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Abstract

Surface reconstruction from multiple calibrated images mainly has been approached using local

methods, either as a continuous optimization problem driven by level sets, or by discrete volumetric

methods such as space carving. We propose a direct surface reconstruction approach which starts from a

continuous geometric functional that is minimized up to a discretization by a global graph-cut algorithm

operating on a 3D embedded graph. The method is related to the stereo disparity computation based

on graph-cut formulation, but fundamentally different in two aspects. First, existing stereo disparity

methods are only interested in obtaining layers of constant disparity, while we focus on high resolution

surface geometry. Second, most of the existing graph-cut algorithms only reach approximate solutions,

while we guarantee a global minimum. The whole procedure is consistently incorporated into a voxel

representation that handles both occlusions and discontinuities. We demonstrate our algorithm on real

sequences, yielding remarkably detailed surface geometry up to 1/10th of a pixel.

Index Terms

Graph flow, graph cut, 3D reconstruction from calibrated cameras, discontinuities, self-occlusions,

occlusions, global minimum

I. INTRODUCTION

In this paper, we consider the problem of the 3D reconstruction of a volumetric or surface

representation of an object observed by several calibrated cameras. We target a classical scenario

based on a short image set as shown in Figure 1. While providing a new and accurate solution

to this practical problem, we also propose a general approach to several related issues.

Many researchers have been interested in this problem and have proposed different methods,

including a geometric formulation solved by local optimization methods such as space carving [2]

or level sets [3] and a discrete labeling formulation for computing stereo disparities solved by

global graph-cut methods [1], [4]–[8]. These methods have their own strengths and weaknesses:

Carving methods are intuitive but strongly rely on texture to achieve accurate results as shown by

Kutulakos and Seitz [2]. Level sets propose a powerful geometric framework but the convergence

of the process is not guaranteed and seems to depend on the starting point. Furthermore, disparity

maps yield accurate contours but lack depth precision, as illustrated in Figure 1.
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Classical disparity map Our result

40 images at  692x461 spanning 1.5 meter

Fig. 1. This paper presents a method to build a 3D surface (bottom right) from an image sequence (top row). This result

achieves a higher precision compared to a classical disparity map (bottom left) computed with an existing method [1] (the

comparison is discussed later in the paper).

We introduce a new technique that uses a continuous geometric formulation that appears to be

more suited to this problem as it is intrinsically related to the 3D space. A global optimization

ensures a better object description as a whole rather than as a collection of small patches.

Most related methods are described in the following paragraphs.

Direct volumetric methods

The method of space carving, or voxel coloring [2], [9]–[12] directly works on discretized

3D space (or voxels) based on their image consistency and visibility. These techniques are

characterized by their local treatment of the surface: Each voxel is considered separately. The

methods differ in the way they update visibility. For efficiency purposes, some methods place

constraints on the camera locations to simplify the visibility computation. A more detailed review



can be found in [13]. Broadhurst et al. improve the technique using statistics to produce better

images but the resulting surface still lacks details. Our method is different in that it is not purely

local. Global constraints are added to handle the difficult situations of low texture surfaces and

small baseline sequences.

Volumetric method based on level sets

Faugeras and Keriven [3] have proposed a variational approach solved with level sets. This

approach naturally handles the topology and occlusion problems. Furthermore, they present a

continuous formulation independent of the space discretization. Lhuillier and Quan [14] extend

the method to handle various data types (3D points and silhouettes). Isodoro and Sclaroff [15]

describe a technique which is not based on level sets but whose behavior seems similar. They

guarantee that the silhouettes are invariant through the process. However it is not clear under

what conditions these methods converge, since the proposed functional is highly non-convex.

Our method is different from this approach both in formulation and solution methods. We

propose a highly modular technique that clearly separates the main problems (image consistency,

topology, occlusion, surface localization) whereas the level-set method defines an all-in-one

framework. Moreover, since we restrict our functional to a simpler expression, we guarantee

that a global minimum is reached.

Disparity methods based on graph cuts

Originally, Roy and Cox [4], [5] have formulated graph-cut methods applied to 3D reconstruc-

tion as an extension of the existing approaches based on dynamic programming. The resulting

surface is not clearly characterized by a functional but they have emphasized the robustness

of the technique through its smoothing effect. An interpretation of the result as a labeling

problem in the Markov Random Field framework is provided by [16]. Functionals with a concave

smoothing term were introduced in [1], [8], [16]–[19]. This concave smoothing term handles

surface discontinuities by bounding the influence of depth variation. Unfortunately, the resulting

problem is NP-hard [17], and thus only an approximate solution can be reached in polynomial

time. Ishikawa and Geiger [6], [20] follow a similar approach but restricted to a convex smoothing

term which is proven to reach a global minimum in polynomial time [6], [21]. However, large

depth variations can impair the results because they are not accounted for.



