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We describe a complete lighting simulation system tailored for the dicult case of vegetation
scenes. Our algorithm is basedon hierarchical instantiation for radiosity and precise phasefunction

modeling. It allows ecien t calculations both in terms of computation and memory resources.
We provide an in-depth description and study of the instantiation-based radiosity technique and
we address the problems related to generating and managing phase functions of plant structures,

as needed by the instantiation process. We presert results demonstrating the high performance of
the hierarchical instantiation algorithm and we describe two examples of applications : rendering
of large vegetation scenesand plant growth simulation. Other applications of our system range
from landscape simulation to agronomical and agricultural studies, and to the design of virtual

plants responding to their environment.

CateyoriesandSubjectDescriptors1.3.7[Thr ee-DimensionalGraphics and Realisim: Radiosity;l.3.2[Method-
ology and Technique$: Graphicsdatastructuresanddatatypes;1.6.3 [Simulation and Modeling]: Applica-
tions—Plant Growth Simulation

General Terms: Algorithms, Measurement, Performance
Additional Key Words and Phrases: Plant growth simulation, lighting simulation, radiosity, in-
stantiation, landscape simulation, calibrated physiological simulation

1. INTRODUCTION

Three-dimensionacenegontainingplantsandvegetationelementareusuallyof tremen-
douscompleity, typically consistingof millions of elementsThereforehey constituteex-
tremelychallengingcasedor renderingandsimulationtechniquesandhave indeedbeen
usedextensiely astestscenego pushall sortsof algorithmsto their limits.

Still, the ubiquitouspresencef vegetationaroundus, evenin arti cial spacesuchas
of ce buildings, makesit necessaryo be ableto renderandmodelplantsef ciently. Al-
thoughrenderingcanbe performedn mary ways,includingnon-photorealistialgorithms
[DeusserandStrothotte2000], we obsere thataccuratdighting simulationin plantmod-
elshasa numberof applications:

First, photorealistiacenderingof vegetationscenesanbe achieved by a correctsimu-
lation of light enegy exchangeinside plantsmodels. This is obviously usefulfor visual
applicationdgn various elds like cinema,urbanandarchitecturablesign.

Plant growth simulationis an other challengingapplicationof lighting simulationin
vegetationscenedor at leasttwo reasons (1) The creationof realistic plant models,
is requiredby mary applicationsin very diverse elds. In computergraphics,we have
seennumerousxamplesof beautifulrenderingsof trees, o wersandotherplants,which
tremendoushaddto therealismof virtual scenesPlantmodelshoweverarevery comple,
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makingit tediousto createthemby hand. Conversely simulatingplantgrowth offersthe
perspectie of beingableto build, studyandrendervirtual plantsin their speci ¢ envi-
ronmentwhile controlling their development. (2) Researchn agronomyconcerningthe
in uence of light over the productionof a cultivated crop underdifferent conditionsof
illumination requirescomple settingsandlong term experiments.Instead properlysim-
ulatingthe growth of plantsreadily givesresultswhile allowing controlover mary grownth
parametersimultaneously

In this papemwe presentcompletdighting simulationalgorithmtailoredfor vegetation
scenes.This algorithmaddressethe two principal dif culties encounteredvith vegeta-
tion, which usually resultin unacceptablyhigh computationor memorycosts: rst, the
intrinsicgeometriccompleity of plantmodels consistingof millions of disconnecteéle-
ments,including small, elongatedstructures Secondthe photometriccompleity of light
transferwithin vegetationmodels with diffusioninsidefoliage, complex BRDFsandleaf
transparengeffects.

Thoughmary solutionshave beenproposedn the past,we shallseethatthey eachhave
a limited rangeof applicability in termsof scenesizes. The solutionwe proposehasthe
doubleadwantageof beingapplicableto a broadrangeof scenecompleities, andoffering
a continuougrade-of betweeraccuray andcomputation/memorgost.

Hierarchicalradiosityalgorithms especiallythoseusingclustering try to avoid consid-
ering the inherentcompleity of enegy exchangesy computingtransfersat fairly high
levelsof ascenehierarcly. Howeveracompleteraversalof thescends neededo estimate
theenepgy emittedor recevedby a clusterwith ary accurag [Smitsetal. 1994]. Theuse
of meta-objectsprimpostorshasbeenproposedo avoid this descenin thehierarcly, and
insteadperformthe computatiorwith fairly large (and simple) objects|[Rushmeieret al.
1993;0Ouhyoungetal. 1996].

We shaw in this paperhowever, thatin the contet of hierarchicalradiosity usingsuch
meta-objectgposesadditional problems,which we solve by pre-computinghigh level
phasefunctions(re ectance)andtransmittanceunctionsfor thosemetaobjects. Obvi-
ously thesecharacteristicare quite costly to handle,both in termsof computationtime
andstorage Meta-objectsarethereforeespeciallyusefulwhena sufcient numberof sim-
ilar objectsare presentin the scene,i.e whentheseobjectscan sharethe sameintrinsic
characteristics.

