
HAL Id: inria-00510174
https://inria.hal.science/inria-00510174

Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Instantiation Algorithm for Simulating
Radiant Energy Transfer in Plant Models

Cyril Soler, François X. Sillion, Frédéric Blaise, Philippe de Reffye

To cite this version:
Cyril Soler, François X. Sillion, Frédéric Blaise, Philippe de Reffye. An Efficient Instantiation Al-
gorithm for Simulating Radiant Energy Transfer in Plant Models. ACM Transactions on Graphics,
2003, ACM Transactions on Graphics, 22 (2), pp.204 - 233. �10.1145/636886.636890�. �inria-00510174�

https://inria.hal.science/inria-00510174
https://hal.archives-ouvertes.fr

An Efficient Instantiation Algorithm for Simulating
Radiant Energy Transfer in Plant Models

Cyril SOLER and François X. SILLION
iMAGIS-GRAVIR/IMAG-INRIA
and
Frédéric BLAISE and Philippe DEREFFYE
CIRAD/INRIA

We describe a complete lighting simulation system tailored for the difficult case of vegetation
scenes. Our algorithm is based on hierarchical instantiation for radiosity and precise phase function

modeling. It allows efficient calculations both in terms of computation and memory resources.
We provide an in-depth description and study of the instantiation-based radiosity technique and

we address the problems related to generating and managing phase functions of plant structures,
as needed by the instantiation process. We present results demonstrating the high performance of

the hierarchical instantiation algorithm and we describe two examples of applications : rendering
of large vegetation scenes and plant growth simulation. Other applications of our system range

from landscape simulation to agronomical and agricultural studies, and to the design of virtual
plants responding to their environment.

Categories and Subject Descriptors: I.3.7 [Three-Dimensional Graphics and Realism]: Radiosity; I.3.2 [Method-
ology and Techniques]: Graphics data structures and data types; I.6.3 [Simulation and Modeling]: Applica-
tions—Plant Growth Simulation

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Plant growth simulation, lighting simulation, radiosity, in-
stantiation, landscape simulation, calibrated physiological simulation

1. INTRODUCTION

Three-dimensional scenes containing plants and vegetation elements are usually of tremen-
dous complexity, typically consisting of millions of elements. Therefore they constitute ex-
tremely challenging cases for rendering and simulation techniques, and have indeed been
used extensively as test scenes to push all sorts of algorithms to their limits.

Still, the ubiquitous presence of vegetation around us, even in artificial spaces such as
office buildings, makes it necessary to be able to render and model plants efficiently. Al-
though rendering can be performed in many ways, including non-photorealistic algorithms
[Deussen and Strothotte 2000], we observe that accurate lighting simulation in plant mod-
els has a number of applications:

First, photorealistic rendering of vegetation scenes can be achieved by a correct simu-
lation of light energy exchange inside plants models. This is obviously useful for visual
applications in various fields like cinema, urban and architectural design.

Plant growth simulation is an other challenging application of lighting simulation in
vegetation scenes for at least two reasons : (1) The creation of realistic plant models,
is required by many applications in very diverse fields. In computer graphics, we have
seen numerous examples of beautiful renderings of trees, flowers and other plants, which
tremendously add to the realism of virtual scenes. Plant models however are very complex,

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Cyril Soler et al.

making it tedious to create them by hand. Conversely, simulating plant growth offers the
perspective of being able to build, study and render virtual plants in their specific envi-
ronment while controlling their development. (2) Research in agronomy concerning the
influence of light over the production of a cultivated crop under different conditions of
illumination requires complex settings and long term experiments. Instead, properly sim-
ulating the growth of plants readily gives results while allowing control over many growth
parameters simultaneously.

In this paper we present a complete lighting simulation algorithm tailored for vegetation
scenes. This algorithm addresses the two principal difficulties encountered with vegeta-
tion, which usually result in unacceptably high computation or memory costs: first, the
intrinsic geometric complexity of plant models, consisting of millions of disconnected ele-
ments, including small, elongated structures. Second, the photometric complexity of light
transfer within vegetation models, with diffusion inside foliage, complex BRDFs and leaf
transparency effects.

Though many solutions have been proposed in the past, we shall see that they each have
a limited range of applicability in terms of scene sizes. The solution we propose has the
double advantage of being applicable to a broad range of scene complexities, and offering
a continuous trade-off between accuracy and computation/memory cost.

Hierarchical radiosity algorithms, especially those using clustering, try to avoid consid-
ering the inherent complexity of energy exchanges by computing transfers at fairly high
levels of a scene hierarchy. However a complete traversal of the scene is needed to estimate
the energy emitted or received by a cluster with any accuracy [Smits et al. 1994]. The use
of meta-objects, or impostors, has been proposed to avoid this descent in the hierarchy, and
instead perform the computation with fairly large (and simple) objects [Rushmeier et al.
1993; Ouhyoung et al. 1996].

We show in this paper however, that in the context of hierarchical radiosity, using such
meta-objects poses additional problems, which we solve by pre-computing high level
phase functions (reflectance) and transmittance functions for those meta objects. Obvi-
ously, these characteristics are quite costly to handle, both in terms of computation time
and storage. Meta-objects are therefore especially useful when a sufficient number of sim-
ilar objects are present in the scene, i.e when these objects can share the same intrinsic
characteristics.

In summary, the process of using meta-objects, which we call instantiation, is a key
element in making the accurate characterization of simplified objects viable. It is realized
by identifying elements in the scene (in fact, clusters) that share a similar behavior in
terms of light emission, reflection and transmission. An important requirement is thus to
identify the degree of similarity between the light properties (reflectance and transmittance)
of plant structures. We discuss this issue and propose solutions in Section 4.1. Note that
the radiometric behavior of an instance can therefore be an approximation of reality, just
as the geometry of a classical impostor is an approximation to that of the original. A
flexible trade-off is therefore possible between the accuracy of the representation and its
compactness, largely controlled by the degree of self-similarity in the scene.

The algorithm we are presenting is easily controllable: a computation time vs. accuracy
trade-off can be readily performed by acting on the refinement threshold of the radiosity
links. Another aspect of the controllability is that we can limit the in-depth traversal of the
instance hierarchy to a given size of structures and thus obtain a high level solution at a

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 3

very low computation cost. This will be discussed in section 6. However, the accuracy of
this solution is still much better than that of a clustering algorithm that we would limit to
large scale clusters, because of the precise reflectance and transmittance information used
at the instance level. This proves very interesting, for instance, when using lighting results
in a plant growth simulator, which may be satisfied by the knowledge of the illumination
received at the level of entire branches, with no need to perform the computation down to
the level of individual leaves.

The present paper builds on the hierarchical instantiation work presented in [Soler and
Sillion 2000], with a particular emphasis on the following issues : (1) automatic construc-
tion of instances in plants models; (2) pre-computation and storage of radiometric infor-
mation; (3) instantiation policy; (4) application to plant growth simulation; (5) application
to rendering of large vegetation scenes.

2. PREVIOUS WORK

We successively review in this section the various methods and geometry representations
that serve the computation of the distribution of light energy in plants, and their possible
applications.

Illumination models

Computing the distribution of light energy in vegetation constitutes a very challenging
task. To achieve it, many methods have been derived, most of them coming from the field
of agronomic research. We have sorted them in increasing order of complexity.

A number of methods estimate direct illumination in the plant possibly using attenua-
tion factors, but without accounting for light scattering inside the vegetation. The simplest
binary ray-casting approach can be done very efficiently by projecting the geometry of or-
gans along sampled hemisphere directions, as proposed by [Fournier and Andrieu 1999;
Chen et al. 1993; Pearcy and Sims 1998; Planchais and Sinoquet 1996]. A more complete
approach consists in casting rays toward the sky and through the geometric model [Pert-
tunen et al. 1996; Takenaka 1994] or a voxel representation thereof [Greene 1989]. Měch et
al. [Měch and Prusinkiewicz 1996] extended this technique by accumulating the opacity of
voxels successively encountered by a ray to account for the translucency of the foliage.

Global illumination techniques [Kajiya 1986] have also been used to compute the dis-
tribution of light energy in plants. Among these, we distinguish radiosity-like methods
and Monte-Carlo methods, from methods based on differential radiance transfer equations.
Whereas the former stay arbitrarily close to the very geometry of the scene and the solu-
tion, the latter act on an equivalent turbid medium and depend on various approximations
concerning its isotropy, homogeneity or periodicity [Verhoef 1984; Gastellu-Etchegorry
et al. 1996]. As an example, Max [Max et al. 1997] proposes a simplification of the radiant
transfer equations in order to compute the density of light for each altitude in an infinite
canopy, provided that it is horizontally isotropic.

Although radiosity techniques are often quite costly, they produce faithful results and
many approximations of the radiosity method have been used up to now: Goel et al. obtain
a radiosity solution in a corn field using periodicity assumptions [Goel et al. 1991], which
reduces the number of form factors to compute with the neighboring polygons of each
plant. The use of standard radiosity on a pure geometric model also limits this approach
to scenes with a small number of polygons. Borel et al. [Borel et al. 1991] propose to set
form factors of distant objects to 0. This introduces a bias in the solution, but enables to

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

4 · Cyril Soler et al.

handle large scenes. Chelle et al.’s nested radiosity algorithm [Chelle et al. 1998] uses a
geometric model for the local neighborhood of a polygon and a volumetric model using
scattering equations for distant geometry. This requires isotropy assumptions on distant
parts of the canopy and periodicity of the model. Such work is consequently applicable
only to large-scale scenes (such as plant canopies).

Monte Carlo methods have been used by Ross and Marshak [J.K. and A.L 1988] and
Govaerts [Govaerts 1995] to estimate the canopy bi-directional reflectance function. These
techniques work well for BRDF computation because they do not need to save the distribu-
tion of light inside the model. Dauzat and Eroy [Dauzat and M.N. 1987] use it to estimate
the light received by the leaves of plants taking into account of internal light scattering.

Of course several intermediate methods have been used. One example is given by
Gastellu et al. [Gastellu-Etchegorry et al. 1996] who add a direct illumination compo-
nent due to the sun, to a multiple-scattering solution obtained using a spherical harmonic
representation.

