Progressive Surface Reconstruction from Images Using a Local Prior

Gang Zeng Sylvain Paris 1 Long Quan François X. Sillion 2
2 ARTIS - Acquisition, representation and transformations for image synthesis
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : This paper introduces a new method for surface reconstruction from multiple calibrated images. The primary contribution of this work is the notion of local prior to combine the flexibility of the carving approach with the accuracy of graph-cut optimization. A progressive refinement scheme is used to recover the topology and reason the visibility of the object. Within each voxel, a detailed surface patch is optimally reconstructed using a graph-cut method. The advantage of this technique is its ability to handle complex shape similarly to level sets while enjoying a higher precision. Compared to carving techniques, the addressed problem is well-posed, and the produced surface does not suffer from aliasing. In addition, our approach seamlessly handles complete and partial reconstructions: If the scene is only partially visible, the process naturally produces an open surface; otherwise, if the scene is fully visible, it creates a complete shape. These properties are demonstrated on real image sequences.
Type de document :
Communication dans un congrès
International Conference on Computer Vision, 2005, Beijing, China. 2005



https://hal.inria.fr/inria-00510155
Contributeur : Team Evasion <>
Soumis le : mercredi 13 octobre 2010 - 15:18:12
Dernière modification le : jeudi 14 octobre 2010 - 09:01:15
Document(s) archivé(s) le : vendredi 14 janvier 2011 - 02:29:12

Fichiers

Zeng_05_Local_Prior.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00510155, version 1

Collections

IMAG | INRIA | UGA

Citation

Gang Zeng, Sylvain Paris, Long Quan, François X. Sillion. Progressive Surface Reconstruction from Images Using a Local Prior. International Conference on Computer Vision, 2005, Beijing, China. 2005. <inria-00510155>

Partager

Métriques

Consultations de
la notice

264

Téléchargements du document

833