In summary the processof using meta-objectsyhich we call instantiation is a key
elementn makingthe accuratecharacterizatiof simpli ed objectsviable. It is realized
by identifying elementsin the scene(in fact, clusters)that sharea similar behaior in
termsof light emissionre ection andtransmission An importantrequirements thusto
identify thedegreeof similarity betweerthelight propertiegre ectanceandtransmittance)
of plantstructures We discusghis issueand proposesolutionsin Section4.1. Note that
theradiometricbehaior of aninstancecanthereforebe an approximatiorof reality, just
asthe geometryof a classicalimpostoris an approximationto that of the original. A
e xible trade-of is thereforepossiblebetweenthe accurag of the representatioandits
compactnessargely controlledby the degreeof self-similarityin thescene.

Thealgorithmwe arepresentings easilycontrollable:a computatiortime vs. accuray
trade-of canbereadily performedby actingon the re nementthresholdof the radiosity
links. Anotheraspecbf the controllability is thatwe canlimit thein-depthtraversalof the
instancehierarcly to a given size of structuresandthusobtaina high level solutionat a
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very low computatiorncost. Thiswill bediscussedn section6. However, theaccurag of
this solutionis still muchbetterthanthatof a clusteringalgorithmthatwe would limit to
large scaleclusters becaus®f the precisere ectanceandtransmittancénformationused
attheinstancdevel. This provesvery interestingfor instancewhenusinglighting results
in a plantgrowth simulator which may be satis ed by the knowledgeof the illumination
recevedatthelevel of entirebrancheswith no needto performthe computatiordown to
thelevel of individual leaves.

The presentpaperbuilds on the hierarchicalinstantiationwork presentedn [Solerand
Sillion 2000],with a particularemphasi®n thefollowing issues (1) automaticconstruc-
tion of instancesn plantsmodels;(2) pre-computatiorand storageof radiometricinfor-
mation;(3) instantiationpolicy; (4) applicationto plantgrowth simulation;(5) application
to renderingof large vegetationscenes.

2. PREVIOUS WORK

We successiely review in this sectionthe variousmethodsandgeometryrepresentations
that sene the computationof the distribution of light enegy in plants,andtheir possible
applications.

Illumination models

Computingthe distribution of light enepgy in vegetationconstitutesa very challenging
task. To achieve it, mary methodshave beenderived, mostof themcomingfrom the eld
of agronomiaesearchWe have sortedthemin increasingorderof compleity.

A numberof methodsestimatedirectillumination in the plant possiblyusingattenua-
tion factors but without accountingor light scatteringnsidethevegetation.The simplest
binaryray-castingapproactcanbe donevery ef ciently by projectingthe geometryof or-
gansalong sampledhemispheralirections,as proposedy [Fournierand Andrieu 1999;
Chenetal. 1993;Peary andSims1998;PlanchaisandSinoquetl996]. A morecomplete
approactconsistsin castingraystoward the sky andthroughthe geometricmodel[Pert-
tunenetal. 1996; Takenakal994]or avoxel representatiothereof{Greenel989]. M echet
al. [MechandPrusinkiavicz 1996]extendedhis techniqueéby accumulatinghe opacityof
voxelssuccessiely encounteredby aray to accountfor thetransluceng of thefoliage.

Globalillumination techniquegKajiya 1986] have alsobeenusedto computethe dis-
tribution of light enegy in plants. Among these,we distinguishradiosity-like methods
andMonte-Carlomethodsfrom methoddasedn differentialradianceransferequations.
Whereaghe former stayarbitrarily closeto the very geometryof the sceneandthe solu-
tion, the latteracton anequvalentturbid mediumanddependon variousapproximations
concerningits isotropy, homogeneityor periodicity [Verhoef1984; Gastellu-Etchgorry
etal. 1996]. As anexample,Max [Max etal. 1997]proposes simpli cation of theradiant
transferequationsn orderto computethe densityof light for eachaltitudein anin nite
canopy, providedthatit is horizontallyisotropic.

Although radiosity techniquesare often quite costly they producefaithful resultsand
mary approximation®f theradiositymethodhave beenusedupto now: Goeletal. obtain
aradiositysolutionin acorn eld usingperiodicityassumptiongGoel etal. 1991],which
reducesthe numberof form factorsto computewith the neighboringpolygonsof each
plant. The useof standardadiosityon a puregeometricmodelalsolimits this approach
to scenewith a smallnumberof polygons.Borel etal. [Borel etal. 1991]proposeto set
form factorsof distantobjectsto 0. This introducesa biasin the solution,but enablego
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handlelarge scenes.Chelleet al.'s nestedradiosityalgorithm[Chelle et al. 1998] usesa
geometricmodelfor the local neighborhoof a polygonanda volumetricmodelusing
scatteringequationgor distantgeometry This requiresisotropy assumption®n distant
partsof the canofy andperiodicity of the model. Suchwork is consequentlapplicable
only to large-scalescenegsuchasplantcanopies).

Monte Carlo methodshave beenusedby Rossand Marshak[J.K. and A.L 1988]and
GovaertgGovaerts1995]to estimatehe canojy bi-directionalre ectancefunction. These
techniquesvork well for BRDF computatiorbecause¢hey do notneedto save thedistribu-
tion of light insidethe model. DauzatandEroy [DauzatandM.N. 1987]useit to estimate
thelight receivedby theleavesof plantstakinginto accountf internallight scattering.