Representation of vegetation

We review the various models used for representing the vegetation in the lighting simu-
lation algorithms. The most precise models in term of scene geometry are based on the
very geometry of the plants. Radiosity based techniques intrinsically employ this repre-
sentation, although some of them, combine it with a simpler model to compute distant
interactions [Chelle et al. 1998]. However, working on a geometry-based description of
the scene is the cause of a very high memory cost, which is one common drawback of
radiosity-based methods.

Simplified, shape-preserving representations such as ellipsoids and cylinders have been
used by Balandier and Norman [Balandier et al. 2000; Norman and Jarvis 1975]. Here, the
topology of the plants is partially preserved but not the geometry. As pointed in [Gastellu-
Etchegorry et al. 1996], approaches that transform the very geometry of the plants are
not suitable for precise computation of parameters of the canopy models like reflectance
functions, due to the strong anisotropic nature of the models with respect to light reflection.

Less faithful to plant geometry is a voxel-based representation of the scene. This is used
for instance by Castro [Castro and Fetcher 1998] and Whitehead [Whitehead et al. 1990].
Voxels can be used to store elements of the scene (walls, water, soil) in addition to leaf
density coefficients for the vegetation.

Finally, some approaches consider the vegetation as a turbid medium [Ross 1981]. They
totally ignore the topology and geometry of plants as well as the very local variations
of their light properties, and produce an adequate solution at larger scales. The medium
properties are represented as density functions over which isotropy assumptions are usually
made in order to limit the number of equations.

Applications

The first application of lighting simulation in plant models (which is also the most familiar
to computer graphics) is rendering. For this, the scene geometry has to be accessed at
least once, but does not necessarily serve the computation of multiple-scattering light in
the model, as shown by Max [Max et al. 1997].

Remote sensing of the environment is a very important application to light simulation
in plants. Light computation serves the interpretation of remote sensing data like satellite
images for the computation of biophysical parameters [Goel 1988]. Many references on

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 5

this subject can also be found in the survey by Myneni et al. [Myneni et al. 1989].
Plant growth simulation is a direct application to lighting simulation in plants in the

sense that the growth of a plant depends on the presence of light for photosynthesis. From
an agronomic point of view, growth simulation under various lighting conditions permits
to study optimal culture configurations. Fournier and Andrieu give an example of such
simulation on corn [Fournier and Andrieu 1999]. Other physiological plant growth simu-
lation models exist [Rauscher et al. 1990; Takenaka 1994; Blaise et al. 1998; (de) Reffye
et al. 1999], all accounting quantitatively for the light received by leaves to compute the
growth rate.

Plant growth simulation may finally be used to study the reaction of plant growth to
light environment. The causal effect of light on plant morphology and growth has been
demonstrated on real plants but requires tedious in-the-field experiments [Beaudet and
Messier 1998; Beaudet et al. 2000]. It is therefore much more interesting to perform
the same experiments on virtual plants using a calibrated growth model. Gautier et al., for
instance dedicate their work to the study of the influence of self-shadowing on plant organs
morphogenesis [Gautier et al. 2000].

Discussion

Direct lighting approaches do not account for the contribution of light scattering inside the
model due to the essentially diffuse translucency of the leaves [Govaerts 1995]. However
light scattering in plant foliage represents a definite part of the illumination and thus on the
growth and architecture of plants (see Section 6).

Like all stochastic methods, Monte Carlo approaches have two drawbacks: they con-
verge very slowly and the accuracy of the result is not easily controllable. Vegetation
indeed contains very uncorrelated polygons, and thus induces a large dispersion of rays
hence an especially noisy and slow convergence. This is particularly true when perform-
ing the computation near to the infra-red wavelength, where transmittance and reflectance
of plant leaves can both approach 50%. This boosts up the number of necessary reflec-
tions/transmissions to consider along each ray. This make stochastic methods poorly suited
to an interactive work in hand with a plant growth engine.

Finally, none of the methods reviewed above can adapt to a wide range of scene scales.
Turbid medium and voxel-based methods are limited to large scale scenes because of their
statistical description of the plants. Conversely, geometry-based methods are restricted to
small-scaled scenes mainly because of their high memory cost. The consequence of this
is that none of these methods can be used for long term plant growth simulation. Indeed,
when growing a plant from a seed up to a tree, a varying number of scales must be consid-
ered.

In this paper, we propose a global illumination approach for computing light energy
balance in plant models that attempts to fill these gaps. Our method is based on hierarchical
radiosity with clustering, hence inheriting the controllability and multi-resolution facilities
of this method. In order to get rid of the traditionally high computation and memory costs
of hierarchical radiosity methods, we develop the idea of instantiation, e.g the ability to
share geometric information between parts of the scene in order to gain memory.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

6 · Cyril Soler et al.

3. HIERARCHICAL INSTANTIATION FOR RADIOSITY

3.1 Hierarchical radiosity with clustering

This section intends to provide the relevant background to readers who are not familiar with
hierarchical radiosity with clustering. Experienced readers can directly jump to section 3.2.

We denote by b(x) the radiosity at any point x in a scene, i.e the total light power per
unit area out-coming from x on a surface. We call e(x) the emittance at x, which denotes
the corresponding quantity directly emitted at x, e.g e(x) is not null only when x is on a
light source. Let us finally call ρ(x) the reflectance at x, i.e the proportion of the incident
energy flux at x which is reradiated. These quantities are linked together by the radiosity
equilibrium equation [Goral et al. 1984] :

b(x) = e(x) + ρ(x)

∫
b(y)G(x,y)dy

where G(x,y) denotes a kernel function accounting for the geometric configuration which
characterizes the energy exchange between points x and y. This equation signifies that the
light energy at a point x on a surface is the sum of the emitted energy at x (the e(x) term of
the sum) and the energy coming from all other points y of the scene which reflects at x (the
integral term of the sum).

Radiosity methods in general constitute an approach for solving this equation using finite
elements [Goral et al. 1984; Ashdown 1994; Sillion and Puech 1994]. The most common
approach consists in looking for a piecewise constant approximation of the solution of the
above equation. A discretization of all surfaces is performed in order to produce a linear
system :

Bi = Ei + ρi ∑
j

Fi jB j

where Bi, Ei and Ri respectively denotes the uniform radiosity, emittance and reflectance
value over surface element i. In this linear system, also appear the Fi j terms, called form
factors, which express the contribution of each element j to the radiosity on element i.

Solving this system using classical methods such as Gauss-Seidel iteration becomes
very costly for even simple configurations, which has stimulated the development of hier-
archical approaches. The idea of hierarchical radiosity is to hierarchically group together
surface elements into larger surface elements and scene objects into clusters [Hanrahan
et al. 1991; Goldsmith and Salmon 1987; Smits et al. 1994; Sillion 1995] (see Figure 1).
The energy exchanges between all pairs of surface elements in the scene can then be fac-
tored (and approximated) by energy exchanges (or links) between pairs of these structures,
thus making the economy of a large number of form factor computations. The level at
which links are established is a trade-off between accuracy and speed. The linear system
is then solved by summing energy contributions along these links (See Figure 2).

3.2 Overview of the algorithm

Hierarchical radiosity with clustering [Smits et al. 1994; Sillion 1995] is usually well
adapted to treating scenes of varying orders of magnitude, thanks to its automated adapt-
ability and to the continuous trade-off it offers between computation time and accuracy.
However, such methods are limited in scene size because of the super linear amount of
memory they require in terms of the number of input polygons. The main difference
between our method and traditional lighting simulation methods is the use of instantia-

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 7

Fig. 1. Hierarchy of clusters for representing a small plant.

k

A

Ak

j

i

Aj

A

Ai

A

Fig. 2. Example of a speed/-
accuracy trade-off. A single link
is sufficient for representing the
average energy transfer from Ai to
Ak while several links are necessary
to account for variations in the en-
ergy transfer from Ai to A j . surface
discretization and energy transfer
links established at adequate level
to minimize the number of com-
putations while trying to account
for local variation of the energy
contribution between concerned
elements.

tion [Soler and Sillion 2000]. Instantiation, more commonly used in ray tracing methods,
allows to treat arbitrary large scenes by storing in memory only the necessary geometry for
current calculations. Applying this paradigm to hierarchical radiosity with clustering, we
thus combine the low memory cost of instantiation ray tracing methods and the stability
and controllability of hierarchical radiosity with clustering.

One very eye-striking characteristic of plant models is self-similarity: leaves in a plant
are very similar to each other and, up to a large extent, branches look like other branches
as well as an entire plant looks like any entire plant of the same species and age. It is thus
possible to approximately represent the geometry of a plant model using a small number
of representative elements (branches, leaves, etc) that we can instance in order to build an
efficient representation of the plant as shown on figure 3.

However, radiosity algorithms compute an explicit representation of illumination, typi-
cally associated with the geometry in the form of a mesh. Copies of a given object each
have their own, unique illumination. Instantiation for radiosity is therefore more elabo-
rate than for simpler rendering techniques (like ray tracing), since it should differentiate
between the geometry (that is easily shared) and the illumination (that varies from one in-
stance to another). Moreover, self-similarity in plants is never exact, and similar structures
show more and more differences with age: unlike leaves, that really look like each other,
larger structures only look similar in their overall shape.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

8 · Cyril Soler et al.

Trunk

Trunc

Branch

Leaf

Leaf

Trunk

Bran
ch Branch

B
ra

nc
h

B
ra

nc
h

Actual plant Instantiation at level 1 Instantiation at level 2

Fig. 3. Using approximate self-similarity between structures to instantiate a plant model. Note that although
a common model is used to instantiate branches at level 1, each branch is in turn detailed using appropriate
instances for substructures in level 2.

