
HAL Id: inria-00510169
https://inria.hal.science/inria-00510169

Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmable Style for NPR Line Drawing
Stéphane Grabli, Emmanuel Turquin, Frédo Durand, François X. Sillion

To cite this version:
Stéphane Grabli, Emmanuel Turquin, Frédo Durand, François X. Sillion. Programmable Style for
NPR Line Drawing. Rendering Techniques 2004 (Eurographics Symposium on Rendering), 2004,
Norrköping, Sweden. �inria-00510169�

https://inria.hal.science/inria-00510169
https://hal.archives-ouvertes.fr

Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

Programmable Style for NPR Line Drawing
Stéphane Grabli1, Emmanuel Turquin1, Frédo Durand2, and François X. Sillion1

1 ARTIS†/GRAVIR-IMAG - INRIA 2 MIT

Figure 1: A programmable approach unifies the specification of line drawing styles, allowing for various complex styles de-
scriptions. Left: Use of occlusion information to emphasize some parts in the scene. Right: A sketchy style based on the use of
“construction lines”.

Abstract
This paper introduces a programmable approach to non-photorealistic line drawing from 3D models, inspired by
programmable shaders in traditional rendering. We propose a new image creation model where all operations are
controlled through user-defined procedures. A view map describing all relevant support lines in the drawing and
their topological arrangement is first created from the 3D model; a number of style modules operate on this map,
by procedurally selecting, chaining or splitting lines, before creating strokes and assigning drawing attributes. The
resulting drawing system permits flexible control of all elements of drawing style: first, different style modules can
be applied to different types of lines in a view; second, the topology and geometry of strokes are entirely controlled
from the programmable modules; and third, stroke attributes are assigned procedurally and can be correlated at
will with various scene or view properties. Finally, we propose new density control strategies where strokes can be
adapted or omitted to avoid visual clutter. We illustrate the components of our system and show how style modules
successfully capture stylized visual characteristics that can be applied across a wide range of models.

1. Introduction

The appeal of line drawing lies in its expressiveness and ab-
straction. It is widely used in contexts as different as techni-
cal and scientific illustration, appliance manuals, maps, signs
and art. In addition to its pleasing aesthetic qualities, line
drawing can prevent clutter, focus attention on relevant parts
and omit superfluous details. The field of Non-Photorealistic

† ARTIS is a research project in the GRAVIR/IMAG laboratory, a
joint unit of CNRS, INPG, INRIA and UJF

Rendering [GG01, SS02, Dur02] has proposed a variety of
techniques to create compelling line drawings from 3D mod-
els. Unfortunately, these methods are generally hard-coded
in monolithic software, and while a variety of parameters
usually allows the user to vary the style of the drawing, there
is a need for more flexibility and power in the specification
of pictorial style.

In contrast, the shading languages available in
photorealistic renderers such as Pixar Renderman
[Coo84, HL90, Ups89, AG99] permit the design of an

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

infinite variety of rich and complex appearances. Quoting
Upstill: “The key idea in the RenderMan Shading Language
is to control shading, not only by adjusting parameters, but
by telling the shader what you want it to do directly in the
form of a procedure” [Ups89] p. 275.

In this paper, we introduce a flexible programmable ap-
proach to NPR line drawing. Similar to traditional shaders,
the style of a line drawing can be specified by implementing
procedures that describe how the silhouettes and other fea-
ture lines from the 3D model should be turned into strokes.
We focus on pure line drawing of static scenes, leaving
hatching, tonal modeling and temporal coherence as future
work. Historically, the development of shading languages
has dramatically facilitated the exploration and development
of realistic shading. We hope that NPR can similarly bene-
fit from a flexible programmable approach. Our system has
been distributed to a few research institutions and will be
made broadly available on the Internet during fall 2004.

1.1. Related work

Style has received much attention in Non-Photorealistic
Rendering and computer vision. Most NPR techniques offer
a control of style through a set of parameters, e.g. [Her98],
or through direct user interaction, e.g. [KaM∗02]. In par-
ticular, the WYSIWYG NPR approach [KaM∗02] presents
an approach for interactively "painting" strokes directly on
the 3D model. In contrast, our approach is programmable
and the style of the drawing is controlled via procedures.
This requires programming skills similar to that of a Tech-
nical Director in production rendering, but it provides more
control on style. This includes the use of scene information,
full control over stroke topology and placement and it allows
style to be independent from the 3D model. In terms of tra-
ditional appearance modeling, this is the difference between
3D painting of texture maps and procedural shaders. Both
approaches are now used in conjunction, and we believe that
our work is a similar complement to interactive data-driven
techniques such as WYSIWYG NPR.

Machine learning is a popular approach to capture style
from examples, e.g. [TF97, FTP99, HJO∗01, KaM∗02].
Machine-learning approaches usually focus on the low-level
and statistical aspects of styles. Hamel and Strothotte [HS99]
capture and re-use style using templates that control the pa-
rameters of a line renderer. In addition, the subtle varia-
tion of style within an image has been shown to be cru-
cial to make the image more lively and focus attention, e.g.
[WS94, DOM∗01, Her01, DS02]. In contrast to these ap-
proaches, the user of our system specifies style with a set
of rules that govern the drawing process.

Our line-drawing approach builds upon the
wealth of techniques developed in NPR, e.g.
[MKT∗97, HZ00, DFRS03].

Little attention has been given to the potential of a pro-

grammable approach to NPR. In [KMN∗99], Kowalski et al.
use procedural stroke-based textures to render 3D complex-
ity using indications [WS94]. Although their system is dedi-
cated to several specific types of objects, it introduces many
of the concepts our more general approach builds upon.
The research work closest to ours is the OpenNPAR system
[HSS02, Ope02], an API for the development of real-time
NPR software. The authors also used their system to develop
an impressive graphical user interface for the exploration of
simple styles [HSS02]. Our approach focuses on line draw-
ing and on more complex style development. In summary,
their system is a programming toolbox in the spirit of Open-
Inventor [SC92] while our approach is inspired by Render-
man shaders.