Of courseseveral intermediatemethodshave beenused. One exampleis given by
Gastelluet al. [Gastellu-Etchgorry et al. 1996] who add a direct illumination compo-
nentdueto the sun,to a multiple-scatteringsolutionobtainedusinga sphericaharmonic
representation.

Representation of vegetation

We review the variousmodelsusedfor representinghe vegetationin the lighting simu-
lation algorithms. The mostprecisemodelsin term of scenegeometryare basedon the
very geometryof the plants. Radiositybasedtechniquesntrinsically employ this repre-
sentation,althoughsomeof them, combineit with a simpler modelto computedistant
interactions [Chelle et al. 1998]. However, working on a geometry-basedescriptionof
the sceneis the causeof a very high memorycost, which is one commondrawback of
radiosity-basednethods.

Simpli ed, shape-preservingpresentationsuchasellipsoidsandcylindershave been
usedby BalandierandNorman[Balandieretal. 2000;NormanandJarvis1975]. Here,the
topologyof the plantsis partially preseredbut notthe geometry As pointedin [Gastellu-
Etchayorry et al. 1996], approacheshat transformthe very geometryof the plantsare
not suitablefor precisecomputationof parameter®f the canopy modelslike re ectance
functions,dueto the stronganisotropimatureof themodelswith respecto light re ection.

Lessfaithful to plantgeometryis avoxel-basedepresentatioof thescene Thisis used
for instanceby Castro[CastroandFetcherl998]andWhiteheadWhiteheadet al. 1990].
Voxels canbe usedto storeelementsof the sceng(walls, watet soil) in additionto leaf
densitycoefcients for thevegetation.

Finally, someapproachesonsidetthevegetationasaturbid medium[Ross1981]. They
totally ignore the topology and geometryof plantsaswell asthe very local variations
of their light propertiesandproducean adequatesolutionat larger scales. The medium
propertiesarerepresentedsdensityfunctionsoverwhichisotropy assumptionareusually
madein orderto limit the numberof equations.

Applications

The rst applicationof lighting simulationin plantmodels(whichis alsothe mostfamiliar
to computergraphics) is rendering. For this, the scenegeometryhasto be accesseat
leastonce,but doesnot necessarilysene the computationof multiple-scatterindight in
themodel,asshovn by Max [Max etal. 1997].

Remotesensingof the ervironmentis a very importantapplicationto light simulation
in plants. Light computatiorsenesthe interpretatiorof remotesensingdatalik e satellite
imagesfor the computationof biophysical parameter$Goel 1988]. Mary reference®n

ACM Transaction®n Graphics\ol. V, No. N, Month 20YY.



An Ef cient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models

this subjectcanalsobefoundin the surney by Mynenietal. [Myneni etal. 1989].

Plant growth simulationis a direct applicationto lighting simulationin plantsin the
sensahatthe growth of a plantdepend®n the presencef light for photosynthesig=rom
anagronomicpoint of view, growth simulationundervariouslighting conditionspermits
to study optimal culture con gurations. Fournierand Andrieu give an example of such
simulationon corn[Fournierand Andrieu 1999]. Otherphysiologicalplantgrowth simu-
lation modelsexist [Rauscheket al. 1990; Takenakal994;Blaiseet al. 1998;(de) Refye
et al. 1999], all accountingguantitatvely for the light received by leavesto computethe
growth rate.

Plantgrowth simulationmay nally be usedto studythe reactionof plant growth to
light environment. The causaleffect of light on plant morphologyand growth hasbeen
demonstratean real plantsbut requirestediousin-the- eld experiments[Beaudetand
Messier1998; Beaudetet al. 2000]. It is thereforemuch more interestingto perform
the sameexperimentson virtual plantsusinga calibratedgrownth model. Gautieret al., for
instanceledicateheirwork to thestudyof thein uence of self-shadwing on plantorgans
morphogenesifGautieretal. 2000].

Discussion

Directlighting approachedo notaccountor the contritution of light scatteringnsidethe
modeldueto the essentiallydiffusetransluceng of the leaves[Govaerts1995]. However
light scatteringn plantfoliagerepresentade nite partof theilluminationandthusonthe
growth andarchitectureof plants(seeSection6).

Like all stochastianethods,Monte Carlo approachesave two dravbacks: they con-
verge very slowly andthe accurag of the resultis not easily controllable. Vegetation
indeedcontainsvery uncorrelatedgolygons,andthusinducesa large dispersionof rays
hencean especiallynoisy andslow corvergence.This is particularlytrue whenperform-
ing the computatiomearto theinfra-redwavelength wheretransmittancendre ectance
of plantleavescanboth approachb0%. This boostsup the numberof necessarye ec-
tions/transmission® considemlongeachray. This make stochastienethodgoorly suited
to aninteractive work in handwith a plantgrowth engine.

Finally, noneof the methodseviewed above canadaptto a wide rangeof scenescales.
Turbid mediumandvoxel-basednethodsarelimited to large scalescenedecausef their
statisticaldescriptionof the plants. Corversely geometry-basethethodsarerestrictedto
small-scaledscenesnainly becausef their high memorycost. The consequencef this
is thatnoneof thesemethodscanbe usedfor long term plantgrowth simulation. Indeed,
whengrowing a plantfrom aseedup to atree,avaryingnumberof scalesmustbeconsid-
ered.