O2

O1

I2
I3

I1

I4

1τ
1BRDF

BRDF2
τ2

Representative
structures

Original
Instanced plant modelActual plant model

Ω4

Ω3

Ω2
Ω1

Branch

clusters

Trunk

Fig. 4. Instantiation of a plant model for hierarchical radiosity computation. (1) Each structure of the plant
(branch, leaf, trunk) is independently assigned a representative structure that sufficiently resembles the current
structure. The phase function (or BRDF) and transmittance properties (see text and definitions in section 4.2) of
representative structures are packed into original clusters. (2) the plant is represented as a collection of instances
(I1,...,I4), each one pointing to the adequate original cluster (O1 or O2 in this example) and equipped with a
geometric transformation (Ω1,...,Ω4 here) that permits visibility and reflectance computation on the instance
using the information of the original cluster.

Because of this, since we still need to know the energy distribution on the real geom-
etry of every part of a tree, the computation can not be performed on a unique geometry
shared by the instances. Instead, the algorithm for computing the equilibrium of light using
instantiation works as explained by the two following key points :

(1) The core idea of the algorithm is to share between sibling instances macroscopic func-
tions (instead of geometry) in a single object called an original cluster, and use these
functions for propagating light inside the scene. As will be shown in section 4.2, these
functions are designed to simulate the energy resulting from the interaction of the real

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 9

main()
OpenOutputFile()
OpenInstance(root)
CloseOutputFile()

HierarchicalInstantiation(cluster H)
if IsAnInstance(H)

OpenInstance(H)
if IsACluster(H)

ForAllChildren(g,G)
HierarchicalInstantiation(g)

if IsAPolygon(H)
Render(H)

OpenInstance(instance H)
cluster G = LoadNextLevel(H)
ReplaceInHierarchy(H,G)
TransferLinks(H,G)

ComputeLocalSolution(G)

HierarchicalInstantiation(G)

DeleteLinks(G)
ReplaceInHierarchy(G,H)
Delete G

Fig. 5. Pseudo code for the radiosity instantiation algorithm. The generic Render() procedure replaces any output
of the information as rendering the polygon to an off-screen buffer, or saving its radiosity to a file previously
opened by OpenOutputFile(). The call LoadNextLevel(H) loads from the disc the actual geometry of the
opened instance H, possibly creating instances at lower levels and returns the result as a cluster. This cluster is
temporarily put in the hierarchy in the place of H and links pointing to and from H are also changed to act on
it. Functions IsAnInstance(), ForAllChildren(), IsAPolygon(), DeleteLinks() are simply named according to
what they exactly do.

geometry with light coming from any given direction, concerning out-scattering (or
phase function, as defined in [Siegel and Howell 1992]) and mean attenuation along
rays crossing the instance. A geometric transformation inside each instance properly
links the replaced geometry to the original clusters (See Figure 4). We explain in sec-
tion 3.3 that this makes it possible to compute the equilibrium of light energy at any
hierarchical level above the instances while limiting the number of objects in the scene
hierarchy.

(2) After a radiosity solution is obtained in a scene containing instances, the illumination
of objects hidden inside each instance must still be determined. This involves a local
hierarchical radiosity solution in which the contained geometry is temporarily loaded
into memory and subjected to the incident illumination already computed for the con-
sidered instance. This is a local pass because only links that bring energy inside the
instance are now considered and refined.

A major potential difficulty is that the contents of the instance might still be too com-
plex to allow a memory-efficient hierarchical radiosity calculation. The hierarchi-
cal instantiation algorithm provides an elegant and efficient solution to this problem:
because plants have self similarity at multiple hierarchical levels (between leaves,
branches, whole plants), loading the geometry of an instance may include the tem-
porary creation of new instances at lower levels to which the algorithm can be applied
recursively.

We detail this operation named opening an instance in section 3.4.

The pseudo-code in Figure 5 summarizes the algorithm.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

10 · Cyril Soler et al.

3.3 Local Hierarchical Radiosity solutions

Each time a portion of the scene is loaded (which concerns the whole scene when starting
the algorithm, or a smaller part of it when “opening” an instance), the corresponding local
hierarchy is loaded into memory with a depth limited to the next possible level of instan-
tiation. As a result, the entire scene can be described as a hierarchy of clusters, in which
instantiable clusters appear at various levels (possibly one included in the other). However,
during any call to the computation of a local solution using hierarchical radiosity, the part
of the hierarchy that is considered always consists of a cluster hierarchy whose leaves are
either non-open instances or polygons.

The local hierarchy is processed by the hierarchical radiosity solver, which involves
iteratively establishing (refining) links between clusters and propagating energy until con-
vergence. Refinement of the links is limited to the level of instances, since their geometry
is not available at this time. However the resulting solution is still much more accurate than
if we had performed a hierarchical radiosity solution on the entire scene while limiting the
link refinement to the level of the corresponding clusters. The fairly precise representation
of each instance “phase function” or BRDF, which is precomputed, embodies the effect of
light propagation and scattering inside the instance. In addition, it should be noted that,
unlike normal clusters [Sillion 1995], no self-links are established on instances, because
their phase function already accounts for internal light scattering.

During these temporary hierarchical radiosity solutions, elements in the hierarchy that
previously exchanged light with the parent (now opened) instance are treated as fixed light
sources. Indeed, thanks to the use of the precomputed instance BRDF functions, the inter-
nal solution among instance contents is not supposed to act on energy exchanges external
to the instance. However, this is not perfectly true because of the approximate instantiation
and translates into an approximation in the solution finally obtained (See section 6).

Once the local solution is obtained, we traverse the local hierarchy, and focus on each
instance encountered recursively calling the local Hierarchical radiosity algorithm on it.
When we reach a level with no instances below, the local solution is equivalent to hierar-
chical radiosity with clustering, and a complete solution is available for the current branch
of the scene hierarchy, taking into account contributions from the entire scene.

Finally, the local geometry is destroyed and replaced back by its parent instance. Con-
sequently, the solution for the current portion of the hierarchy is accessible at the current
stage only, because its supporting geometry will be deleted when closing the parent in-
stance. We thus render the corresponding polygons into an off-screen buffer (or output the
results to a file), thereby progressively forming the image during the traversal of the scene.

3.4 Opening instances

We detail here the operations involved in the opening of instances during the recursive
traversal of the instance hierarchy. This process is illustrated in Figure 6. On the left, we
see a solution computed at a given level. Oval shapes represent objects or clusters, while
rectangles represent instances. Links are indicated by arrows, and have been created at
varying levels of the cluster hierarchy.

When the lower-right instance is opened, we build a hierarchy with its contents, as shown
on the right-hand side of the figure. In order to properly account for all incoming light, we
create copies of all links that previously arrived on the instance (marked using dashed lines
on the figure) and attach them to the root of the new hierarchy. We also add a self-link to the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 11

(a) (b) (c)

InstanceInstance

Cluster

Cluster

Instance Instance

InstanceInstance

Fig. 6. Closer view on the computation of the solution. (a) a solution as been computed using the reflection and
transmission properties of instances; links are indicated by arrows. (b) the bottom right instance is “opened”, e.g
its geometry is loaded into memory. (c) incoming links (in green) are locally refined as well as the self link that
was added on the replacing cluster.

root if no self-link exist on any parent levels, to account for all internal exchanges [Sillion
1995]. This newly created cluster needs this self-link indeed, as any regular cluster of the
hierarchy.

We can then apply the solution procedure outlined above, that is first solve for radios-
ity, then traverse the hierarchy to open instances and recurse. The right side of Figure 6
illustrates the radiosity solution, in the opened level: Dashed links correspond to links that
previously arrived at the instance level, and have been refined. Internal links issued from
the refinement of the added self link are also represented. The recursion would then con-
tinue into the smaller instances before returning to the left-hand situation and opening the
other instance.

Note that refinement is constrained such that, only elements belonging to the considered
hierarchy may be subdivided (either as emitters or receivers). Gathering and push/pull
operations are also applied to the local hierarchy only, essentially treating all elements
external to this hierarchy as fixed light sources.

3.5 Cost considerations

Simple recursion arguments allow us to evaluate the cost of our algorithm in terms of
storage and computation cost. Let us denote the number of instantiation levels by k, the
number of elements (polygons plus instances) at each instantiation level by N, and the
number of these elements that are instances by p. This model is very simple because it
assumes a uniform branching factor among all levels of the hierarchy of instances, and a
uniform proportion of instances and polygons at each level of the scene hierarchy.

By definition, the number of polygons in the root of the hierarchy (as well as inside
each instance) is N− p. This is repeated p times at the next level, and p2...pk−1 times at
subsequent levels until level k− 1. At level k, there are no instances below and thus N
polygons per instances. The total number of polygons in the scene is consequently :

n = (N− p)(1 + p + ...+ pk−1)︸ ︷︷ ︸
Levels 0 (root) to k−1

+ pkN︸︷︷︸
level k

= O(pkN) (1)

Gain in memory. Let ε, I and o pectively denote the size of a polygon, an instance and
an original (instanced) object in memory.

Assuming r original objects are used to create the p instances at each level, the memory

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

12 · Cyril Soler et al.

footprint of the scene at the top level of the calculation is :

Minst(1) = (N− p)ε + pI + ro

Since the algorithm only loads the geometry of the branch of the hierarchy it is descending
into, the maximum memory requirement is reached at the bottom of the hierarchy, where
it is :

Minst(k) = k [(N− p)ε + pI + ro] (2)

For the ideal case of a well balanced hierarchy of instances, the memory cost is thus loga-
rithmic in terms of the total number of polygons in the scene. In any case, it is much less
than the O(nε) memory size of the model itself. In scenes with limited instantiation depth
(e.g k is small) the logarithmic equivalent does not hold anymore. In the worst case, the
gain in memory is the number of instances times the ratio between the memory cost of an
instance and the actual geometry.

As an example taken from our implementation and real data, consider o = 1,100 bytes
(an original object holds two sampled directional functions at 528 bytes each), ε = 150
bytes (this rather large size accounts for geometry, radiometric and subdivision informa-
tion) and I = 200 bytes (in our implementation, instances are also clusters and thus contain
inherited information). For the tree presented in Figure 14, we have n = 119,000, k = 4,
r = 5, N ≈ 30 and p≈ 8. The expected memory size given by (2) is 48 Kb, which is much
less than n ε = 15,085Kb, the expected size of the entire scene.

