In this paper, we study an approach of LRIFS's based on

matrices and graph theory. This enables us to generate a matrix which elements are

attractors.
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INTRODUCTION

Fractal gemetry was �rst introduced by

Mandelbrot

[

Mandelbrot83

]

. However, he

didn't give any precise de�nition of what a

fractal is. Thus, several di�erent de�nitions

(not necessarily equivalent) and several conc-

truction methods have since been tested.

The IFS model

[

Barnsley88

]

is particularly

interesting due to it's rigourous formalism

and it's simplicity : a fractal is encoded by

a �nite number of contractive transforma-

tions. Several authors have tried to gen-

eralize this model. Equations systems

[

Cu-

lik II-Dube93

][

Hart92

]

and matrices

[

Peilgen

et al.92

]

are a way to de�ne attractor vectors

(i.e. which elements are non-empty compact

sets). Languages accepted by �nite-state au-

tomaton are a way to de�ne a subset of an IFS

attractor

[

Prusinkiewicz-Hammel92

][

Berstel-

Morcrette89

][

Berstel-Nait Abdallah89

]

.

We propose an approach based on matri-

ces of the LRIFS model that will enable us to

construct a matrix of attractors. We will �rst

summarize the background framework related

to LRIFS and �nite-state automaton. Then

we will show how to associate a matrix to a

LRIFS. Finally, we will introduce the de�ni-

tion of our matrix of attractors as well as a

construction method.

DEFINITIONS

LRIFS's introduced by Prusinkiewicz and

Hammel

[

Prusinkiewicz-Hammel92

]

general-

ize

IFS's introduced by Barnsley

[

Barnsley88

]

.

Thus we will give the classical de�nitions of

an IFS and a LRIFS. Then we will introduce a

new de�nition of a LRIFS using a �nite-state

automaton instead of a language.

Iterated function systems

Let (X ; d) be a complete metric space. De-

note by H(X ) the set of all non-empty com-

pacts of X . With the Hausdorff distance

d

H

, (H(X ); d

H

) is a complete metric space.

An IFS is a set T = fT

1

; : : : ; T

N

g of con-

tractive functions. Then the Hutchinson



operator de�ned by :

F : P(X ) �! P(X )

f 7�!

S

N

i=1

T

i

(f) = T � f

is a contraction on H(X ). Thus this operator

has a unique �xed point :

f = F (f) = T

1

(f) [ T

2

(f) [ : : : [ T

N

(f)

f is called the attractor of the IFS T and is

denoted by A(T ).

Language-restricted iterated function

systems

Barnsley de�ned an IFS as a set of N func-

tions. Prusinkiewicz de�nes an IFS as a

tuple of functions in order to use formal lan-

guages. This enables him to de�ne the alpha-

bet of contraction labels and a language over

this alphabet.

A LRIFS is a quadruplet I

L

= (T ;�; h; L)

where :

� T = (T

1

; : : : ; T

N

) is a tuple of contrac-

tions in X .

� � = f1; : : : ; Ng is an alphabet of con-

traction labels.

� h is a labeling function, de�ned as :

h : � �! T

i 7�! T

i

� L � �

�

is a language over �.

The function h is generalized to languages

over � using the equations :

h(�) = T

�

1

� T

�

2

� : : : T

�

k

if � = �

1

�

2

: : : �

k

h(L) = fh(�)=� 2 Lg

h(�

�

) = fh(�)=� 2 �

�

g = T

�

L enables us to construct subsets of trans-

formations and subsets of compacts of the IFS

attractor :

h(L) � h(�

�

)

A

L

(p) = adh(h(L)(p))

A

L

(p) � A(T ) = adh(h(�

�

)(p))

The set A

L

(p) generally depends on the

choice of the starting point p. However,

if the language L is post�x extensible (i.e.

La � L, the smallest set A

L

does exist and

can be found as :

A

L

= adh(h(L)(p

0

))

where p

0

is the �xed point of the transforma-

tion h(a).

Example : We use a�ne transformations of

R

2

� R

2

. The following notations are used :

� T (a; b) is a translation by vector (a; b).