In this paper we proposea global illumination approachfor computinglight enegy
balancen plantmodelsthatattemptdo Il thesegaps.Ourmethods basednhierarchical
radiositywith clustering henceinheritingthe controllability andmulti-resolutionfacilities
of thismethod.In orderto getrid of thetraditionallyhigh computatiorandmemorycosts
of hierarchicalradiosity methodswe develop the ideaof instantiation,e.g the ability to
sharegeometridnformationbetweemnpartsof the scenan orderto gain memory
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3. HIERARCHICAL INSTANTIATION FOR RADIOSITY
3.1 Hierarchical radiosity with clustering

Thissectionintendsto provide therelevantbackgroundo readersvhoarenotfamiliarwith
hierarchicatadiositywith clustering.Experiencedeadersandirectlyjumpto section3.2.

We denoteby b(x) the radiosityat any pointx in a scenej.e the total light power per
unit areaout-comingfrom x on a surface. We call e(x) the emittanceat x, which denotes
the correspondingjuantity directly emittedat x, e.g e(x) is not null only whenx is on a
light source.Let us nally callr (x) there ectanceatX, i.e the proportionof theincident
enegy ux atx whichis reradiated.Thesequantitiesarelinked togetherby the radiosity
equilibriumequation[Goral etal. 1984]:

b(x) = e(x)+ r(x) b(y)G(xy)dy

whereG(x;y) denotesa kernelfunctionaccountingor the geometriccon gurationwhich
characterizethe enegy exchangebetweerpointsx andy. This equationsigni es thatthe
light enegy ata pointx on a surfaceis the sumof theemittedenegy at x (thee(x) termof
thesum)andtheenegy comingfrom all otherpointsy of the scenawhichre ectsatx (the
integraltermof the sum).

Radiositymethodsn generatonstituteanapproacHor solvingthisequatiorusing nite
elementgGoral etal. 1984; Ashdovn 1994;Sillion andPuech1994]. The mostcommon
approactconsistsn looking for a piecavise constantapproximatiorof the solutionof the
above equation.A discretizationof all surfacesis performedin orderto producea linear
system

Bi=E+ridFjB;
j

whereB;, E; andR; respectiely denoteghe uniform radiosity emittanceandre ectance
valueover surfaceelement. In this linear system alsoappearthe Fj terms,calledform
factors, which expressthe contritution of eachelementj to theradiosityon element.

Solving this systemusing classicalmethodssuch as Gauss-Seideiteration becomes
very costlyfor evensimplecon gurations,which hasstimulatedthe developmentof hier-
archicalapproachesTheideaof hierarchicakadiosityis to hierarchicallygrouptogether
surfaceelementsnto larger surface elementsand sceneobjectsinto clustes [Hanrahan
etal. 1991; Goldsmithand Salmon1987; Smitset al. 1994; Sillion 1995] (seeFigure1).
The enegy exchangedetweenrall pairsof surfaceelementsn the scenecanthenbefac-
tored(andapproximatedpy enegy exchangegor links) betweerpairsof thesestructures,
thus making the economyof a large numberof form factor computations.The level at
which links areestablisheds a trade-of betweenaccurag andspeed.Thelinear system
is thensolvedby summingenepy contritutionsalongthesdinks (SeeFigure2).

3.2 Overview of the algorithm

Hierarchicalradiosity with clustering[Smits et al. 1994; Sillion 1995] is usually well
adaptedo treatingsceneof varying ordersof magnitudethanksto its automatedadapt-
ability andto the continuoustrade-of it offers betweencomputationtime and accurag.
However, suchmethodsare limited in scenesize becausef the superlinear amountof
memorythey requirein termsof the numberof input polygons. The main difference
betweenour methodandtraditionallighting simulationmethodsis the useof instantia-
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Fig. 1. Hierarcty of clustersfor representing smallplant.

Fig. 2. Example of a speed/-
accurag trade-of. A single link

is sufcient for representingthe

averageenegy transferfrom A; to

A while severallinks arenecessary
to accountfor variationsin the en-

emgy transferfrom A; to Aj. surface
discretization and enegy transfer
links establishedat adequatelevel

to minimize the number of com-

putations while trying to account
for local variation of the enegy

contritution  between concerned
elements.

tion [SolerandSillion 2000]. Instantiationmorecommonlyusedin ray tracingmethods,
allowsto treatarbitrarylarge scenedy storingin memoryonly the necessargeometryfor

currentcalculations.Applying this paradigmto hierarchicalradiositywith clustering,we

thus combinethe low memorycostof instantiationray tracingmethodsandthe stability

andcontrollability of hierarchicaradiositywith clustering.

Onevery eye-strikingcharacteristiof plantmodelsis self-similarity: leavesin a plant
arevery similar to eachotherand,up to a large extent, branchedook like otherbranches
aswell asanentireplantlookslik e ary entireplantof the samespeciesandage.lt is thus
possibleto approximatelyrepresenthe geometryof a plantmodelusinga smallnumber
of representatie elementgbranchesleaves,etc)thatwe caninstancan orderto build an
efcient representatioonf the plantasshavn on gure 3.