Although these numbers do not translate directly into required memory sizes, because
of the missing constants and various fixed costs, we will see in the result section that a
large memory reduction is observed, the gain increasing with scene complexity. It actually
becomes feasible to simulate very large scenes that simply could not be treated by previous
methods.

Since the accuracy threshold does not change when recursively computing the local
solutions, the maximum number of links in memory can be estimated by the number of
links that contribute to the illumination of a leaf element in a classical hierarchical radiosity
solution on the entire scene, multiplied by the number of leaf elements at the lowest level,
e.g O(N logn). This is much less than the O(n logn) links of the normal clustering radiosity
method.

Computation cost. We consider that a hierarchical radiosity solution in a scene of n
elements equipped with a well balanced hierarchy can be performed in O(n logn) time.

Let C(i) denote the cost of our algorithm for solving level i and its sub-levels. To get an
expression for this cost, we add the cost of a local radiosity solution between N elements
to the cost of recursively calling the algorithm on the next level for the p instances :

C(i) = N log(N) + pC(i + 1) and C(k) = N log(N)

The cost for the entire scene is thus :

C(0) = N log(N)
(

1 + p + ...+ pk
)

= O(pkN log(N))

Considering that n = O(pkN), the value C(0) appears to be equivalent to O(n log(N)),
which is close to the cost of the classical hierarchical radiosity algorithm. Practical exper-
iments show that, whereas the gain in memory is a little over estimated due to some fixed

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 13

costs, the logn/ logN gain in computation time accurately reflects reality.

3.6 Discussion

The Hierarchical Instantiation algorithm essentially gains by neglecting the correlation
between objects lying in different instances at the same hierarchical level. For two such
sibling instances, no link can ever be created between one object from each, because the
contents of both instances are never simultaneously present in memory. This ensures that
every local solution only involves a small number of objects, at the expense of a small
approximation. We will illustrate this approximation on practical examples in section 6.

For the same reason, a complete solution is never present in memory, although every
part of the global solution is available at some stage of the calculation. This explains why
any results such as images or radiosity values written to a file must be output during the
calculation as mentioned earlier.

A similar behavior could be achieved in a normal radiosity algorithm, by preventing the
refinement of an emitter if it is an “instantiable” object different from the receiver. However
the global accuracy would be lower unless the emitter is already refined enough to obtain
a high-quality representation of its internal light distribution. Since the phase functions of
the original instances are pre-computed and stored, more computation time can be invested
in this process than typically done in a hierarchical radiosity computation. For instance, the
effects of internal visibility in emitting clusters, which are usually not computed for cost
reasons [Sillion and Drettakis 1995], are intrinsically accounted for in the phase functions.

4. LIGHT PROPERTIES OF PLANTS

Instantiation in plant models is based on plant self-similarity. In section 4.1 we first discuss
how to determine potential instances and sibling structures in plant models. For an instance
to be able to participate in radiosity calculations without accessing its geometric content
we require the knowledge of (a) an outgoing radiance distribution [Sillion et al. 1995], (b) a
bidirectional scattering phase function to convert incoming energy into outgoing radiance,
and (c) a transmittance function. We discuss in 4.2 how to represent and compute these
functions. Finally, at the lowest level in the geometric hierarchy, the leaves of the plant are
responsible for light interaction with the model. In 4.3 we present the model we use for
local leaf-light interaction.

4.1 Identifying instantiable structures

We want to reveal the redundancy present at different scales in plant models. The question
is thus : how to characterize similar structures in a plant ? For this we can distinguish two
approaches :

Formally, two structures can be replaced by a common instance as soon as they have
sufficiently similar phase and transmittance functions. However, a complete investigation
of these functions over all structures in a plant is a very expensive calculation, which makes
any brute-force approach impracticable.

The second possibility is to rely on additional information related to the plant models. In
our case, plants are defined as hierarchies of botanical structures, each one being assorted
with an orientation and a collection of botanical parameters, such as the number of leaves
contained in the structure, its physiological age [(de) Reffye et al. 1996], the type of the
structure (Branch, leaf, whole plant, flower, etc.). It makes sense that structures of the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

14 · Cyril Soler et al.

same number of leaves and same type have very similar geometry and thus very similar
phase and transmittance functions. We will verify it through an example :

Figure 7 shows structures of a poplar tree and a locust tree. The curves in Figure 8
represent the cut of their phase function for fixed input θ and ϕ and output θ, and varying
output ϕ1 We indicate for each structure its type (Branch, Plant, ...) and its number of
leaves. On the left side (poplar) we see that structures of similar number of leaves (by
similar the mean the same order of magnitude) have very similar phase function values.
This phenomenon is all the more verified that the number of leaves is large. The number of
leaves in a structure can thus in this case be used as an efficient way of detecting instantiable
structures throughout the model.

Looking at the same curves for the locust tree, it appears that the similarity is not
respected between structures of number of leaves of the same order (see for instance
Branch−248 and Plant−367) unless they are of the same type (for instance Branch(c)−
248 and Branch(c)− 131 are very similar, as well as Plant− 367 and Plant− 1615). A
pertinent parameter set is thus the number of leaves plus the type of the structure for this
particular case. We have found that these parameters work fine for all other species of trees
we have tested.

As we will see later, the memory cost of the phase function of an instance can be quite
large, and when using our lighting simulation algorithm in cooperation with a plant growth
simulation program, larger and larger structures may appear in the scene. Computing the
phase function of these structures on the fly would be very costly (even more than not using
instantiation at all !). Fortunately, we observe that, as structures get more complicated, they
tend to have their phase function and transmittance converge to a fixed value. This can be
observed in Figure 8 for the phase function. Our policy is therefore to use a fixed phase
function and transmittance for structures larger than a certain size.

In our implementation, the information needed to know which parameters are relevant
for instantiation is stored into an instantiation policy file, as well as the differentiation
intervals for these parameters and the maximum size of differentiable structures for each
type. A specific instantiation policy file has been constructed for each kind of plant. This
also means that we are performing approximate instantiation, e.g we only use a small num-
ber of representative structures to provide phase function and transmittance for all possible
instances. The policy for sharing the phase functions and transmittances is for the moment
designed by hand for each plant, but it could be automated based on the computation of
differences between phase functions of various structures.

Finally, turning each structure definition into a cluster, we obtain a cluster hierarchy that
only contains instantiable clusters but still may have a very large branching factor. Its
efficiency toward hierarchical radiosity is then improved by inserting new levels of (non
instantiable) clusters, using a constrained clusterizer [Hasenfratz et al. 1999]. Besides,
self-similarity occurs in vegetation scenes at multiple scales including groups of plants of
various sizes, and there is no reason to limit the instantiable hierarchy to the level of the
plant themselves, as soon as we manage to compute (or predict) their phase functions.

1The angles θ ∈ [0..π] and ϕ ∈ [0..2π] are the angular coordinates of a direction, in the coordinate system local to
the plant structure: the main trunk of the structure is aligned with the z axis (θ = 0) and the x axis (θ = π

2 ,ϕ = 0)
is orthogonal to the z axis of the parent structure.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 15

12 (7−lobes) leaves
locust branch (type a),(a)

2259 leaves1506 leaves603 leaves138 leaves
poplar branch,(a)

34 leaves
locust branch (type b),(b)

248 leaves
locust branch (type c)(c)

367 leaves
locust plant,(d)

poplar plant(e)
5541 leaves

poplar branch(d)poplar branch(c)(b) poplar branch

Fig. 7. Some of the structures used to compute the illumination in the poplar and locust trees in this paper. In
the case of the poplar tree, the relative random orientation of the leaves and the common shape of branches and
whole plants makes the number of leaves a sufficiently pertinent factor for instantiation. This is not the case for
locust structures, as can be seen on the phase function values of Figure 8. Locust structures are represented in the
global coordinate system, poplar ones are in their local coordinate system given by their botanical orientation.

4.2 Reflection and transmission properties of representative structures

4.2.1 Definitions. To represent reflectance properties, we can choose between at least
three kinds of functions of various memory costs and accuracy: (1) constant values, e.g a
single spectra, like in diffuse radiosity algorithms, (2) mono-directional functions corre-
sponding to the average radiosity of the replaced geometry when stimulated from a given
input direction [Soler and Sillion 2000], and (3) bidirectional phase functions. Represen-
tations 1 and 2 are easily obtained from the phase function itself.

The bidirectional phase function f is defined in general as the contribution of input light
energy Ii(θi,ϕi) in the incoming direction (θi,ϕ0) to the energy Is(θs,ϕs) that is scattered

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

16 · Cyril Soler et al.

Whole plant 2259

Branch 1506
Branch 540

Whole plant 5541

Single Leaf 1

Branch 138
Branch 147
Branch 183
Branch 603

Inter node 3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 1 2 3 4 5 6 7

Brdf cuts for various structures

ϕ

B
rd

f
va

lu
e

(Radians)

of a poplar tree of a locust tree
Brdf cuts for various structures

(Radians)ϕ
0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7

B
rd

f
va

lu
e

Single leaf

Plant 367

Branch (a) 12
Branch (b) 34
Branch (b) 47

Branch (c) 131
Branch (c) 248

Plant 1615

Fig. 8. These different curves represent slices of the phase function of various structures extracted from a model of
poplar tree (left) and a locust tree (right), computed using a hierarchical radiosity algorithm (without instantiation)
on the plant models. See Figure 7 for images of some of the corresponding structures. The slices correspond to a
lateral input direction of θin = π

2 and ϕin = π
2 and a lateral output direction of θout = π

2 and varying ϕout .

θ ,ϕ()
ii

dωi

θ ,ϕ()
ss

dωs

θ ,ϕ()
ss

Scattered intensity
for direction

Incident intensity (θ,ϕ)

(θ,ϕ)
Mean attenuation
for direction

r

Fig. 9. Notations for the definition of the phase and transmittance functions of an instance.

toward direction (θs,ϕs) per unit solid angle in both directions [Siegel and Howell 1992]
(see also Figure 9 for notations) :

Is(θs,ϕs)dωs = f (θi,ϕi,θs,ϕs)Ii(θi,ϕi)dωi

By extension, and with respect to its usual definition in computer graphics, we also define
f to be the BRDF of the instance.