Recently, a major company has released information
about their in-house NPR system [Tee03]. It allows for very
flexible ink rendering of 3D model and uses a philosophy
of “shaders” similar to our system. Their technique is not
as flexible as our approach and focuses mostly on ink lines,
but this restriction allows them to better handle temporal co-
herence. Production software has recently been augmented
with “toon” shaders, and non-photorealistic styles can be ob-
tained with Pixar RenderMan, e.g. [AG99], p330 and p477.

While we draw inspiration from existing programmable
rendering systems such as Renderman, we observe that the
application to line drawing entails major differences: most
importantly, the use of lines as atomic drawing elements,
to which a number of procedures are applied, means that
we operate on objects that have significant extent in the im-
age, as opposed to e.g. pixels for Renderman. Two additional
properties of line drawing also contribute to this non-locality
of rendering. First, properties of the drawing at a certain
scale, such as its overall density, may affect individual lines
and strokes. Second, stroke primitives carry a visual mean-
ing that extends well beyond their actual shape, as they typ-
ically depict some region in 2D or 3D. Another difference
with existing procedural shaders is that, due in part to the
non-locality just mentioned, the drawing is created by the
accumulation of marks in the image and therefore is pro-
duced in a sequential manner: the order of operations and
the resulting sequence of strokes drawn matter in the final
result.

1.2. Overview of contributions

We introduce a programmable approach to line drawing
from 3D models, and propose a consistent architecture for
a drawing system. The novelty of the proposed model lies in
its representation of drawing as a process, its explicit real-
ization of the sequential nature of drawing, and its exploita-
tion and support of the non-locality of line drawing primi-
tives. We present a consistent decomposition of the drawing
process into individual operators for the selection, chaining,
splitting and ordering of lines and strokes. We show how the
resulting strokes can be further processed and modified to

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

Figure 2: System architecture.

obtain interesting graphical styles. Finally we manage the
information necessary at all stages of the drawing process.

2. Design decisions and architecture

Our work is based on the assumption that line drawing is a
sequential process where decisions are based on information
afforded by the scene and the current drawing. These de-
cisions are often explicit, such as in technical illustrations,
where precise thickness or color attributes are applied to the
different natures of feature lines [GSG∗99]. They can also be
implicit, and a goal of our research is to make them explicit
and embed them into software. We address two key elements
in line drawing: how strokes are drawn, and which ones are
drawn. The appearance of strokes is determined by their at-
tributes such as thickness, color, or wiggliness. Equally im-
portant is the choice of what strokes to draw, and what path
they should follow. In addition, style variations in different
parts of the drawing have a large impact on the resulting vi-
sual aspect. This motivates the main features of our system
architecture:
- Layering and selection mechanisms permit the application
of the appropriate style to sub-parts of the picture
- Information from the 3D input scene and the current draw-
ing is available at all stages
- The topology and path of the strokes can be finely con-
trolled
- Programmable operators provide control of the stroke ge-
ometry and attributes.

2.1. Architecture

The overall architecture is summarized in Fig. 2. The input is
a polygonal 3D model, possibly augmented with information
such as color or the subjective importance of each object.

The first stage is the computation of a view: an arrange-
ment of curves in the image plane, which will support all
the elements of the drawing (Fig. 3 a). Following Willats
[Wil97], we assume that the line drawing is based on a
number of feature lines of the model, which we first iden-
tify using established techniques. Our current implementa-
tion uses silhouettes and feature lines such as creases or
suggestive contours [HZ00, IFH∗03, DFRS03]. These lines
are projected in the image plane, using a standard visibil-
ity computation algorithm, and they are arranged in a planar
graph. An important objective is to retain maximum flexibil-
ity in the definition of drawing marks, thus the graph must

(a) (b)

Figure 3: (a) View map data structure. The ViewEdges are
represented with a color gradient and ViewVertices are the
red dots. (b) Stroke representation.

encode complete topological data such as line intersections
and neighboring information. This leads to a slightly simpli-
fied, thus more compact, graph which we call a view map:
our atomic unit is a set of connected line segments in the
projected view that share the same nature (i.e. silhouette,
crease, or contour) and the same visibility status (occluders
and occludees). Such sets are called ViewEdges, and connect
ViewVertices representing points of interest. A ViewVertex
can either correspond to an actual vertex of the scene, to the
visual intersection of two edges (T-vertex), or to an end junc-
tion (cusp). With the view map we also compute a number of
auxiliary images such as a depth buffer or line density maps
as explained later.

The second stage is the heart of our approach, the pro-
grammable line drawing process. It takes as input the view
map and the auxiliary images, and creates the strokes that
compose the drawing. Strokes are described by a one-
dimensional backbone and a set of attributes that vary along
its length (thickness, color, transparency, texture, etc.), e.g.
[HL94, SS02]. This is illustrated in Fig. 3(b). Our choice
of ViewEdges as the atomic element in the viewmap real-
izes an excellent compromise between generality (although
a ViewEdge has consistent visibility status and nature along
its entire length we shall see that is is still possible to create
multiple strokes to depict a single ViewEdge) and compact-
ness (when possible or necessary a stroke can span multiple
ViewEdges, for example a single stroke can depict the exter-
nal outline of an object).

Finally, the mark system is responsible for the actual ren-
dering of the stroke primitives with their attributes. For ex-
ample, the same stroke with given thickness and color can
be rendered with different mark styles such as crayon or oil
painting.

We call the set of procedures that implement a given pic-
torial style a style sheet. It is usually decomposed into a se-

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

Figure 4: Operators used within three style modules constituing a simple style sheet. See also Figure 5.

ries of style modules that are responsible for sub-parts (or
“layers”) of the drawing. Style modules are a natural way to
vary the style within the drawing. For example, the main ob-
ject can be drawn using a different style module from the rest
of the scene, or hidden lines can be drawn with a different
style module from the visible ones.

The operation of a style module consists mainly in con-
trolling the topological characteristics of strokes as well as
their visual attributes. Extensive experimentation with styl-
ized drawings led us to define the following set of topo-
logical operators, which we have found to be sufficient to
create all the stylistic effects we have attempted to real-
ize. First, the selection of a set of ViewEdges, which is the
mechanism used to restrict actions to a subset of a draw-
ing. Then chaining operators let us build a one-dimensional
sequence of ViewEdges, starting from a given edge in the
selection. Next, splitting operators let us refine the drawing
elements by breaking chains at appropriate locations (e.g.
points of high curvature); Strokes directly correspond to the
chains resulting from this topology-definition process. Fi-
nally, a last class of operators assigns attributes to the strokes
(e.g. color, width, texture, transparency. . .). These operators
are entirely programmable, and are applied iteratively in a
pipelined manner.