However, radiosityalgorithmscomputean explicit representationf illumination, typi-
cally associateavith the geometryin the form of a mesh. Copiesof a given objecteach
have their own, uniqueillumination. Instantiationfor radiosityis thereforemore elabo-
ratethanfor simplerrenderingtechniqueglike ray tracing), sinceit shoulddifferentiate
betweerthe geometry(thatis easilysharedandtheillumination (thatvariesfrom onein-
stanceo another) Moreover, self-similarityin plantsis never exact,andsimilar structures
shav moreandmoredifferenceswith age: unlike leaves,thatreally look like eachother
largerstructuresonly look similar in their overall shape.
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Actual plant Instantiation at level 1 Instantiation at level 2

Fig. 3. Using approximateself-similarity betweenstructureso instantiatea plant model. Note that although
a commonmodelis usedto instantiatebranchesat level 1, eachbranchis in turn detailedusing appropriate
instancesor substructures level 2.

Branch

\ BRDFE, W,
2 .V
% J \ | — t2 < .~

Trunk o I, C”\zi

Representative Original
structures clusters

Actual plant model Instanced plant model

Fig. 4. Instantiationof a plant modelfor hierarchicalradiosity computation. (1) Eachstructureof the plant

(branch,leaf, trunk) is independenthyassigneda representatie structurethat sufciently resembleshe current
structure.The phasefunction (or BRDF) andtransmittanceropertieseetext andde nitions in section4.2) of

representatie structuresarepackedinto original clustess. (2) theplantis representedsa collectionof instances
(I1,...14), eachone pointing to the adequateoriginal cluster(O; or O in this example)and equippedwith a

geometrictransformation(W,,...Ws here)that permitsvisibility and re ectance computationon the instance
usingtheinformationof the original cluster

Becauseof this, sincewe still needto know the enepy distribution on the real geom-
etry of every partof atree,the computationcannot be performedon a uniquegeometry
sharedvy theinstanceslnsteadthealgorithmfor computingtheequilibriumof light using
instantiationworks asexplainedby thetwo following key points:

(1) Thecoreideaof thealgorithmis to sharebetweersiblinginstancesnacroscopiéunc-
tions (insteadof geometry)in a singleobjectcalledanoriginal cluster, andusethese
functionsfor propagtinglight insidethescene As will beshovnin sectiord.2,these
functionsaredesignedo simulatethe enepgy resultingfrom theinteractionof thereal
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main()
OpenOutputFile()
Openlinstancgroot)
CloseOutputFile()

OpenlinstancginstanceH)
clusterG = LoadNextLevel(H)
ReplacelnHierarchy(H,G)
TransferLinks (H,G)

Hierar chicallnstantiation(clusterH)
if IsAninstance(H)
OpenlinstancgH)
if IsACluster(H)
ForAlIChildr en(g,G)
Hierar chicallnstantiation(g)

ComputeLocalSolutionG)
Hierar chicallnstantiation(G)

DeleteLinks(G)
ReplacelnHierarchy(G,H)

if IsAPolygon(H) DeleteG

Render(H)

Fig.5. Pseuda@odefor theradiosityinstantiatioralgorithm. ThegenericRender() procedureeplacesry output
of the information asrenderingthe polygonto an off-screenbuffer, or saving its radiosityto a le previously
openedby OpenOutputFile(). The call LoadNextLevel(H) loadsfrom the disc the actualgeometryof the
openednstanceH, possiblycreatinginstancesat lower levels andreturnsthe resultasa cluster This clusteris
temporarilyput in the hierarcly in the placeof H andlinks pointing to andfrom H arealsochangedo acton
it. FunctionslsAnInstance(), ForAllChildr en(), IsAPolygon(), DeleteLinks() aresimply namedaccordingto

whatthey exactly do.

geometrywith light comingfrom ary given direction, concerningout-scatteringor

phasefunction asde ned in [Siegel and Howell 1992]) and meanattenuatioralong
rayscrossingtheinstance.A geometrictransformatiorinsideeachinstanceproperly
links thereplacedyeometryto the original clusters(SeeFigure4). We explainin sec-

tion 3.3 thatthis makesit possibleto computethe equilibrium of light enegy at ary

hierarchicalevel abore theinstancesvhile limiting thenumberof objectsin thescene

hierarcly.

(2) After aradiositysolutionis obtainedn a scenecontaininginstancestheillumination
of objectshiddeninsideeachinstancemuststill be determined.This involvesalocal

hierarchical radiositysolutionin which the containecjeometryis temporarilyloaded

into memoryandsubjectedo theincidentillumination alreadycomputedor thecon-
sideredinstance.This is alocal passbecausenly links thatbring enegy insidethe
instancearenow consideredndre ned.

A major potentialdif culty is thatthe contentf theinstancemight still betoo com-

plex to allow a memory-efcient hierarchicalradiosity calculation. The hierarchi-

cal instantiationalgorithmprovidesan elegantandef cient solutionto this problem:
becauseplants have self similarity at multiple hierarchicallevels (betweenleaves,

brancheswhole plants),loading the geometryof an instancemay include the tem-

porarycreationof new instancestlower levelsto which thealgorithmcanbeapplied

recursvely.
We detailthis operatiornamedopeningan instancein section3.4.