The transmittance function τ(θ,ϕ) of an instance is defined as the mean value of the
binary visibility v(θ,ϕ) along all rays of a given direction (θ,ϕ) that cross the bounding
box of the instance :

τ(θ,ϕ) =
1

Aθ,ϕ

∫

r//(θ,ϕ)
v(θ,ϕ)dr

In this expression, Aθ,ϕ denotes the area of the projection of this bounding box in
the given direction. Obviously 4-dimensional per ray transmittance functions would be
overkill because they would faithfully represent a geometry that is not the one the in-
stance really replaces, due to the approximate instantiation. Using a single transmittance
value [Sillion 1995] (for instance based on the density of clusters) would amount to con-
sidering plant structures to be isotropic. This assumption is not valid for a number of

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 17

Fig. 10. A small struc-
ture from a poplar tree
and its directional trans-
mittance function. The
red sphere represents the
mean value of the func-
tion over all directions.
The flatness of the leaves
make the transmittance
higher in near-horizontal
directions and lower in
near-vertical directions.

4 10 34 130 514

Fig. 11. Recursive subdivision of a tetrahedron to obtain a sampling of directions.

structures such as plagiotropic branches, in which leaves share a common orientation. We
consequently have chosen a directional approximation of the transmittance. An example
of such a function can be seen in Figure 10.

4.2.2 Representation. The key point in choosing a good representation of directional
functions is the compromise between fast access to the values and low memory cost of the
storage. Some authors for instance used spherical harmonics [Gastellu-Etchegorry et al.
1996; Sillion et al. 1995]. These are inherently smooth and therefore not very suitable for
representing highly varying functions.

We represent directional functions as an array of values they take for a set of pre-sampled
directions distributed on the unit sphere. These directions are obtained by recursive subdi-
vision of a tetrahedron, yielding to successive sets of 4, 10,34,130,514 . . . directions asso-
ciated to the vertices of the resulting polyhedron, as shown on Figure 11.

Fast access to the values of the functions is provided using linear interpolation on each
face of the polyhedra. Any useful information that does not depend on the function values
but serves some computation (solid angle attributed to each direction, adjacency relation-
ship between the directions, etc) is shared. Bi-directional functions are also sampled in the
same way, each input direction producing a directional distribution of outgoing light.

The table below sums up the memory cost inherent to various choices for represent-
ing reflectance function of the poplar branch of Figure 7.b (Bottom row) using constant
values, mono-directional functions sampled in 130 directions, and bidirectional functions
sampled in respectively 342,1302 and 5142 directions. The first two columns indicate the
maximum and average difference between the reflectance function and the most accurate
5142 bidirectional phase functions. The last column shows the measured memory cost for
propagating light in a poplar tree of 5541 leaves (Figure 7.e) using 4 levels of instances,
and an average of 8 instances and 30 polygons per newly opened instance. Four original
clusters (and thus four distinct reflectance functions) were used.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

18 · Cyril Soler et al.

Fig. 12. This figure shows cut
sections of the BRDF of two
structures (see Figure 7.a and 7.b,
bottom row) computed with a
hierarchical radiosity algorithm
with different accuracy threshold
values. For both structures there
exists a value of ε under which
the functions are nearly indistin-
guishable from the actual BRDF
of the geometric model.

Sensitivity of BRDF computation
to ε

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 1 2 3 4 5 6 7

603 leaves138 leaves
ε
ε
ε
ε

ε
ε
ε

ε
=15.9%
=3.02%

=100%

=0.64%

=583%

=15.9%
=3.02%

=100%

ϕ

B
rd

f
va

lu
e

(Radians)

Reflectance Error Function size Memory
function type ‖.‖∞ ‖.‖2 in kB in kB

Constant 70 % 15 % 0.012 1
Mono-directional 52 % 11 % 6.168 26
Bi-directional 342 24 % 13 % 13.872 993
Bi-directional 1302 11 % 3 % 202.800 1 748
Bi-directional 5142 0 % 0 % 3 170.352 13 618

When using bi-directional reflectance functions, mono-directional radiosity and irradi-
ance distributions are necessary for every instance. Bidirectional reflectance functions can
be quite costly, but these functions are shared by many instances and only a few distinct
bidirectional phase functions are usually necessary (hardly more than 10) for a given plant.

In the above experiment, the memory cost is essentially driven by the size of the phase
functions we use. Indeed, thanks to the small branching factor (38 in this case) of the
hierarchy, the number of instances simultaneously present in memory is small (Less than
8 here) and their cost is over-weighted by that of the phase functions for 5142 directions.

Looking at the associated accuracy, our conclusion is that mono-directional reflectance
functions are usually a good compromise but still can advantageously be replaced by phase
functions of 1302 directions when very accurate solutions are needed.

4.2.3 Computation. To compute the phase function of a structure, we stimulate the
geometry with a light flux of constant intensity and controllable direction, compute the
equilibrium of light energy inside the geometry using a hierarchical radiosity algorithm
and measure the outgoing light intensity and spectrum. Although sampling is performed
using graphics hardware, the computation itself is a costly operation that mainly depends
on the accuracy threshold of the hierarchical radiosity used [Sillion 1995].

Figure 12 shows an example result of such a calculation. It appears clearly that the
accuracy threshold must be sufficiently small to reach convergence, but not too small to
avoid wasting time without any improvement of the phase function. In practice, threshold
values of about 20% (relative to the impulse stimulation) provide excellent results. The
hierarchical radiosity algorithm indeed proceeds an in-depth refinement of light interac-
tions between clusters in the structure. An interaction between two clusters is considered
satisfactory when the estimated variance of energy transfers between pairs of polygons of
these clusters is smaller than ε.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 19

To compute with the phase function the outgoing distribution of light of an instance
receiving incoming energy along a link, we multiply its phase function for the incident
direction by the irradiance along the link. For that reason, the phase function can also be
called the reflectance function of the instance, as an extension to its usual definition on
simple surfaces.

Transmittance functions are computed for each direction, by rendering the correspond-
ing plant structure into an image. Three colors are used during this operation : one for
the geometry, one for the background and one for the bounding box of the geometry. The
directional transmittance of the object is then obtained as the proportion of pixels of the
bounding box still visible among all pixels of a different color than the background. Com-
puting the transmittance is much faster than the phase function since it only requires a few
successive off-screen renderings.

4.3 Leaf reflectance and transmittance model

Examining real plants, it clearly appears that the reflectance of leaves is not necessarily
the same on both sides, and is also partially specular mainly on the side facing the sun.
According to [Baranoski and Rokne 1997] and [Govaerts 1995], the translucency of plant
leaves is also almost purely diffuse. Note that transmission through a leaf can amount to
up to 40 % of the received energy, depending on the wavelength considered.

For the sake of simplicity, we currently assume diffuse reflection and transmission on
leaves. But, although it would require to store directional distributions of out-coming
energy and multi-dimensional reflectance functions, using a directionally-dependent re-
flectance (or transmittance) model for light transfers on leaves does not cost much more
for two reasons : (1) only a small number of leaves are simultaneously present in memory
thanks to the instantiation algorithm and thus only a few out-coming light distributions are
simultaneously required. (2) the reflectance/transmittance functions being the same for all
leaves in the plant, they can be shared in memory.

In summary, our model for light exchange at the level of leaves simply consists in trans-
ferring the irradiance on each side of a leaf to the radiosity on the other side, after multi-
plication by a diffuse translucency factor τ for each side. Calling Bi the radiosity of side i
of a leaf and Ii its irradiance and Ri its reflectance, we use:

B1 = ρ1I1 + τ2→1I2

B2 = ρ2I2 + τ1→2I1

This is computed during the hierarchical push/pull operation [Sillion 1995]. The light
energy pulled up in the hierarchy is the average value of the energies on both sides of the
leaf.

Transmittance through standard geometry is computed using ray-tracing and the total
attenuation along a ray that crosses several instances is computed by multiplying the trans-
mittances of the instances together.

5. IMPLEMENTATION ISSUES

We have grouped into this section the details concerning our implementation of the hierar-
chical instantiation algorithm for vegetation scenes.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

20 · Cyril Soler et al.

Instantiation database

Reflectance and transmittance functions for the representative structures are stored into a
database. The database contains a module that is responsible for choosing which represen-
tative structure can approximate a given part of the plant. This module is also in charge of
updating the database on the fly, in the case where it cannot find a suitable representative
structure among already computed ones. A buffer of plant structures is also used in order
to keep trace of already loaded plant geometry and phase functions.

Light sources

Our system currently handles directional light sources, e.g that illuminate all objects from
the same direction (thus producing hard shadows), infinite light sources (e.g sources that
are composed of an independent set of incoming directions packed into a fixed solid angle
scope, thus producing soft shadows), and local diffuse light sources as in standard radiosity
packages.

In order to simulate a sky dome illumination during a long period (which is the more
realistic situation for a tree), we combine an infinite light source covering the sky hemi-
sphere and a number of infinite light sources with small solid angles to represent sampled
positions of the sun during the period.

Radiosity-like diffuse light sources are not common in nature, but still can be used to
simulate the illumination in urban environments and to simulate the illumination coming
from the painted windows of a greenhouse.

Representation of light

Light is represented by components along different wavelengths. Red/Green/Blue is used
to directly obtain images, but infrared simulations are more useful for applications in
agronomy, such as computing the temperature and also studying geometrical response of
the plant (positioning towards light) to the illumination [Gautier et al. 2000].

Refinement and visibility

The refinement is a very important stage of each iteration of any hierarchical radiosity-
based algorithm, since it decides at which level in the hierarchy energy exchanges will take
place. From the choice of the minimum size of refined elements depends the accuracy of
the shadows projected by objects in the scene. During refinement, a conservative visibility
information is ensured using shaft-culling and inherited by refined links. When the scene
contains instances, the geometry that the instances replace is not present. Thus it is not
necessary to refine elements that receive shadows from instances more than the size of the
shadow itself.