� R(a) is a rotation by angle a with respect

to the origin of the coordinate system.

� H(a) is a scaling with respect to the ori-

gin of the coordinate system.

The following �gure shows the attractor of

the IFS

T = fT

1

; T

2

; T

3

; T

4

g

where :

T

1

= H(0:5)

T

2

= T (0; 0:5) �H(0:5)

T

3

= T (0; 1) �R(�=4) �H(0:5)

T

4

= T (0; 1) �R(��=4) �H(0:5)

The following �gure shows the correspond-

ing attractor of the LRIFS

I

L

= (T ;�; h; L)

where :

T = (T

1

; T

2

; T

3

; T

4

)

� = f1; 2; 3; 4g

L = f3; 4g

�

f1; 2g

�



The branching structure of the attractor of

the LRIFS is clearly a subset of the original

attractor of the IFS.

Finite automaton

In the following, we will only use regular lan-

guages as generally admitted in the littera-

ture. We have chosen to work on the graph

of the automaton as these languages are ac-

cepted by �nite automaton. Thus, we will

�rst introduce the de�nition of a �nite au-

tomaton and of the graph of an automaton.

A �nite automaton is a quintuplet

M = (Q;�; �;Q

I

; Q

F

)

where :

� Q is a �nite set of states.

� � is an alphabet.

� � : Q � � ! P(Q) is a state transition

relation.

� Q

I

� Q is the set of initial states.

� Q

F

� Q is the set of �nal states.

The language accepted byM is :

L(M) = f! 2 �

�

=9q 2 Q

I

: �(q; !) � Q

F

g

where �(q; a!) = �(�(q; a); !) if a 2 � and

! 2 �

�

.

We can representM as the directed graph

G(M) = (Q;E) with nodes representing

states and arcs representing transitions. (The

initial and �nal states will be distinguished by

short arrows in �gures.)

So we will introduce a novel de�nition of

a LRIFS : a LRIFS is given by a quadruplet

I

M

= (T ;�; h;M).

MATRIX ASSOCIATED WITH A

LRIFS

We propose a formalism based on matrices.

This is possible because of the properties of

the spaces we work on. Thus, we will see what

are these properties and how to construct a

matrix associated with a LRIFS. More details

are given in

[

Thollot89

]

.

Dio��ds

We use the properties of dio��ds in order to

construct matrices

[

Gondran-Minoux86

]

.

A dio��d is a triplet (D;+;�) where :

� D is a set associated with two operations

+ and �.

� + is commutative and associative.

� � is distributive over +.

Given a dio��d D one can construct and ma-

nipulate vectors and matrices which elements

are in D. The following triplets are dio��ds :

� (P(�

�

);[; �) : the set of languages asso-

ciated with union and concatenation.

� (P(h(�

�

));[; �) : the set of transforma-

tions sets associated with union and com-

position.

Moreover, we have the following proper-

ties :

h(L

1

[ L

2

) = h(L

1

) [ h(L

2

)

h(L

1

� L

2

) = h(L

1

) � h(L

2

)

Thus, formulae over languages will be the

same over sets of transformations.

Matrix associated with a graph of

automaton

In (P(�

�

);[; �), we can de�ne the matrix as-

sociated with a graph by :

A(M) = (A

ij

)

A

ij

= fa=(q

i

; a; q

j

) 2 Eg

Example : Let M be the automaton that



accepts the language L = f3; 4g

�

f1; 2g

�

. The

graph of M is shown in Figure 1.

0
q

1
q

1,23,4

1,2

Figure 1

The matrix associated with M is :

A(M) =

 

f3; 4g f1; 2g

; f1; 2g

!

This matrix does not give the initial and

�nal states. That's why we de�ne two vectors

I and F that are respectively the initial and

�nal vectors.

I = (I

j

) =

(

f�g if q

j

2 Q

I

; if q

j

62 Q

I

F = (F

j

) =

(

f�g if q

j

2 Q

F

; if q

j

62 Q

F

Proposition : The set of words which

lenght is n accepted byM is :

L

n

= I

t

A(M)

n

F

Example : Let A be the matrix :

A =

 

f3; 4g

n

S

i+j=n;j�1

f3; 4g

i

f1; 2g

j

; f1; 2g

n

!