Thepseudo-code Figure5 summarizeshealgorithm.
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3.3 Local Hierarchical Radiosity solutions

Eachtime a portion of the scends loaded(which concernghe whole scenewvhenstarting
thealgorithm,or a smallerpartof it when“opening”aninstance)the correspondindpcal
hierarcly is loadedinto memorywith a depthlimited to the next possiblelevel of instan-
tiation. As aresult,the entirescenecanbe describedasa hierarcly of clusters,in which
instantiableclustersappeamtvariouslevels(possiblyoneincludedin the other). However,

duringary call to the computatiorof alocal solutionusinghierarchicaradiosity the part
of the hierarcly thatis consideredilwaysconsistf a clusterhierarcly whoseleavesare
eithernon-operinstance®r polygons.

The local hierarcly is processedy the hierarchicalradiosity solver, which involves
iteratively establishindgre ning) links betweerclustersandpropagtingenegy until con-
vergence.Re nementof thelinks is limited to thelevel of instancessincetheir geometry
is notavailableatthistime. Howevertheresultingsolutionis still muchmoreaccuratehan
if we hadperformeda hierarchicaradiositysolutionon theentirescenewhile limiting the
link re nementto thelevel of the correspondinglusters.Thefairly preciserepresentation
of eachinstancé'phasefunction” or BRDF, whichis precomputedembodieghe effect of
light propagtion and scatteringnsidethe instance.In addition, it shouldbe notedthat,
unlike normalclusters[Sillion 1995], no self-links are establishen instancespecause
their phasdunctionalreadyaccountdor internallight scattering.

During thesetemporaryhierarchicalradiosity solutions,elementsn the hierarcly that
previously exchangedight with the parent(now openedjnstancearetreatedas x edlight
sourceslndeed thanksto the useof the precomputednstanceBRDF functions theinter-
nal solutionamonginstancecontentss not supposedo acton enegy exchangesxternal
to theinstance However, thisis not perfectlytruebecausef theapproximatenstantiation
andtranslatesnto anapproximatiorin the solution nally obtainedSeesection6).

Oncethelocal solutionis obtained we traversethe local hierarcly, andfocuson each
instanceencounteredecursvely calling the local Hierarchicalradiosity algorithmon it.
Whenwe reacha level with no instancedelow, the local solutionis equivalentto hierar
chicalradiositywith clustering,anda completesolutionis availablefor the currentbranch
of thescenehierarcly, takinginto accountcontritutionsfrom the entirescene.

Finally, the local geometryis destryed andreplacedbackby its parentinstance.Con-
sequentlythe solutionfor the currentportion of the hierarcly is accessiblat the current
stageonly, becauséts supportinggeometrywill be deletedwhen closingthe parentin-
stance We thusrenderthe correspondingpolygonsinto anoff-screerbuffer (or outputthe
resultsto a le), therebyprogressiely formingtheimageduringthetraversalof thescene.

3.4 Opening instances

We detail herethe operationsnvolved in the openingof instancesduring the recursve
traversalof theinstancehierarcly. This processs illustratedin Figure6. On the left, we
seea solutioncomputedat a givenlevel. Oval shapesepresenbbjectsor clusterswhile
rectanglesepreseninstances.Links areindicatedby arravs, and have beencreatedat
varyinglevelsof the clusterhierarcly.

Whenthelower-rightinstances openedyve build ahierarcly with its contentsasshavn
ontheright-handsideof the gure. In orderto properlyaccountor all incominglight, we
createcopiesof all links thatpreviously arrivedon theinstancgmarkedusingdashedines
onthe gure) andattachthemto therootof thenew hierarcly. We alsoaddaself-link to the
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Fig. 6. Closerview on the computatiorof the solution. (a) a solutionasbeencomputedusingthere ection and
transmissiompropertiesnf instanceslinks areindicatedby arraws. (b) the bottomright instances “opened”,e.g
its geometryis loadedinto memory (c) incominglinks (in green)arelocally re ned aswell asthe selflink that
wasaddedonthereplacingcluster

rootif no self-link exist on ary parentlevels,to accountfor all internalexchangegSillion
1995]. This newly createdclusterneedshis self-link indeed,asary regularclusterof the
hierarcly.

We canthenapply the solutionprocedureoutlinedabove, thatis rst solve for radios-
ity, thentraversethe hierarcly to openinstancesandrecurse.Theright side of Figure6
illustratestheradiositysolution,in the openedevel: Dashedinks correspondo links that
previously arrived at the instancdevel, andhave beenre ned. Internallinks issuedfrom
there nementof the addedself link arealsorepresentedTherecursionwould thencon-
tinueinto the smallerinstancedeforereturningto theleft-handsituationandopeningthe
otherinstance.

Notethatre nementis constraineguchthat,only elementdelongingto the considered
hierarcly may be subdvided (either as emittersor recevers). Gatheringand push/pull
operationsare also appliedto the local hierarcly only, essentiallytreatingall elements
externalto this hierarcly as x edlight sources.

3.5 Cost considerations

Simple recursionargumentsallow us to evaluatethe costof our algorithmin terms of
storageand computationcost. Let us denotethe numberof instantiationlevels by k, the
numberof elementgpolygonsplus instances)t eachinstantiationlevel by N, andthe
numberof theseelementshatareinstancesy p. This modelis very simple becausst
assumes uniform branchingfactoramongall levels of the hierarcly of instancesanda
uniform proportionof instancesndpolygonsat eachlevel of the scenehierarcly.