This highlights one of the potential drawbacks of the hierarchical instantiation algorithm
in its present form : in order to compute nice shadows, more geometry must be loaded into
memory at the expense of the memory cost. More precisely, we can act on the minimum
depth at which we allow geometry to be replaced by instances so as to get more and more
accurate shadows.

Another method is to use geometric instantiation, e.g replacing the transmittance func-
tion of an instance by a copy of its geometry, both being shared by all instances of a given
structure. This geometry is then used to trace rays trough the instance at a larger memory
cost, but still much lower than the cost of an explicit entire scene. In addition to plants,

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 21

Fig. 13. Comparison between instantiation (left, 14min/8MB) and classical hierarchical radiosity (right
119min/123MB). Instantiation starts at depth 1 (e.g branches. Level 0 is the entire plant.)

450s

250s

426s

385s
300s

536s

Relative error (% of the reference solution)

5600s

836s

3600s

(arbitrary units)Accuracy threshold
0.8 0.90.6 0.70.5

Instanciation (Every 2 levels)

4

Instanciation (Every 3 levels)
Hierarchical radiosity

Instanciation (all levels)

10.2

2

1

0

3

0.40.30.10

5

6

7

8

Instantiation all levels

Number of elements

Number of HR problems

80 >100

Instantiation every 3 levels

1

Instantiation every 2 levels

10

100

1000

604020

10000

Fig. 14. Left: L2 error in percentage of the maximum value of the reference solution (computed using hierarchical
radiosity) for various values of the accuracy threshold used in link refinement. The numbers in black on the curves
indicate computation times in seconds. Right: histogram of the number of hierarchical radiosity solutions on
local hierarchies with variable numbers of leaf elements. When instancing at fewer levels, hierarchical radiosity
computations tend to involve more elements.

we have successfully tested this method for repetitive objects in architectural scenes [Soler
and Sillion 2000].

6. PERFORMANCE

In Figures 13 and 14 we compare the results of our instantiation algorithm to that of a
classical hierarchical radiosity simulation with clustering. The same set of parameters has
been used except the instantiation flag. The tree is a 30-year old poplar tree consisting of
119 000 polygons. Experiments have been conducted on a SGI Origin2000 computer.

Looking at the images on Figure 13 the results seem identical at first sight. Some subtle
differences can be found however, which mainly concern the variation of energy in some
parts of the plant where instantiation has been used. We attribute it to the fact that in our
implementation, the radiosity stored in the instances is not directional but represented as a
single value (As explained in section 4.2). On the top right image for instance, the light
arriving from the light source on the center of the tree has been distributed behind the
instance because of this approximation.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

22 · Cyril Soler et al.

As expected by our estimations, the gain is very important (15 times lesser memory in
this particular case), especially considering that there are fixed memory costs (Our radiosity
program requires a fixed amount of 5MB of RAM).

An important gain in computation time is also apparent (Hierarchical Instantiation is 8
times faster). Indeed, because the instantiation algorithm does not allow bidirectional re-
finement of energy links between instances, it refines fewer links and computes fewer form
factors. The ratio between the two numbers of links is the average number of elements an
emitter is subdivided into. This of course depends on the relative positions of the elements
and on the refinement algorithm. If the instances are not too close to each other, we can
consider that our algorithm is equivalent to normal refinement; for really close instances
it is more approximate. Visibility calculations are also faster with instances, since they do
not require geometric operations, instead using the stored mean transmittance value in the
relevant directions.

On the left side of Figure 14, we show a comparison of the accuracy of hierarchical
radiosity and hierarchical instantiation for values of the accuracy threshold used in the
refinement of links. It appears that for larger values of the error threshold, hierarchical
instantiation is much faster than hierarchical radiosity with a better accuracy. This con-
firms that using phase functions that accurately account for the internal scattering of light
is more efficient than the traditional approximation used for clusters in hierarchical radios-
ity. For small error thresholds, hierarchical radiosity is still more accurate than hierarchical
instantiation. We believe that this is caused by our choice of an omni-directional approx-
imation of the reflectance functions in our current implementation, which is confirmed by
the fact that instancing fewer levels in the hierarchy only marginally increases the accuracy.
The repartition of the hierarchical radiosity solutions required by our algorithm in terms
of local scene size is shown on the right side of Figure 14. It clearly appears that when
instancing all levels, only hierarchical radiosity problems with small number of elements
occur. When instancing every other level, the average number of elements per hierarchi-
cal radiosity problem increases. Finally, when instancing every three levels, the algorithm
tends to mainly solve hierarchical radiosity problems with more than 100 leaf elements.
The corresponding histogram for a classical radiosity solution would in turn be composed
of only one bar of height 1 at n elements, where n is the total number of polygons in the
scene.

Influence of instantiation on plant growth simulation

We just saw that the use of instantiation in our simulation of light distribution inside plants
introduces some approximations. When the resulting light distribution is used to control
growth, it is therefore legitimate to consider the possible impact of these approximations
on the plant growth or architecture.

We therefore compare a growth simulation using instantiation2 to what is obtained using
standard hierarchical radiosity with clustering.

Since the plant growth simulator integrates the light received by a particular region of
the plant over a certain period of time and of space, local variations of the solution in time
and space may not affect the result of the simulation, i.e the shape of the plant. We will
thus directly measure the impact of these approximations on the plant model itself.

Measuring the “difference” between two plants grown under slightly different conditions

2The plant growth simulator we use is briefly described in Section 7.2

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 23

Growth Cycles

Accuracy of the instanciation
Maximum

Instanciation down
to 10 leaves

Standard instanciation

Standard
deviationerror

1e−07

1e−06

1e−05

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45

100000

10000

1000

100

10

1

N
um

be
r

of
 le

av
es

16%

E
rr

or
 (

%
)

No instanciation
Full instanciation

Partial instanciation

Memory Computation time

0.01

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

1000

100

10

1

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

M
em

or
y

us
ed

 (
M

B
)

Cycles

Fig. 15. left : Maximum value and standard deviation of the structural distance between a plant grown using
instantiation and the same plant grown using standard HR with clustering, monitored during growth as a function
of growth cycle number. In blue: instantiation was limited to structures of more than 10 leaves, after which
a simple gather and pushpull was performed on the structures, thus inducing more error. In green: standard
instantiation. Right: The computation times and memory cost corresponding to each growth cycle are displayed
for these two experiments, as well as for the growth without instantiation. Note that when using instantiation,
lighting simulation typically takes a fixed proportion of total growth simulation computation time (roughly 80%).

is not straightforward because their topology may not be the same. To cope with this, we
have turned off the fall of dead structures and chosen a plant for which the branching
factor is constant. In that case computing the difference between equivalent structures in
two plants of the same age becomes easy.

Figure 15 shows the error associated with the use of instantiation when computing the
light distribution during a plant growth simulation, as well as computation times and mem-
ory usage. This example can also serve as a reference for computation times and memory
costs of our method.

The conclusion for this small experiment is that instantiation only perturbs the growth
simulation in a marginal, very acceptable manner. Limiting the depth of the computation
to instances of at least 10 elements only brings a small gain in computation time and saves
the memory cost of light properties of small structures (e.g two BRDFs in that case).

7. APPLICATIONS

As stressed in the introduction, lighting simulation in plant models has important appli-
cations in computer graphics (synthetic image generation) as well as in agronomy (plant
growth simulation). Intermediate applications may also be considered, such as urban and
architectural design. We discuss in this section the key points in using instantiation for the
first two applications: rendering and plant growth simulation, and give practical examples
for each.

7.1 Rendering

As previously discussed, the global illumination values on the geometry elements are only
accessible during the calculation, when the corresponding parent hierarchy of instances are
open. In order to obtain a view-independent solution, we have to save it in a file during
the computation. To produce images, the user can load an instanced version of the scene
(thus displaying bounding boxes instead of the complex geometry of instances) and load
and display the result after having chosen the view point. We used this technique for the
images in Figure 16.

When computing a single static image however, we simply render the geometry to an
off-screen buffer. In this case, we are obviously not interested into the geometry that does

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

24 · Cyril Soler et al.

Fig. 16. A plantation of 233 trees (Poplar and lo-
cust trees) for a total of 2M leaves and 5M initial
polygons. Computation time is four hours. Note
that most the time is dedicated to the refinement
of local energy transfers in order to obtain accept-
able shadows. In other words, coarser solutions
that approximate the global illumination solution
very well are still obtained in a much shorter time
(20 mn). The total memory cost for this scene is
80 MB.

not appear on the image itself. Because this geometry still participates into the global
equilibrium of light energy in the scene, traditional radiosity algorithms have to consider it
explicitly. Thanks to the instantiation algorithm, it is not necessary to open instances that
do not appear in the viewing frustum during the calculation, which drastically increases
efficiency while hardly altering the solution. Only instances that appear on the image are
thus opened.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 25

Biomass
equations

Organ
volume −BRDF

−transmittance

Plant database

with clustering
Instanciation HRAllometry

rules

Vegetal matter production Geometric models Images

Morphogenetic
rules

C
om

pu
ta

tio
n

O
ut

pu
t

Geometry

Growth simulator Light simulator

Topology

Light energy

distribution

Geometry

and topology
In

pu
t Plant species parameters

− growing model
− sensitivity params

Scene parameters

−obstacles
−light sources

Environment parameters

Fig. 17. Architecture overview of a plant growth simulation system. The plant growth simulator kernel on the
left-hand side is in charge of three tasks: computing the plant topology using a morphogenetic description of the
growth [de Reffye et al. 1988], computing the volume of organs due to the fabrication of fresh vegetable matter,
and computing the geometry of the plant, using so called allometry rules. The second step (organ volume) uses
the amount of light received by each leaf of the plant during the simulation step as an input variable.

7.2 Plant growth simulation

7.2.1 Presentation. We discuss here the application of our lighting simulation tech-
nique to plant growth simulation. A physiological plant growth simulator is coupled with
our light simulation software. The former supplies, at each growing step, the topological
and geometrical description of the plants and the latter responds with the amount of light
received by the plants. Figure 17 shows an overview of this architecture.