2.2. A simple example

Figure 5: Results obtained with the style sheet of Figure 4.

Consider as an example the style sheet illustrated in Fig-
ure 4. It uses three style modules:

1. The first module selects edges on the external contour
of the drawing, chains all edges on the external contour,
assigns a calligraphic (direction-dependent) thickness.

2. The second module selects all visible edges, chains
edges along silhouettes, splits chains of edges at points of
high curvature, alters the stroke geometry making them
tangent to their center, assigns a sketchy texture and stan-
dard thickness.

3. The third module selects all visible edges that are not ex-
ternal contour, chains along silhouettes and crease lines,
assigns smoothly varying width to the strokes.

Each style module creates a layer of the final image as
seen on the right of Figure 4. Figure 5 shows the drawings
obtained with this style sheet on different models. Notice
how a consistent visual aspect is obtained.

2.3. Language

We chose to use an interpreted language, Python, rather than
a C++ API for our style description language. This allows
for interactive development and exploration of style modules
without recompilation. More importantly, it clearly draws
the line between the programmable style interface and the
low-level technical aspects of the system. We extend Python
with our subset of style definition instructions and classes,
e.g. operators (section 3) and data structures (section 2.4),
augmented with all information access mechanisms (sec-
tion 2.6). The user’s coding task mainly consists in overload-
ing functions, predicates or shaders and in using operators
and built-in helpers.

2.4. Data Structure

As discussed above, the uniqueness of line drawing is
that it requires handling one-dimensional objects such as
ViewEdges and Strokes in addition to simpler zero-
dimensional points.

The ViewMap is encoded as a graph data structure, com-
posed of ViewVertices and ViewEdges. The tradi-
tional adjacencies between them are stored.

The central objects manipulated by our operators are one-
dimensional chains that will eventually lead to the creation

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

of strokes. A Chain describes a path in the ViewMap graph
(Table 1). It is a connected set of ViewEdges. It does not
necessarily start at a ViewVertex, which is why it also
stores an initial and final point. A Chain can implicitly ac-
cess points by generating samples along its ViewEdges.
For memory efficiency and for sampling flexibility, these
sample points are not stored. Sample points are parameter-
ized by their arclength.

The Chains are finally derived into Strokes that con-
tain additional information for the drawing creation. In con-
trast to Chains, Strokes store an explicit set of sample
points for their backbone (see Fig. 3 b). A set of attributes is
stored for each of these sample points (thickness, color, and
transparency.)

Chain
List of ViewEdges
Sample point
initial and final

Double length

Stroke : derives from Chain
Array of sample

2D vertices [nb_ samples]
Array of attributes [nb_samples]

Thickness [left, right]
Color
Transparency

Mark Rendering style

Table 1: Chain and stroke data structures.

The appropriate sampling of strokes is necessary to cap-
ture attribute variation. We provide a stroke resampling
mechanism that takes as input a maximum length between
samples and generates new points when needed. Attributes
that were previously assigned are interpolated at the newly-
created samples. We currently use linear interpolation, but
smoother interpolation could also be used. The notion of at-
tribute sampling rate is closely related to Renderman’s shad-
ing rate [Ups89, AG99].

2.5. View computation

Similar to the philosophy of shading languages, our ap-
proach assumes nothing about how the view map is com-
puted, as long as it provides the adjacency data structure de-
scribed in Section 2.4. In our implementation, the view map
is computed in three steps.

We first extract all relevant lines from the model, with re-
spect to the view. We compute silhouettes using the tech-
nique by Hertzman and Zorin [HZ00]. Suggestive contours
follow the method proposed by DeCarlo et al. [DFRS03]. We
also include creases (defined by edges whose vertices share
a location but not a normal) and boundary edges (edges with
only one adjacent polygon).

The 2D intersections of these feature lines are then com-
puted and define TVertices. The ViewVertices in-
clude these TVertices, the vertices of the mesh that form
corners and the cusps. A ViewEdge is an arc of the view
map linking two ViewVertices (see Fig. 3 a), and is rep-
resented as a connected set of line segments as described in
the previous section.

Location Data

3D Scene 3D coordinates
normal, 3D curvature
color, material ID
object ID, object importance

Auxiliary maps local average depth
item buffer
local depth variance
local view density

ViewMap 2D coordinates,ViewEdge length
ViewEdge type, Adjacency information
Quantitative invisibility
Occluded object (for silhouettes)
Occluding objects (for hidden edges)
depth discontinuity (for silhouettes)
2D orientation, 2D curvature

Current drawing Local stroke density

Table 2: Information provided by our system.

Finally, we compute the quantitative invisibility of each
ViewEdge [App67, MKT∗97]. Hidden-lines are not elimi-
nated at this point because some styles can elect to display
them.

2.6. Information access

As pointed out by Hanrahan and Lawson [HL90], defining
the possible exchange of information at the interface be-
tween the rendering program and the shading modules is a
crucial decision. As discussed above, non-photorealistic ren-
dering requires even more information, partially because the
process tends to be less local. We decided to make rendering
information available to all operators, so that it can influence
all of their decisions.

Information is always queried in the context of a one-
dimensional support element (which can be a ViewEdge, a
Chain, or a Stroke depending on the operator we are in). It
can be queried at a given point, or globally for the support
element, in which case simple statistics about the queried
quantity are made available (i.e. average, extremal values,
and variance). The one-dimensional context is often needed
when evaluating some information at a point. Indeed, evalu-
ating the 3D normal, for example, at a T-vertex is undefined
unless the 1D context allows us to remove the ambiguity. In
our technique, 0D information is always queried in the con-
text of a 1D chain or stroke.

Information can come from four different sources: the 3D
scene, auxiliary maps, the viewmap, and the current draw-
ing, as summarized in Table 2. Types of available informa-
tion include scalars, vectors (normal direction), colors, and
image maps.