By de nition, the numberof polygonsin the root of the hierarcly (aswell asinside
eachinstancejs N p. Thisis repeated timesat the next level, and p2...p¢ ! timesat
subsequenievels until level k 1. At level k, thereareno instanceselov andthusN
polygonsperinstancesThetotal numberof polygonsin the scends consequently

n=(N_p(1+ pr it pk 1§+ ﬁg\‘ = O(p*N) @)

LevelsO (root)tok 1  levelk

Gainin memory.Let e, | ando pectively denotethe sizeof a polygon,aninstanceand
anoriginal (instancedpbjectin memory
Assumingr original objectsareusedto createthe p instancesteachlevel, thememory
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footprint of thesceneatthetop level of the calculationis :
Ming(1) = (N p)e+ pl+ro

Sincethealgorithmonly loadsthe geometryof thebranchof thehierarcly it is descending
into, the maximummemoryrequirements reachedat the bottomof the hierarcly, where
itis:

Ming(K) = k[(N  p)e+ pl+ ro] )

For theideal caseof awell balancedhierarcly of instancesthe memorycostis thusloga-
rithmic in termsof thetotal numberof polygonsin the scene.ln ary casejt is muchless
thanthe O(ne) memorysizeof themodelitself. In scenesvith limited instantiationdepth
(e.g k is small) the logarithmic equivalentdoesnot hold anymore. In the worst case the
gainin memoryis the numberof instancedimestheratio betweerthe memorycostof an
instanceandtheactualgeometry

As anexampletaken from our implementatiorandreal data,considero = 1;100bytes
(an original objectholdstwo sampleddirectionalfunctionsat 528 byteseach),e = 150
bytes(this ratherlarge size accountdor geometry radiometricand subdvision informa-
tion) andl = 200bytes(in ourimplementationinstancesrealsoclustersandthuscontain
inheritedinformation). For the tree presentedn Figure14, we have n= 119,000,k = 4,
r=5N 30andp 8. Theexpectedmemorysizegivenby (2)is 48 Kb, whichis much
lessthann e= 15;085Kb,theexpectedsizeof theentirescene.

Although thesenumbersdo not translatedirectly into requiredmemorysizes,because
of the missingconstantsandvarious x ed costs,we will seein the resultsectionthata
large memoryreductionis obsened,thegainincreasingwvith scenecomplity. It actually
becomegeasibleto simulateverylargesceneshatsimply couldnotbetreatedby previous
methods.

Sincethe accurag thresholddoesnot changewhen recursiely computingthe local
solutions,the maximumnumberof links in memorycanbe estimatedoy the numberof
links thatcontrituteto theillumination of aleafelemenin aclassicahierarchicatadiosity
solutionon the entirescenemultiplied by the numberof leaf elementsatthe lowestlevel,
e.g O(Nlogn). Thisis muchlessthanthe O(nlogn) links of thenormalclusteringradiosity
method.

Computationcost. We considerthat a hierarchicalradiosity solutionin a sceneof n
elementsquippedvith awell balancedhierarcly canbe performedn Q(nlogn) time.

Let C(i) denotethe costof our algorithmfor solvinglevel i andits sub-levels. To getan
expressiorfor this cost,we addthe costof a local radiositysolutionbetweerN elements
to thecostof recursvely calling thealgorithmon the next level for the p instances

C(i) = Nlog(N) + pC(i+ 1) and C(k) = Nlog(N)
Thecostfor theentirescends thus:
C(0) = Nlog(N) 1+ p+ ::+ pX
= O(p*Nlog(N))
Consideringhatn = O(p*N), the valueC(0) appearso be equivalentto O(nlog(N)),

whichis closeto the costof the classicahierarchicakadiosityalgorithm. Practicalexper
imentsshaw that,whereaghe gainin memoryis a little over estimateddueto some x ed
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coststhelogn=logN gainin computatiortime accuratelyre ects reality.

3.6 Discussion

The HierarchicalInstantiationalgorithm essentiallygains by neglecting the correlation
betweenobjectslying in differentinstancesat the samehierarchicallevel. For two such
sibling instancesno link canever be createchetweenoneobjectfrom each,becausehe
contentsof bothinstancesrenever simultaneouslypresenin memory This ensureghat
every local solution only involves a small numberof objects,at the expenseof a small
approximation We will illustratethis approximatioron practicalexamplesn section6.

For the samereason,a completesolutionis never presentin memory althoughevery
partof the globalsolutionis availableat somestageof the calculation.This explainswhy
ary resultssuchasimagesor radiosity valueswritten to a le mustbe outputduring the
calculationasmentionecearlier

A similar behaior couldbe achievedin a normalradiosityalgorithm,by preventingthe
re nementof anemitterif it is an“instantiable”objectdifferentfrom therecever. However
the globalaccurag would be lower unlessthe emitteris alreadyre ned enoughto obtain
a high-qualityrepresentationf its internallight distribution. Sincethe phase€unctionsof
theoriginalinstancesrepre-compute@ndstored morecomputatiortime canbeinvested
in this processhantypically donein ahierarchicaradiositycomputationFor instancethe
effectsof internalvisibility in emitting clusterswhich are usuallynot computedor cost
reasongSillion andDrettakis1995],areintrinsically accountedor in the phasdunctions.