Note that in the context of this paper, we are only considering the problem of light sim-
ulation, and treat the plant growth simulator as a “black box”. In our implementation we
have used CIRAD’s AMAPhydro simulator, which computes the production of vegetal
matter throughout the plant as well as the stimulation for the growth of each organ based
on water transpiration, directly linked to the amount of received light energy. This allows
to automatically simulate architectural and shape variations in plants, such as those shown
in Figure 18 (left). In addition to its intensity, the directionality of light is used to have
plant axes aim towards the light sources to maximize the amount of light energy received
by their leaves (e.g Figure 18-center). Details about this simulator can be found else-
where [de Reffye et al. 1988; (de) Reffye et al. 1996; Blaise et al. 1998; (de) Reffye et al.
1999] 3. Note that other growth simulation modules could easily be used instead [Měch
and Prusinkiewicz 1996].

The combination of eco-physiological laws in the plant growth simulator and proper
light simulation allows precise modeling of the modification of the plant architecture, shape
and size throughout the simulation, and accurate response to external factors. A key ingre-
dient of the system is thus the lighting simulator. Unfortunately the distribution of light in
a plant is highly non-uniform due to diffusion, self-shadowing, and indirect lighting. These

3In addition to the lighting simulation module, other modules exist but are not discussed here, such as a mechan-
ical simulator to deal with internal mechanical constraints when inferring the geometry of branches.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

26 · Cyril Soler et al.

Fig. 18. left and center : Two examples of the light influence on plant growth: On the left the growth rate of
the plant is not uniform throughout its body (higher in the regions close to the light bulbs); in the center image
the plant has been rotated at regular intervals during growth, hence the twisted shape of its trunk due to its
constant aiming toward the window. The image on the right shows light directionality vectors as computed using
equation 3, for each polygon of the leaves of a simple plant, lit by four light sources. The directionality is easily
perceptible on this picture.

phenomena must all be simulated to obtain meaningful intensity and lighting direction in-
formation for each growing structure of the plant. Thus we have two conflicting goals. We
need a method that works at many scene scales: a single plant as well as a large number
of trees; and we want accurate predictions at the finest scale, i.e. for each individual leaf.
This makes the Hierarchical Instantiation algorithm a perfect candidate for this task.

Collecting information for the growth simulator. The physiological plant growth sim-
ulator needs to know for each growth cycle the intensity of light energy received by the
leaves as well as the average direction of incoming light. Both quantities are obtained on
the fly during the computation, when the concerned geometry is present in memory: the
irradiance is obtained by summing the contribution of the links that end on all parents of
the current leaf. The main irradiance direction vi for leaf i is obtained by summing the
irradiance vector contributions I(E j) from the emitters E j of the links on the parents of i in
the following way :

~vi =
1

∑E j∈P(i) I(E j)
∑

E j∈P(i)

I(E j)~v(E j) using ~v(E j) =
∫

E j

y− x
‖y− x‖3 cosθdy (3)

Using this formula, the more “directional” the incoming light is, the larger is the norm
of~vi. If incoming light is uniformly distributed around a leaf,~vi will be~0 (See example on
Figure 18 right).

One important advantage of the instantiation algorithm over classical radiosity and other
explicit methods is that we do not need to push the exploration of the scene down to the
level of the leaves to simulate the equilibrium of light energy at higher levels of the hierar-
chy: before opening instances, the algorithm already provides an accurate global solution
based on the information encoded into the phase and transmittance functions of the in-
stances. As soon as the plant growth simulator can be satisfied with lighting information
at the level of bigger structures than single leaves (branches for instance) is thus becomes

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 27

Fig. 19. Influence of indirect lighting on growth simulation. The left-hand plant was subjected only to direct
lighting. Note the overall difference in size, as well as the subtle differences in the plant architectural balance.

possible to drastically accelerate the growth process by limiting the depth of the traversal
of the hierarchy of instances during each lighting simulation step. When computing im-
ages however, the geometry still needs to be accessed and the instances have to be visited
in depth. We limit the computation in such a case to a push-pull of the radiant energy
computed at higher levels down to the level of the geometry.

7.2.2 Experiments.

7.2.2.1 Influence of indirect lighting. We present a test on indirect lighting to deter-
mine the importance of simulating this phenomenon during the growth process. This jus-
tifies the use of an algorithm capable of simulating global illumination rather than simply
measuring direct lighting through the vegetation.

Figure 19 shows the same plant grown with direct lighting only on the left, and normal
lighting on the right. Measuring the difference between the two results using the norm
described above, we find (and it is visible on the pictures) that the error is more than 10%
of the size of the plant (for comparison, the error due to instantiation approximations is
less than 0.1% at that cycle).

Within the visible light spectrum range, diffusion of light inside plants foliage is limited
by the small reflectance and transmittance values of the leaves (about 0.04: see [Govaerts
1995] for typical examples). In the IR domain however, internal diffusion of light becomes
much more significant because reflectances and transmittances of plant leaves take values
up to 40% [Govaerts 1995]. Simulating the IR distribution is useful to internal temperature
profile in plants.

Indirect lighting may not only come from the vegetation itself but also from objects in
the scene. A rather common example is that of a plant growing next to a wall (in front of a
house for instance). Then a significant part of the light energy received by the plant comes
from the surrounding objects.

7.2.2.2 Virtual plants grown. Figure 20 shows a plant that starts growing behind a
wall. The production of vegetal matter and the growth rate of organs that receive light,
as well as the seek for incoming light, favor the growth of vegetative axes trough the
hole. Successive images correspond to cycles 2, 9, 13,17 and 25. These images were

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

28 · Cyril Soler et al.

Fig. 20. Example of a plant that automatically grows
towards a light source (not visible here) through a hole
in a wall. The view point turns around the wall so as
to show every step of the plant growth.

rendered in a second pass, using our radiosity simulator, from the geometric data produced
during the simulation by the plant growth engine, but using a set of parameters that is more
specifically adapted to visual results. Such an accuracy in the shadows, for instance, is not
at all necessary for growing the plant itself. The total simulation time for growing this plant
is less than 20 minutes on a workstation equipped with a 250 MHz R12000 Processor.

In Figure 21 we show an example of a plant growing under a light source. The images
correspond to cycles 13,22,29 and 34. It appears clearly at cycle 22 that the overall balance
of the plant is influenced by light. Indeed the part that is closer to the light source receives
more energy and thus produces more vegetal matter, hence the higher density of the foliage.
Directionality of the axis toward the light source is not as obvious here as it was on the
previous example (although it can be seen on the second image) because of the larger
rigidity of the branches for that species. The last image also shows the transparency effect
of the leaves. Total simulation time here is 1 hour 30 minutes.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 29

Fig. 21. Four stages in the growth of a tree influenced
by a local light source. The image on the left gives an
overview of the configuration in order to show the po-
sition of the light source. The view on the four images
below is restricted to the tree. The influence of the
source appears in the shape of the tree: the left size is
denser and grows faster than the shadowed right side
(The sky is only here for adding contrast in the im-
age).

8. CONCLUSIONS AND FUTURE WORK

We have presented a complete system for lighting simulation in vegetation scenes, based
on instantiation of similar structures in the plants. The classical hierarchical radiosity
paradigm has been adapted in order to cope with the new representation of the scene,
which is partially geometric and partially virtual (represented by phase functions) during
the computation. We also have presented a complete study on the computation and storage
of such data. The gain in memory and also computation time allows to treat scenes of
thousands of trees and millions of polygons using a very reasonable amount of memory.

Our lighting simulation system has applications in both image synthesis and agronomy.
We have presented an example of each application. More specific applications into the
field of computer graphics include the computation of geometric plant models adapted to

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

30 · Cyril Soler et al.

their environment, simulating plantation growth under various conditions for optimization
of cultures in agronomy or for urban modeling and site planning. These applications only
depend on the interaction of our lighting simulation system with a growth engine based on
a detailed simulation of the internal functioning of the plant, accounting for incoming light
energy.

We believe that a few improvements can be brought to the hierarchical instantiation
algorithm. As discussed earlier, treating an instance as a directionally anisotropic medium
is not very suitable for the production of accurate shadows. The solution we found to this
problem was to instantiate plants at a lower level, at the expense of a larger memory cost.
Another solution to this problem is to choose a different compromise between a coarse,
but memory-cheap representation of visibility, and a memory-consuming but also more
accurate model inside the instances. Billboards, the convex hull of the instance content, a
quadtree of internal density would be such examples. Another complex issue that deserves
further study is the effect of opening an instance on links that simply cross the instance:
sometimes, the extra information available when opening the instance would probably be
useful to decide further refinement of such links. This is however complicated by the fact
that the emitting and/or receiving ends of such links may not be present in memory at that
time.

Future work also includes the use of the instantiation algorithm in order to calibrate
the reaction of plant growth simulators to lighting simulation: the growth engine we have
used, for instance, is perfectly calibrated to statistical data measured on real plants (in
terms of organic matter production and organ sizes). However we still need to infer the
parameters involved into the reactions to light. This can be done using hidden-parameters
identification techniques.

REFERENCES

ASHDOWN, I. 1994. Radiosity: A Programmer’s Perspective. John Wiley & Sons, New York, NY.

BALANDIER, P., LACOINTE, A., ROUX, X. L., SINOQUET, H., CRUIZIAT, P., AND DIZÈS, S. L. 2000. Simwal:
A structural-functional model simulating single walnut tree growth in response to climate and pruning. Ann.
For. Sci. 57, 571–585.

BARANOSKI, G. V. G. AND ROKNE, J. G. 1997. An algorithmic reflectance and transmittance model for plant
tissue. In Computer Graphics Forum (Proc. Eurographics ’97). Vol. 16(3).

BEAUDET, M. AND MESSIER, C. 1998. Growth and morphological responses of yellow birch, sugar maple, and
beech seedlings growing under a natural light gradient. Canadian Journal Forest Research 30, 1007–1015.