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

The information afforded by the 3D scene is similar to that
provided by traditional shading languages, and also includes
object identifiers (to treat different objects differently), and
an optional subjective object importance that is important to
separate style from content. For example, a repair-manual
drawing server can use an importance tag to draw the failing
part with more emphasis.

Differential information such as 2D normal and 2D curva-
ture are computed from the viewmap. Note that these differ-
ential properties are provided in the context of a 1D element,
and that they might not be well-defined outside of this con-
text. In particular, the curvature at a ViewVertex depends on
the context chain.

We also use a set of auxiliary maps: an item buffer pro-
vides information such as average local depth or object iden-
tification at any point. Multiresolution line density maps are
created by rendering the viewmap, counting the number of
edges drawn at each pixel, and building image pyramids. In
addition, the current drawing is refreshed as the drawing cre-
ation proceeds, and the local stroke density can be queried.
This current density information is computed upon request,
using a parameterized Gaussian smoothing operator to allow
queries at different scales.

3. Programmable line drawing

The heart of our approach is the programmable style mod-
ules. They permit the explicit specification of the rules that
govern the drawing process for both stroke topology and
stroke attributes. Recall that such modules are applied se-
quentially to obtain successive layers in the drawing. A style
module works on the view map and produces a set of strokes
through a pipeline organization as illustrated in Fig. 4. Some
of the operators (e.g. selection) apply to any 1D element and
can be used at any stage of the pipeline, whereas others (e.g.
chaining) only apply to a specific type and must therefore be
called at specific locations in the pipeline. In this section we
first describe the operators that deal with the topological cre-
ation of strokes. Then, we detail the last class of operators,
attribute assignment. A style module is built as a sequence
of calls to these various operators.

The system must provide the user a convenient way to
specify the rules that apply to each operator. In our imple-
mentation we heavily use functors [Ale01], working either
on 0D or 1D elements, as rules specifiers. Although we pro-
vide numerous basic rules for the different operators, all of
them can be user-defined in Python. The different types of
rules applying to the different operators are summarized in
Fig. 6.

3.1. Stroke creation operators

Selection Selection is fundamental to layer the drawing, ap-
ply a style to a sub-part of the features lines or to omit

Selection
Selection predicate (1D element)

Ordering
Comparison predicate (1D element, 1D element)

Chaining
Function nextEdge (currentVertex)

Splitting
Sequential

End predicate, Start predicate
Recursive

Function(sampleVertex) to maximize,
splitting interdiction predicate(sampleVertex)
recursion predicate(1D chain),

Attribute assignment (a.k.a. shader)
shade(stroke), method that modifies the fields of stroke

Figure 6: Specification of our operators.

lines that are unnecessary. We provide selection mechanisms
through a selection operator. This operator works on any 1D
element (ViewEdge, Chain, or Stroke). In practice, a selec-
tion operator extracts a subset of the active set of 1D ele-
ments to define the new active set. The selection rule is spec-
ified as a unary predicate on a 1D element. Built-in pred-
icates are provided that permit the test of information de-
scribed in Section 2.6; For example, selection can be based
on quantitative invisibility, on the object ID, on the nature
(crease, silhouette, or border). These predicates can be com-
bined with classical logic operators. Developers can also im-
plement new predicates based on more complex functions of
the scene. The selection operator is most of the time used at
the beginning of our programmable pipeline, directly after
the viewmap computation. However, as mentioned earlier, it
is available at any stage of the pipeline, and can be useful to
refine selection after chaining, when information about the
the potential topology of a stroke is accessible.

Chaining The view of an object, as encoded in the
viewmap, provides graph information, while line drawings
consist of 1D paths. The choice of the path and length of
strokes has important repercussions on the appearance of the
drawing [Wil97, Dur02]. We note that there can be multiple
strokes to represent the same feature line, and that strokes
can span multiple feature lines (see the external contour in
Fig. 4). When creating a stroke, we have identified two kinds
of decisions: First, we must decide for each vertex of the
graph which path to follow. Second, we must decide where
to start or stop strokes, or where to split them in order to gen-
erate shorter strokes. In our approach, the former is handled
by chaining operators, and the latter by splitting operators.

Chaining operators create connected lists of ViewEdges,
which we call chains. A chaining operator is invoked succes-
sively on all ViewEdges in the selection, and builds a chain
originating from each, optionally tagging each ViewEdge
as it is processed. A chaining rule must answer two ques-
tions: when to stop, and where to turn at a ViewVertex. In
our implementation, we chose to embed this rule as an iter-
ator [GHJV95]. The incrementation method of this iterator
decides which is the next ViewEdge among those adjacent
to the ViewVertex. The iterator stopping criterion decides
whether the chain should be stopped. For example, it can

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

stop when a certain length is reached, if an occlusion is en-
countered, or when the curvature is too high.

Drawing style can allow multiple strokes to overlap or not.
Strokes overlapping can be useful to produce sketchy looks
as illustrated in Figure 7 (c). We provide a tagging mech-
anism to control or prevent multiple chaining of the same
ViewEdge. In addition, chaining can be either bi-directional
or unidirectional, the former meaning that a chain extends
in both directions from the first ViewEdge. Second, chain-
ing can either be constrained to remain inside the selection,
or can be unconstrained. In the latter case, each chain starts
on a ViewEdge from the selection but they can contain arbi-
trary ViewEdges. This can be useful for example to select
only edges on the external silhouette of an object, but to
allow chaining to extend to (unselected) internal silhouette
as shown in Figure 7. Our system provides several standard
chaining strategies, such as chaining ViewEdges of same na-
ture, following contours or external contours, chaining sev-
eral times the same ViewEdges (sketchy look), as built-in.

(a) (b) (c)

Figure 7: Examples of simple chaining predicates, applied
to the set of ViewEdges on the external contour of the draw-
ing: (a) follow external contour (b) follow silhouettes on
same object (c) follow silhouettes on same object and allows
multiple chaining of same ViewEdges. Note how in cases (b)
and (c) the chaining operation includes edges that did not
belong to the original selection.

Chain splitting As discussed above, a given chain might be
depicted with multiple strokes of smaller size. This is the
role of the chain splitting operator. It takes a chain as input,
and creates a number of strokes that depict it. The rule given
to this operator mainly decides where the chain should be
split.