4. LIGHT PROPERTIES OF PLANTS

Instantiationin plantmodelsis basedn plantself-similarity In sectiond.1we rst discuss
how to determinepotentialinstancesndsibling structuresn plantmodels.For aninstance
to be ableto participatein radiosity calculationswithout accessingts geometriccontent
we requiretheknowledgeof (a) anoutgoingradiancelistribution[Sillion etal. 1995],(b) a
bidirectionalscatteringphaseunctionto corvertincomingenegy into outgoingradiance,
and (c) a transmittancdunction. We discussin 4.2 how to represenind computethese
functions.Finally, atthelowestlevel in thegeometrichierarcly, theleavesof theplantare
responsibldor light interactionwith the model. In 4.3 we presenthe modelwe usefor

localleaf-lightinteraction.

4.1 Identifying instantiable structures

We wantto revealtheredundang presenttdifferentscalesn plantmodels.Thequestion
is thus: how to characterizeimilar structuresn a plant? For this we candistinguishtwo
approaches

Formally, two structurescanbe replacedby a commoninstanceas soonasthey have
sufciently similar phaseandtransmittancéunctions. However, a completeinvestigation
of thesefunctionsoverall structuresn aplantis avery expensve calculationwhich makes
ary brute-forceapproachmpracticable.

Thesecondossibilityis to rely onadditionalinformationrelatecto the plantmodels.In
our case plantsarede ned ashierarchief botanicalstructureseachonebeingassorted
with anorientationanda collectionof botanicalparameterssuchasthe numberof leaves
containedn the structure,its physiologicalage[(de) Reffye et al. 1996], the type of the
structure(Brandh, leaf, whole plant, ower, etc.). It makes sensethat structuresof the
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samenumberof leaves and sametype have very similar geometryandthusvery similar
phaseandtransmittancéunctions.We will verify it throughanexample:

Figure 7 shaws structuresof a poplartree and a locusttree. The curvesin Figure 8
representhe cut of their phasefunctionfor x edinputq andj andoutputqg, andvarying
outputj 1 We indicatefor eachstructureits type (Branch,Plant, ...) andits numberof
leaves. On the left side (poplar) we seethat structuresof similar numberof leaves (by
similar the meanthe sameorderof magnitude)have very similar phasefunction values.
Thisphenomenors all themoreveri ed thatthenumberof leavesis large. Thenumberof
leavesin astructurecanthusin thiscasebeusedasanef cient way of detectingnstantiable
structureghroughouthe model.

Looking at the samecurwes for the locust tree, it appearshat the similarity is not
respectedbetweenstructuresof numberof leaves of the sameorder (seefor instance
Branch 248andPlant 367)unlessthey areof the sametype (for instanceBrandh(c)
248andBrandth(c) 131areverysimilar, aswell asPlant 367 andPlant 1615). A
pertinentparametesetis thusthe numberof leavesplusthe type of the structurefor this
particularcase We have foundthattheseparametersvork ne for all otherspecie®f trees
we have tested.

As we will seelater, the memorycostof the phasefunction of aninstancecanbe quite
large,andwhenusingour lighting simulationalgorithmin cooperatiorwith a plantgrownth
simulationprogram,largerandlarger structuregnay appeairin the scene.Computingthe
phasdunctionof thesestructure®onthe y wouldbevery costly(evenmorethannotusing
instantiatiomatall !). Fortunatelywe obsenethat,asstructuregetmorecomplicatedthey
tendto have their phasefunctionandtransmittanceorvergeto a x edvalue. This canbe
obsenredin Figure8 for the phasefunction. Our policy is thereforeto usea x ed phase
functionandtransmittancdor structuredargerthana certainsize.

In ourimplementationthe informationneededo know which parametersirerelevant
for instantiationis storedinto an instantiationpolicy le, aswell asthe differentiation
intervals for theseparameterandthe maximumsize of differentiablestructuredor each
type. A speci c instantiationpolicy le hasbeenconstructedor eachkind of plant. This
alsomeanghatwe areperformingappoximateinstantiation e.g we only useasmallnum-
berof representatie structureso provide phasegunctionandtransmittancéor all possible
instancesThe policy for sharingthe phasdunctionsandtransmittanceis for themoment
designedby handfor eachplant, but it could be automatecasedon the computationof
differencedetweemhasdunctionsof variousstructures.

Finally, turningeachstructurede nition into a cluster we obtaina clusterhierarcly that
only containsinstantiableclustersbut still may have a very large branchingfactor Its
ef ciency toward hierarchicalradiosityis thenimproved by insertingnew levels of (non
instantiable)clusters,using a constrainectlusterizer[Hasenfratzet al. 1999]. Besides,
self-similarity occursin vegetationscenest multiple scalesncluding groupsof plantsof
varioussizes,andthereis no reasorto limit the instantiablehierarcly to the level of the
plantthemseles,assoonaswe manageo compute(or predict)their phasdunctions.

1Theanglesy 2 [0::p] andj 2 [0::2p] aretheangularcoordinate®f adirection,in thecoordinatesysterriocal to
theplantstructure:the maintrunk of thestructureis alignedwith thez axis (q = 0) andthex axis(q= 5, = 0)
is orthogonako thez axis of the parentstructure.
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