BEAUDET, M., MESSIER, C., HILBERT, D. W., LO, E., WANG, Z. M., AND LECHOWICZ, M. J. 2000. Leaf-
and plant-level carbon gain in yellow birch, sugar maple and beech seedlings from contrasting forest light
environments. Canadian Journal Forest Research 30, 390–415.

BLAISE, F., BARCZI, J., JAEGER, M., DINOUARD, P., AND DE REFFYE, P. 1998. Simulation of the growth
of plants, modeling of metamorphosis and spatial interactions in the architecture and development of plants.
Cyberworlds 6, 81–109.

BOREL, C. C., GERSTL, S. A. W., AND POWERS, B. J. 1991. The Radiosity Method in Optical Remote Sensing
of Structured 3-D Surfaces. Remote Sensing of the Environment 36, 13–44.

CASTRO, F. D. AND FETCHER, N. 1998. Three-dimensional model of the interception of light by a canopy.
Agricultural and Forest Meteorology 90, 215–233.

CHELLE, M., ANDRIEU, B., AND BOUATOUCH, K. 1998. Nested radiosity for plant canopies. The Visual
Computer 14, 3, 109–125.

CHEN, S., IMPENS, I., CEULEMANS, R., AND KOCKELBERGH, F. 1993. Measurement of gap fraction of fractal
generated canopies using digitalized image analysis. Agricultural and Forest Meteorology 65, 245–259.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models · 31

DAUZAT, J. AND M.N., E. 1987. Simulating light regime and intercrop yields in coconut based farming systems.
European Journal of Agronomy 7, 63–74.

(DE) REFFYE, P., BLAISE, F., CHEMOUNY, S., JAFFUEL, S., FOURCAUD, T., AND HOULLIER, F. 1999. Cali-
bration of a hydraulic architecture-based growth model of cotton plants. Agronomie 19, 265–280.

DE REFFYE, P., EDELIN, C., FRANCON, J., JAEGER, M., AND PUECH, C. 1988. Plant models faithful to botan-
ical structure and development. In Computer Graphics (SIGGRAPH ’88 Proceedings), J. Dill, Ed. Vol. 22.
151–158.

(DE) REFFYE, P., FOURCAUD, T., BLAISE, F., BARTHÉLÉMY, D., AND HOULLIER, F. 1996. An ecophysiolog-
ical model for tree growth and tree architecture. In Workshop on Functional Structural Tree Models. Helsinki.
Silva Fennica eds.

DEUSSEN, O. AND STROTHOTTE, T. 2000. Computer-generated pen-and-ink illustration of trees. In Siggraph
2000, Computer Graphics Proceedings, K. Akeley, Ed. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 13–18.

FOURNIER, C. AND ANDRIEU, B. 1999. Adel-maize: an L-system based model for the integration of growth
processes from the organ to the canopy. Agronomie 19, 313–327.

GASTELLU-ETCHEGORRY, J., DEMAREZ, V., PINEL, V., AND ZAGOLSKI, F. 1996. Modeling radiative transfer
in heterogeneous 3-d vegetation canopies. Remote Sensing of Environment 58, 2, 131–156.

GASTELLU-ETCHEGORRY, J., ZAGOLSKI, F., AND ROMIER, J. 1996. A simple anisotropic reflectance model
for homogeneous multilayer canopies. Remote Sensing of Environment 57, 22–38.

GAUTIER, H., MĚCH, R., PRUSINKIEWICZ, P., AND VARLET-GRANCHER, C. 2000. 3d architectural modeling
of aerial photomorphogenesis in white clover (trifolium repens l.) using L-systems. Annals of Botany 85, 359–
370.

GOEL, N. 1988. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters
from reflectance data. Gordon & Breach Publishing Group.

GOEL, N. S., ROZEHNAL, I., AND THOMPSON, R. L. 1991. A computer graphics based model for scattering
from objects of arbitrary shapes in the optical region. Remote Sensing of Environment 36, 2, 73–104.

GOLDSMITH, J. AND SALMON, J. 1987. Automatic creation of object hierarchies for ray tracing. IEEE Com-
puter Graphics and Applications 7, 5 (May), 14–20.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B. 1984. Modelling the interaction
of light between diffuse surfaces. In Computer Graphics (SIGGRAPH ’84 Proceedings). Vol. 18. 212–22.

GOVAERTS, Y. M. 1995. A model of light scattering in three-dimensional plant canopies: A monte carlo ray
tracing approach. Ph.D. thesis, Departement de Physique, Université Catholique de Louvain, Louvain, Bel-
gium.

GREENE, N. 1989. Voxel space automata: Modeling with stochastic growth processes in voxel space. In Com-
puter Graphics (SIGGRAPH ’89 Proceedings), J. Lane, Ed. Vol. 23. 175–184.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A Rapid Hierarchical Radiosity Algorithm. In
Computer Graphics (ACM SIGGRAPH ’91 Proceedings). Vol. 25. 197–206.

HASENFRATZ, J. M., DAMEZ, C., SILLION, F., AND DRETTAKIS, G. 1999. A practical analysis of clustering
strategies for hierarchical radiosity. In Computer Graphics Forum (Proc. Eurographics ’99). Vol. 18. 221–232.

J.K., R. AND A.L, M. 1988. Calculation of canopy bidirectional reflectance using the monte carlo method.
Remote Sensing of the Environment 24, 213–225.

KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graphics (ACM SIGGRAPH ’86 Proceedings).
Vol. 20. 143–150.

MAX, N., MOBLEY, C., KEATING, B., AND WU, E.-H. 1997. Plane-parallel radiance transport for global
illumination in vegetation. In Rendering Techniques ’97 (Proceedings of the Eighth Eurographics Workshop
on Rendering), J. Dorsey and P. Slusallek, Eds. Springer Wien, New York, NY, 239–250. ISBN 3-211-83001-
4.

MĚCH, R. AND PRUSINKIEWICZ, P. 1996. Visual models of plants interacting with their environment. In
SIGGRAPH 96 Conference Proceedings, H. Rushmeier, Ed. Annual Conference Series. ACM SIGGRAPH,
Addison Wesley, 397–410. held in New Orleans, Louisiana, 04-09 August 1996.

MYNENI, R., ROSS, J., AND ASRAR, G. 1989. A review on the theory of photon transport in leaf canopies in
slab geometry. Agric. For. Meteorol. 45, 1–153.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

32 · Cyril Soler et al.

NORMAN, J. AND JARVIS, P. 1975. Photosynthesis in sitka spruce (picea sitchensis(bong) carr.). v. radiation
penetration theory and a test case. Journal of Applied Ecology 12, 839–878.

OUHYOUNG, M., CHUANG, Y.-Y., AND LIANG, R.-H. 1996. Reusable Radiosity Object. In Computer Graph-
ics Forum. Vol. 15. C348–C356.

PEARCY, R. AND SIMS, D. 1998. A three-dimensional shoot architecture model for assessment of light capture
and carbon gain by understory plants. Agricultural and Forest Meteorology 89, 241–253.

PERTTUNEN, J., SIEVÄNEN, R., NIKINMAA, E., SALMINEN, H., SAARENMAA, H., AND VÄKEVÄ, J. 1996.
Lignum: a tree model based on simple structural units. Annals of Botany 77, 87–98.

PLANCHAIS, I. AND SINOQUET, H. 1996. Foliage determinants of light interception in sunny and shaded
branches of fagus ylvatica(l.). œcologia 108, 1–12.

RAUSCHER, H., ISEBRANDS, J., HOST, G. E., DICKSON, R. E., DICKMANN, D. I., CROW, T. R., AND

MICHAEL, D. A. 1990. Ecophys: An ecophysiological growth process model for juvenile poplar. Tree
Physiology 7, 255–281.

ROSS, J. 1981. The radiation regime and architecture of plant stands. Junk Pub., The Hague.
RUSHMEIER, H. E., PATTERSON, C., AND VEERASAMY, A. 1993. Geometric Simplification for Indirect Il-

lumination Calculations. In Proceedings of Graphics Interface ’93. Morgan Kaufmann, San Francisco, CA,
227–236.

SIEGEL, R. AND HOWELL, R. J. 1992. Thermal radiation heat transfer. Hemisphere Publishing Corporation.
SILLION, F. 1995. A unified hierarchical algorithm for global illumination with scattering volumes and object

clusters. IEEE Transactions on Visualization and Computer Graphics 1, 3 (Sept.). (a preliminary version
appeared in the fifth Eurographics workshop on rendering, Darmstadt, Germany, June 1994).

SILLION, F. AND DRETTAKIS, G. 1995. Feature-Based Control of Visibility Error: A Multiresolution Clustering
Algorithm for Global Illumination. In Computer Graphics Proceedings, Annual Conference Series, 1995
(ACM SIGGRAPH ’95 Proceedings). 145–152.

SILLION, F., DRETTAKIS, G., AND SOLER, C. 1995. A Clustering Algorithm for Radiance Calculation in
General Environments. In Rendering Techniques ’95 (Proceedings of the Sixth Eurographics Workshop on
Rendering), P. M. Hanrahan and W. Purgathofer, Eds. Springer-Verlag, New York, NY, 196–205.

SILLION, F. AND PUECH, C. 1994. Radiosity and Global Illumination. Morgan Kaufmann publishers, San
Francisco.

SMITS, B., ARVO, J., AND GREENBERG, D. 1994. A Clustering Algorithm for Radiosity in Complex En-
vironments. In Computer Graphics Proceedings, Annual Conference Series, 1994 (ACM SIGGRAPH ’94
Proceedings). 435–442.

SOLER, C. AND SILLION, F. 2000. Hierarchical instantiation for radiosity. In Rendering Techniques ’00,
B. Peroche and H. Rushmeier, Eds. Springer Wien, New York, NY, 173–184.

TAKENAKA, A. 1994. A simulation model of tree architecture development based on growth response to local
light environment. Journal of Plant Research 107, 321–330.

VERHOEF, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The sail
model. Remote Sensing of Environment 16, 125–141.

WHITEHEAD, D., GRACE, J., AND GODFREY, M. 1990. Architectural distribution of foliage in individual pinus
radiata (d. don) crowns and the effect of clumping on radiation interception. Tree physiology 7, 135–155.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