We developed two different strategies to choose the length
of strokes and split points. In the sequential split, we tra-
verse the chain sequentially and decide to split based on a
predicate such as maximum length, nature of vertex, or lo-
cal density. This mechanism is easy to specify but only takes
its decision in a greedy way and based on local information.
In contrast, the recursive split takes a global decision on the
whole chain and recursively splits along the minimum of a
user-specified function.

Before discussing them, it is important to note that we
may want to split the chain in places other than ViewVer-
tices or vertices from the input model. This is why our sys-

tem operates on a sampled version of the curve with a user-
controlled sampling rate. Temporary vertices at this sam-
pling rate are iteratively created as the chain is traversed,
but they are not stored permanently.

Figure 8: Use of multiple strokes per chain for rendering a
building in a sketchy style.

The basic sequential split traverses the chain and evaluates
a splitting predicate to decide where to split. A new chain is
started at each split. In order to handle sketchy styles with
multiple strokes per chain (Fig 8), we refine this strategy
by decoupling the starting and stopping criteria and perform
two traversals in parallel. This process can lead to a partition
of the original chain, when the starting and stopping pred-
icates are the same, to a set of overlapping chains or to a
set of isolated chains. Note that by using the curvilinear dis-
tance on the chain in the splitting predicate, it is very easy to
enforce a minimum or maximum stroke length.

The recursive split acts in a global way. It evaluates a func-
tion for each sample point, and it splits along the minimum
of this function. In addition, the user can prevent splitting at
some points specified by a predicate. The split is applied re-
cursively to the two sub-chains, until a recursion predicate is
no longer true. As an example, the recursive split is ideal to
split at the points of highest curvature.

In our experience, often the same effect can be obtained
by first creating long strokes and later splitting them, or
by specifying a more aggressive stopping criterion during
chaining. Different users envision the drawing process in dif-
ferent ways and may favor one or the other option.

Ordering In our approach, the sequence in which
ViewEdges, Chains or Strokes are treated can influence the
drawing: In the chaining operator for instance, a timestamp
mechanism prevents the reuse of a ViewEdge. In addition,
the stroke density information evolves with the current draw-
ing. For instance, when the density information is used to
avoid clutter, it is important to treat ViewEdges that are vi-
sually more important first, so that they are less likely to
be omitted, as described in the next Section. Thus we pro-
vide an ordering operator, which permits the sorting of any
1D element. The ordering rule is expressed as a compari-
son predicate based on length, importance, depth, local depth

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

variations, 2D spatial locations, etc. The definition of a rel-
evant ordering of ViewEdges or Strokes can be very tedious
and require the evaluation and integration of many different
kinds of information that can only be specified using a pro-
grammable approach.

3.2. Attribute assignment

Now that we have created strokes, we need to assign their at-
tributes such as color, varying thickness, transparency, and
spatial location. This step is the most similar to traditional
shading systems, except that we operate on 1-dimensional
strokes rather than on 0-dimensional fragments. We note that
the strokes of a drawing often do not exactly follow the un-
derlying geometry. This is why our shaders can modify the
spatial location of the backbone points. This is in a sense
similar to the technique of displacement mapping.

In our system, attribute assigners are implemented as pro-
cedures working on strokes. As discussed earlier, any infor-
mation can be queried on the stroke for proper stylistic de-
cisions within the procedure. As a special case, we allow
attribute operators to delete strokes in order to avoid clutter.

Multiple attribute assignment operators can be applied to
a stroke sequentially. This is useful to control different at-
tributes. One operator assigns color while a second one as-
signs thickness. In addition, attributes may be assigned in an
absolute manner (the previous value is replaced), or in a rel-
ative manner (the previous value is modulated). This can be
useful to apply a small amount of relative noise after other
shaders have set a mean value for an attribute.

As described in Section 2.4, strokes can be resampled to
account for the various sampling rate requirements of spe-
cific styles. The attributes that were previously assigned are
interpolated at the new locations. A number of atomic oper-
ations on strokes (such as removing a StrokeVertex, resam-
pling using a given number of desired points) are available
and can be used in the context of strokes geometry modifi-
cation.

Simple operators such as the assignment of constant at-
tributes are provided. A special attribute operator assigns
the mark style used for the rendering of the stroke, as de-
scribed in Section 5. Other simple shaders include a “Tip
Remover” that trims the final and initial portion of the stroke.
This permits for example the classical “line haloing” for bet-
ter depth perception. Furthermore, several useful standard
techniques that have long been used in NPR for sketchy
effects, such as Noise, stroke displacement, or smoothing,
e.g. [MKT∗97, KaM∗02, SP03] are provided as base com-
ponents in our system.

4. Density and omission

Stroke omission is a crucial pictorial tool to prevent visual
clutter or derive minimalist styles. One way to achieve this

is to conditionally create strokes only when the local density
in the affected region of the drawing is sufficiently low. Thus
strokes are less likely to be created in crowded parts of the
image.

The proper omission of strokes relies on two major com-
ponents: One must estimate the visual density in regions
of the drawing, and one must properly prioritize strokes to
make sure that “important” strokes are drawn first to avoid
their omission due to excessive density. Winkenbach, Salis-
bury et al. solved the latter problem in the special case of
textured areas [WS94], in our system we can insert any or-
dering operator to control the process.

As described in Section 2.6 the system allows queries for
the density of the current drawing density at a given point
and scale. This function can be used, for instance within a
simple threshold predicate to discard candidate strokes when
the drawing is already cluttered in their neighborhood.

The mechanism just described is causal, in the sense that
the density is evaluated based on what has been drawn so
far. In many cases it is necessary to have an idea of the po-
tential density of the drawing, if all lines were drawn. This
is obtained from the precomputed view density maps. Note
that the combination of density estimates at different scales
provides very rich information about the local complexity.
Density information can also be used to modulate stroke at-
tributes such as thickness and color.

Fig. 9 illustrates the use of a complex chaining operation
as well as causal density to build a simplified representa-
tion of a dense structure with occlusion. For the grid a chain
is created for each bar by connecting all viewedges includ-
ing short occluded ones. These chains are sorted by length
and subjected to the causal density operator with a variable
gaussian kernel size depending on depth. This allows us to
keep only a single stroke for each bar and to remove exactly
half of the bars. The compressor behind the grid also uses
an advanced chaining iterator to avoid the dashed line effect
shown in the bottom-right image.