The language accepted by the automaton

shown in Figure 1 is :

L

n

=

�

f�g ;

�

A

 

f�g

f�g

!

Matrix associated with a LRIFS

Using the matrix associated with an automa-

ton, we can now construct the matrix associ-

ated with a LRIFS I

M

= (T ;�; h;M) as :

H

M

= h(A(M)) = (h(A

ij

))

The elements of this matrix are the sets of

transformations associated with the words of

A(M).

Example : The automaton shown in Fig-

ure 1 gives the matrix :

H

M

= h

 

f3; 4g f1; 2g

; f1; 2g

!

H

M

=

 

fT

3

; T

4

g fT

1

; T

2

g

; fT

1

; T

2

g

!

MATRIX OF ATTRACTORS

We have shown in the previous section how

to associate a matrix with a graph. We will

now see how to associate a matrix of attractor

with this matrix. We will introduce an appli-

cation relating a transformation to a point.

Then we will generalize it to sets of transfor-

mations and to matrices which elements are

sets of transformations.

Case of one transformation

We use a consequence of the �xed point the-

orem :

Proposition : Let (X ; d) be a complete

metric space. Let S be a set of contractive

transformations, stable for �. Let T 2 S be

a contractive transformation. T has a unique

�xed point c and we have :

8p 2 X lim

n!1

T

n

(p) = c

Thus, we can de�ne an application by :

� : S �! X

T 7�! c

We can also de�ne the following operator :

T

1

= lim

n!1

T

n

= cst(c)

where cst(c) is the constant function.

This is a uniform convergence

[

Gentil92

]

.

Case of a set of transformations

Let H(S) be the set of all non-empty com-

pacts of S. With the Hausdorff distance,



(H(S); d

H

) is a complete metric space. Then

we have :

(T

0

)

1

= lim

n!1

(T

0

)

n

= cst(A(T

0

))

�(T

0

) = A(T

0

)

where T

0

= fT

!

1

; : : : ; T

!

k

g 2 H(S) and

A(T

0

) is the attractor of the IFS T

0

.

Example : Consider the LRIFS

I

M

= (T ;�; h;M)

where

� T = fT

1

; : : : T

8

g = I

1

[ I

2

where :

I

1

= fT

1

; T

2

; T

3

; T

4

g

I

2

= fT

5

; T

6

; T

7

; T

8

g

T

1

= H(0:5)

T

2

= T (0; 0:5) �H(0:5)

T

3

= T (0; 1) �R(�=4) �H(0:5)

T

4

= T (0; 1) �R(��=4) �H(0:5)

T

5

= H(1=3)

T

6

= T (1; 0) �R(�=3) �H(1=3)

T

7

= T (1; 0) �R(�=3) � T (1; 0)

�R(�2�=3) �H(1=3)

T

8

= T (2; 0) �H(1=3)

� � = f1; : : : ; 8g

� M is given by :

1 S 2

{ }

S

1
q

0
q

where

S

1

= f1; 2; 3; 4g

S

2

= f5; 6; 7; 8g

Then we have :

�(I

1

) = A

1

where A

1

is the attractor of I

1

.

�(I

2

) = A

2

where A

2

is the attractor of I

2

.

Case of a matrix which elements are

sets of transformations

Let M(H(S)) be the set of all matrices which

elements are compacts of S. Let d

m

be a dis-

tance de�ned by :

d

m

(A;B) = max

1�i�N;1�j�N

d

H

(A

ij

; B

ij

)

Then (M(H(S)); d

m

) is a complete metric

space, and we have :

(H

M

)

1

= lim

n!1

(H

M

)

n

= cst((A

ij

))

�(H

M

) = (A

ij

)

Example :

h(A(M)) = H

M

=

 

I

1

fidg

; I

2

!