Figure 14 shows how to use non-causal density informa-
tion to put the focus on certain regions; in this case, they
correspond to the faces of the characters and the hands of
Maria, which are the areas of highest density (see section 6
for more details).

5. Mark back end

The mark system is orthogonal to our programmable line
drawing approach. The development of a programmable
mark back end is an exciting avenue of future work.

Our mark rendering system uses the standard OpenGL
API. Strokes are rendered as triangle strips, determined by
the backbone and thickness samples. Standard techniques
are used to prevent singularities of the offset curve at high
curvature, e.g. [SS02] chapter 3.

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

Figure 9: Top: Simplified drawing of a complex view.
Bottom-left: close-up view with all visible lines showing
the unwanted visual complexity. The grid is simplified using
causal density in such a way that half of the bars are omit-
ted and each bar is drawn with a single stroke. Note how the
grid simplification allows a much clearer view of the engine
behind it. However this simplification alone would create
problems as shown at the bottom-right. We use an advanced
chaining operator that follows object silhouette or crease
lines including short occluded sections, to create continuous
strokes.

We use real stroke textures as alpha maps to increase vi-
sual quality, The use of transparency alone allows us to con-
trol the color of each stroke, as specified by its attributes.
We use OpenGL blending modes to emulate various physi-
cal medium types. In practice, we render the inverse of the
image, so that a blank canvas corresponds to (0,0,0). This
facilitates the use of blending and the simulation of the sub-
tractive nature of most media.

We use a simple replace mode for thick media such as oil
paint. Additive blending (which becomes subtractive in our
inverse context) is well-suited for wet materials such as ink.
Finally, the minimum blending mode provided by OpenGL
1.2 [W∗99] can imitate graphite and other dry media.

A background texture can be applied. It is however ren-
dered only for the final drawing and does not affect the den-
sity computation.

6. Implementation and results

We have implemented our system in C++, using
SWIG [Bea96] to generate the Python binding needed
for communication between the core system and the style
description. The system is distributed under the GPL license
(see http://artis.imag.fr/Projects/Style).

It takes between a few seconds and a few minutes to com-
pute the ViewMap for a model of approximately 50K poly-
gons, using ray casting for visibility computations. Stroke
creation takes a similar amount of time, depending on the
number of strokes and on the style module complexity. The
use of density induces a significant performance hit be-
cause of the readback cost. Thus the system is not interac-
tive, mainly due to the poor performance of the interpreted
Python language.

A more relevant measure of our system’s performance is
the time needed to develop a style module. As an exam-
ple, we spent a total of 3 hours producing the images in
Figure 14 (including style modules coding, experimentation
and aesthetic evaluation). The style modules comprise about
500 lines of code, half of which are straightforward use
of built-in mechanisms. Indeed the system includes many
standard functions, predicates, shaders and chaining itera-
tors that facilitate the elaboration of new styles. The devel-
opment of any new base object can benefit from standard
sampling, noising, smoothing, 1D integration components.
Similarly, all information is afforded through standard con-
textual query mechanisms.

def edgeStop (x, sigma): #for anisottropy
 return exp(-x*x/(2*sigma*sigma)) #Gaussian

class pyDiffusion2Shader(StrokeShader):
 def __init__(self, lambda1, sigma, nbIter): #constructor
 StrokeShader.__init__(self) #from parent
 self._lambda = lambda1 #diffusion rate
 self._nbIter = nbIter #nb of iteration
 self._sigma = sigma #anisotropy scale

 def shade(self, stroke): #shader itself
 for k in range (1, self._nbIter): #diffusion loop
 it = stroke.strokeVerticesBegin() #create iterator
 while it.isEnd() == 0: #loop on vertices
 v=it.getObject() #get vertex
 c=curvatureInfo(it) #local curvature
 n=normalInfo(it)
 dV=self.lambda*c*edgeSTop(c,self.sigma) #[Desbrun, Perona]
 v.SetPoint(v.getPoint()+n*dV) #update coordinates
 it.increment() #increment vertex

Figure 10: Left: Python code for a user-defined anisotropic
smoothing operator. Right: The shader is applied on the ex-
ternal contour of a gear. Top: without smoothing. Bottom:
with smoothing.

Figure 10 shows the code of a shader that per-
forms feature-preserving smoothing using anisotropic
diffusion inspired by mesh smoothing techniques
[DMSB99, DMSB00]. It uses curvature flow and moves
vertices in the direction normal to the stroke at a rate
proportional to local curvature. An edge-stopping function
prevents smoothing at sharp curvature points. The param-
eters of the shader are declared in the constructor init.
Normal and curvature are part of the available information,
as described in Section 2.6. We use an iterator to traverse
the vertices of the strokes. Stroke geometry is modified

c© The Eurographics Association 2004.

http://artis.imag.fr/Projects/Style

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

using the method setPoint(). More code examples can
be found in the supplemental material .

Figure 1 at the start of the paper shows the application of
procedural drawing styles to 3D models. The vintage engine
(left) is drawn using five different style modules that empha-
size a subset of objects. Standard technical illustration con-
ventions are used to draw creases in white and silhouettes
in black. In addition to the visible lines, we also draw lines
that are hidden by other objects through a selection using
the visibility information about occluders. Lines delineating
self-occluded parts of these objects are drawn with dashed
lines. Finally, the remainder of the scene is simplified, draw-
ing only the longest strokes in a lighter tone. The sketchy
style used for the plane (right) involves “construction lines”
based on the backbone-stretch operation. We use a painted
stroke for visible lines, and finally add small set of hidden
lines with faint strokes.

Figure 11: Japanese drawing using shortened strokes and
density evaluation. The 3D model is shown in the lower-left.

Figure 11 shows an attempt to imitate the Japanese line-
drawing style using two style modules simulating different
brushes. Both use line shortening and string tapering. The
large brush layer also uses density evaluation to avoid clutter.

Fig. 12 illustrates how programmable chaining operators
can generate multiple parameterizations of a given element.
This control over stroke topology, demonstrated here with
simple attribute-changing shaders, is a key contribution of
our system.

Fig. 13 illustrates how 3D Information can be used to
drive advanced chaining, with a chaining rule using depth
information.

Figure 14 shows a complex style made of eight styles
modules applied to a virgin statue model. Three of these
modules are responsible for drawing a blueprint: the first
two generate bounding boxes out of strokes, giving a coarse
approximation of the shape of the model, and the other one
draws temporary pencil strokes, trying to mimic hand-drawn
style by making use of smoothing and noising shaders. The
next two modules mark the beginning of what is supposed to

Figure 12: In this image different shaders use two distinct
parameterizations to control attributes: one that covers the
entire length of the silhouette line, including occluded por-
tions; and another one that separates and covers the visi-
ble segments of the silhouette. Left: color and detail geome-
try are varied according to the full-length parameterization,
whereas stroke thickness varies along the visible-segment-
based parameterization. Right: Close-up on the bottom-
right part of the scene, in which we added the occluded parts
of the silhouette. Comparing this image with the left image,
notice that the wavy detail pattern continuously traverses in-
visible parts.

Figure 13: Left: Chaining based on depth information to
draw strokes around foreground,middle and far distance
groups. Right (top): The 3D scene from the same viewpoint.
Right (bottom): The scene from a top viewpoint emphasizing
the distance between objects.

be the definitive drawing, by selecting small strokes (among
silhouettes and suggestive contours) in high density areas
and displaying them in a dark tone. The remaining modules
display longer strokes in a lighter tone, also using density
information and a fade along the Y axis. The combination
of all these modules results in an “unachieved Renaissance-
like” style: if we compare it to a straightforward drawing of
all the visible lines, apart from purely aesthetic criteria, it
is obvious that controlled line omission really plays its role
and draws the viewer’s attention to the areas of the picture
we have decided to emphasize.

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

Figure 14: A complex stylesheet composed by several style
modules. Left: Final rendering. Right: The style modules
separated in three groups: one that generates a blueprint,
another one that draws short strokes, and a last one taking
care of longer strokes. As a comparison, a simple rendering
of all the visible lines is shown at the bottom-right corner.

7. Discussion

We have described a new formulation of the image creation
process for the generation of line drawings from 3D models.
Our approach is based on programmable operators that can
be arranged to create style modules.

We would like to point out that our main contribution is
not in new visual effects but rather on a unified and flexible
approach for stylized line drawing. However, the control and
flexibility afforded by the approach make many new effects
possible through:

• Advanced Layering (Fig. 1 right, Fig. 14 and Fig. 1 left).
• Control over stroke topology (Fig. 7 a, Fig. 13, Fig. 7 c,

Fig. 9, Fig. 12, Fig. 4).
• Stroke geometry displacement (Blueprint of Fig. 14, guid-

ing lines of Fig. 4).
• Density Control (Fig. 9, Fig. 14).

One of the major benefits of our approach is its natural
redundancy, implying great flexibility: most effects can be
obtained (a) by modifying individual operators (using a pro-
gramming interface), (b) by changing the set of operators in
a style module or controlling their behavior, or by adding
and scheduling specialized style modules (using a graphical
user interface). Furthermore, the style module descriptions
can be modified online before being interpreted by the sys-
tem, making the stylized rendering session a truly interactive
experience.

The introduction of programmable “shaders” for non-
photorealistic rendering opens many interesting avenues for
graphical design and styles, all the more so since by defini-
tion non-photorealistic styles allow the greatest freedom for
geometric and visual modifications of the underlying model.
The line smoothing operator described in the paper is a good
example, as well as the generation of “construction lines”
from the rendering strokes.

In our experience, the development of a style sheet is com-
parable to that of procedural shaders in traditional rendering.
The most challenging step is often to formulate the goal in
terms that can be translated into programs. After this step,
experimentation and refinement proceed smoothly.

Our system is currently limited to line drawings composed
of the set of edges in our view map. Natural extensions
would include a consistent treatment of tonal and hatching
lines. Future work also includes similar procedural treat-
ments for shading and all other NPR components.

Temporal coherence Our system does not yet address the
issue of temporal coherence. Its very flexibility could in
some cases make temporal coherence issues more pro-
nounced. We believe that this can be addressed using spe-
cific style modules and some extensions to the system,
in particular consistent stroke parameterization [KDMF03].
Nevertheless, topological operations such as chain splitting
can exhibit temporal discontinuities, thus requiring explicit
consideration of time. Recent work in NPR for animation
[KDMF03, KSC∗01, CTP∗03], however, reinforces our be-
lief that a programmable approach is important to control the
variety of tradeoffs and stylistic choices related to temporal
depiction.

Acknowledgments
This work was supported in part by “Région Rhône-Alpes”
(DEREVE project and EURODOC grant).

References

[AG99] APODACA A., GRITZ L. (Eds.): Advanced Renderman
: Creating CGI for Motion Pictures. Morgan Kauf-
mann, 1999. 1, 2, 5

[Ale01] ALEXANDRESCU A.: Modern C++ Design. Addison-
Wesley C++ In-Depth. Addison-Wesley Publishing
Company, New York, NY, 2001. 6

[App67] APPEL A.: The notion of quantitative invisibility and
the machine rendering of solids. Proc. ACM Natl. Mtg.
(1967), 387. 5

[Bea96] BEAZLEY D. M.: SWIG: an easy to use tool for in-
tegrating scripting languages with C and C++. In 4th
Annual Tcl/Tk Workshop (July 1996), USENIX, (Ed.),
pp. 129–139. 9

[Coo84] COOK R. L.: Shade trees. In Proc. SIGGRAPH (1984).
1

[CTP∗03] CUNZI, THOLLOT, PARIS, DEBUNNE, GASCUEL,

c© The Eurographics Association 2004.