H

k

M

=

 

I

k

1

S

i+j=k�1

I

i

1

I

j

2

; I

k

2

!

H

1

M

=

 

I

1

1

I

1

1

[ I

�

1

I

1

2

; I

1

2

!

where I

�

1

=

S

k

I

k

1

.

And

�(H

M

) =

 

A

11

A

12

A

21

A

22

!

�(H

M

) =

 

A

1

A

1

[ I

�

1

(A

2

)

; A

2

!

The elements of �(H

M

) will be :

A

11



A

12

A

21

= ;

A

22

VISUALIZATION

We use the Deterministic Algorithm in or-

der to visualize each element of the matrix

[

Barnsley88

]

. We will now give a construction

of an attractor and a visualization method us-

ing the automaton.

Attractor associated with an

automaton

Prusinkiewicz has given a de�nition of an

attractor based on a language. We give a def-

inition of an attractor based on an automa-

ton. This de�nition is a consequence of the

construction of the matrix of attractors.

De�nition : The attractor associated with

I

M

= (T ;�; h;M) is :

A

M

=

[

q

i

2Q

I

;q

j

2Q

F

A

ij

� A(T )

Relation with languages

The set of all transformations associated with

the words of L(M) which lenght is n is :

h(L

n

) = h(I

t

A(M)

n

F ) = h(I)

t

H

n

M

h(F )

Then we have :

lim

n!1

h(L

n

) = h(I)

t

(lim

n!1

H

n

M

)h(F )

= h(I)

t

H

1

M

h(F )

= h(I)

t

(cst(A

ij

))h(F )

=

S

q

i

2Q

I

;q

j

2Q

F

cst(A

ij

)

= cst(A

M

)

And so we get :

lim

n!1

h(L

n

) = cst(A

M

)

Visualization method

Prusinkiewicz used the escape-

time method to visualize the attractor associ-

ated with a regular language

[

Prusinkiewicz-

Hammel92

]

. Culik used the Chaos Game

Algorithm to visualize the attractor vector as-

sociated with an equations system

[

Culik II-

Dube93

]

. We use the Deterministic Algo-

rithm to visualize the elements of our ma-

trix of attractors (or an attractor associated

with an automaton). This algorithm was also

proposed by Culik and used by Mocrette

and Berstel

[

Berstel-Morcrette89

][

Berstel-

Nait Abdallah89

]

.

Let f be a compact (generally the unit

ball). Then the sequence (f

n

)

n2N

de�ned by :

f

n

= h(L

n

) � f

tends to the attractor

A

M

=

[

q

i

2Q

I

;q

j

2Q

F

A

ij

With Q

I

= fig and Q

F

= fjg we have :

f

n

= h(A

n

M

)

ij

� f

This sequence tends to the elementA

ij

of the

matrix of attractors.



Example

Consider the LRIFS

I

M

= (T ;�; h;M)

where

� T = fT

1

; T

2

; T

3

; T

4

g where :

T

1

= H(0:5)

T

2

= T (0:5; 0) �H(0:5)

T

3

= T (0; 0:5) �H(0:5)

T

4

= T (0:5; 0:5) �R(�) �H(0:5)

� � = f1; : : : ; 4g

We have chosen the matrix :

H

M

=

 

fT

1

; T

4

g fT

2

; T

3

g

fT

2

; T

3

g fT

4

g

!

The matrix of attractors corresponding is :

�(H

M

) =

 

A

11

A

12

A

21

A

22

!

The following �gures give the elements of

�(H

M

) :

A

11

= A

12

A

21

= A

22

CONCLUSION

One can de�ne a matrix of attractors as a

limit of a serie of matrices which elements are

sets of transformations. Given a matrix of at-

tractors, one can de�ne subsets of attractors

associated with a �nite automaton. This is a

way to combine attractors, by composing el-

ements of the matrix, yielding an interesting

approach.

However, further studies are needed in or-

der to :

� Establish relations between the di�erent

attractors.

� Develop general visualization algorithms

of these attractors.

� Classify the attractors using matrices of

languages.

� Establish some \rules" for composing at-

tractors.
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