S. Grabli, E. Turquin, F. Durand, & F. X. Sillion / Programmable Style for NPR Line Drawing

DURAND: Dynamic canvas for non-photorealistic
walkthroughs. In Proc. Graphics Interface (2003). 11

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S.,
SANTELLA A.: Suggestive contours for conveying
shape. ACM Trans. on Graphics 22, 3 (2003). 2, 3,
5

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR A.:
Implicit fairing of irregular meshes using diffusion and
curvature flow. In Proc. SIGGRAPH (1999). 9

[DMSB00] DESBRUN M., MEYER M., SCHRÖDER P., BARR

A.: Anisotropic feature-preserving denoising of height
fields and bivariate data. In Graphics Interface (2000),
pp. 145–152. ISBN 1-55860-632-7. 9

[DOM∗01] DURAND F., OSTROMOUKHOV V., MILLER M., DU-
RANLEAU F., DORSEY J.: Decoupling strokes and
high-level attributes for interactive traditional drawing.
In Eurographics Workshop on Rendering (2001). 2

[DS02] DECARLO D., SANTELLA A.: Stylization and ab-
straction of photographs. ACM Trans. on Graphics 21,
3 (2002). (Proc. SIGGRAPH). 2

[Dur02] DURAND: An invitation to discuss computer depiction.
In Proc. NPAR (2002). 1, 6

[FTP99] FREEMAN W., TENENBAUM J., PASZTOR E.: An
example-based approach to style translation for line
drawings. Tech. Rep. 99-11, MERL, 1999. 2

[GG01] GOOCH, GOOCH: Non-Photorealistic Rendering. AK-
Peters, 2001. 1

[GHJV95] GAMMA E., HELM R., JOHNSON R., VLISSIDES

J.: Design Patterns: Elements od Reusable Object-
Oriented Software. Addison-Wesley Professional
Computing Series. New York, NY, 1995. 6

[GSG∗99] GOOCH B., SLOAN P., GOOCH A., SHIRLEY P.,
RIESENFELD R.: Interactive Technical Illustration.
ACM Symp. on Interactive 3D Graphics (1999). 3

[Her98] HERTZMANN A.: Painterly rendering with curved
brush strokes of multiple sizes. Proc. SIGGRAPH
(1998). 2

[Her01] HERTZMANN A.: Paint By Relaxation. In CGI (2001),
pp. 47–54. 2

[HJO∗01] HERTZMANN A., JACOBS C., OLIVER N., CURLESS

B., SALESIN D.: Image analogies. Proc. SIGGRAPH
(2001). 2

[HL90] HANRAHAN P., LAWSON J.: A language for shading
and lighting calculations. In Proc. SIGGRAPH) (1990).
1, 5

[HL94] HSU S. C., LEE I. H. H.: Drawing and animation
using skeletal strokes. Proc. SIGGRAPH 94 (1994). 3

[HS99] HAMEL J., STROTHOTTE T.: Capturing and re-using
rendition styles for non-photorealistic rendering. In
Proc. Eurographics (1999). 2

[HSS02] HALPER, SCHLECHTWEG, STROTHOTTE: Creating
non-photorealistic images the designer’s way. In Proc.
NPAR (2002). 2

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth sur-
faces. Proc. SIGGRAPH (2000). 2, 3, 5

[IFH∗03] ISENBERG T., FREUDENBERG B., HALPER N.,
SCHLECHTWEG S., STROTHOTTE T.: A developerŠs
guide to silhouette algorithms for polygonal models.
IEEE Computer Graphics and Applications special is-
sue on NPR (2003). 3

[KaM∗02] KALNINS, ARKOSIAN, MEIER, KOWALSKI, LEE,
DAVIDSON, WEBB, HUGHES, FINKELSTEIN: Wysi-
wyg npr: Drawing strokes directly on 3d models. ACM
ToG 21, 3 (2002). (Proc. SIGGRAPH). 2, 8

[KDMF03] KALNINS R. D., DAVIDSON P. L., MARKOSIAN L.,
FINKELSTEIN A.: Coherent stylized silhouettes. ACM
Trans. on Graphics 22, 3 (2003). 11

[KMN∗99] KOWALSKI M., MARKOSIAN L., NORTHRUP J. D.,
BOURDEV L., BARZEL R., HOLDEN L., HUGHES J.:
Art-based rendering of fur, grass, and trees. Proc. SIG-
GRAPH (1999). 2

[KSC∗01] KLEIN A. W., SLOAN P.-P. J., COLBURN A.,
FINKELSTEIN A., COHEN M. F.: Video Cubism. Tech.
Rep. MSR-TR-2001-45, Microsoft Research, 2001. 11

[MKT∗97] MARKOSIAN L., KOWALSKI M., TRYCHIN S.,
BOURDEV L., GOLDSTEIN D., HUGHES J.: Real-
time nonphotorealistic rendering. Proc. SIGGRAPH
(1997). 2, 5, 8

[Ope02] OPEN NPAR:. http://www.opennpar.org/, 2002. 2

[SC92] STRAUSS P. S., CAREY R.: An object-oriented 3d
graphics toolkit. In Computer Graphics (Proc. of SIG-
GRAPH 92) (July 1992), vol. 26, pp. 341–349. 2

[SP03] SOUSA M., PRUSINKIEWICZ P.: A few good lines:
Suggestive drawing of 3d models. Computer Graphics
Forum (Proc. of EuroGraphics ’03) 22, 3 (2003). 8

[SS02] STROTHOTTE T., SCHLECHTWEG S.: Non-
Photorealistic Computer Graphics. Modeling,
Rendering, and Animation. Morgan Kaufmann,
2002. 1, 3, 8

[Tee03] TEECE D.: Ink line rendering for film production.
In Theory and practice of Non-Photorealistic Graph-
ics: Algorithms, Methods and Production Systems,
SIGGRAPH Course Notes, Sousa M. C., (Ed.). SIG-
GRAPH, 2003. 2

[TF97] TENENBAUM J., FREEMAN W.: Separating style and
content. In Advances in Neural Information Processing
Systems (1997), vol. 9, p. 662. 2

[Ups89] UPSTILL S.: The Renderman Companion. Addison-
Wesley, Reading, MA, 1989. 1, 2, 5

[W∗99] WOO M., ET AL.: OpenGL programming guide: the
official guide to learning OpenGL, ver. 1.2, third ed.
Addison-Wesley, Reading, MA, USA, 1999. 9

[Wil97] WILLATS J.: Art and Representation. Princeton U. Pr.,
1997. 3, 6

[WS94] WINKENBACH G., SALESIN D.: Computer-generated
pen-and-ink illustration. Proc. SIGGRAPH (1994). 2,
8

c© The Eurographics Association 2004.