All these methods build disparity maps i.e. for each image point, they measure its 2D dis-

placement between different images. This displacement is measured in pixels and each value is

associated to a label – the problem is then to label each image point. Since the displacement is

due to the perspective effect, it is directly linked to the depth of the corresponding 3D point.

However, this approach is intrinsically image-based because it takes place in the image space

and is limited to a discrete number of pixels. All these methods only handle a small number of

labels (from 32 to 128) producing aliased results. Moreover, we show in Section III-C that most

of these methods introduce spurious discontinuities because of the shape of their functional.

Also, most of these methods partially handle occlusions: If an object is occluded in some

images but not in the others, it will not be reconstructed. Nevertheless, it seems reasonable to

expect such a result because several cameras are unoccluded.

Geometric method based on graph cuts

The previous methods all rely on a disparity-based formulation. We believe that a geometric

formulation is more natural and suitable to handle the volumetric reconstruction problem. For

instance, it allows one to use geometric measurements such as the surface orientation which

seems more meaningful than disparity in this specific context. Formally speaking, this geometric

framework is similar to the one used in [3].

Recently, using such an approach, Boykov and Kolmogorov [22] have proposed a graph-

cut method to compute geodesic surfaces for data segmentation. They use a Cauchy-Crofton

formula that establishes a relationship between a surface and the 3D lines which intersect it.

These intersected lines are naturally represented by the edges of the graph. The Cauchy-Crofton

formula associated to the geometric framework leads to the edge capacities. The user places a

seed inside each region to segment. The graph-cut technique then results in the segmentation of

the data or equivalently in the surface separating the segmented data from the rest of the space.

This surface is a global geodesic up to the chosen space and metric discretization. It also copes

with partial topology changes: several seeds can merge in a single region but there cannot be a

region without a seed or a seed without a region.

Despite different goals, some points are common with our method. Their graph is directly and

fully embedded in the working geometric space and they also exactly solve a discretization of a

continuous formulation. But the main departure between the two approaches is that their work is



only useful for data segmentation whereas we target surface reconstruction. Although one may

try to adapt their algorithm for 3D reconstruction, some non-trivial questions first need to be

answered: where to put the seeds that initiate the segmentation and drive the topology, how to

handle the visibility in a one-step process, how to account for discontinuities, etc. Furthermore

their framework is defined for closed surfaces, whereas in many cases, we face an open-surface

problem because the cameras are grouped on the same side of the scene (like in all the disparity-

based techniques). We present a new graph-cut formulation which, like [22], has a strong

geometric interpretation, but specifically, addresses the issues of a volumetric reconstruction.

Contributions

The main contributions of this paper can be summarized as follows:

• A new formulation of the surface reconstruction problem as a geometric optimization

problem taking into account potential discontinuities of the object surface.

• A globally optimal graph-cut technique to solve this problem up to an arbitrary discretiza-

tion.

• The integration with a voxel-based method to characterize object boundaries and account

for visibility.

• A formal analysis of the continuity of the result leading to a method that avoids spurious

discontinuities.

These improvements allow our method to reconstruct accurate 3D surfaces from real input

images, even with very small baselines.

Overview

The rest of this paper is organized as follows. The motivation for a new functional is first

discussed and defined in Section II. Then, a technique to compute a global minimum of the

functional is detailed in Section III. Section IV details the algorithm that combines graph

cut and voxels to achieve a surface reconstruction that accounts for occlusions and surface

discontinuities. Section V discusses in depth the new formulation compared with existing ones.

Finally, experimental results are presented in Section VI and we conclude with some perspectives

on our approach in Section VII.



II. PROBLEM STATEMENT AND FORMULATION

Our goal is to create an object surface in 3D space. We first consider a general formulation

that outlines the relations between our work and existing methods.

Let (u,v) 7→ X(u,v) ≡ (x(u,v),y(u,v),z(u,v)) be a regular parameterized surface representing

the underlying object. Three-dimensional reconstruction can be cast as a variational problem of

finding a suitable function or surface X that minimizes the functional:
∫∫

c(X)dudv,

where c(X) is a positive function measuring the consistency of pixels in different images, often

assuming Lambertian reflectance. Examples of such measurements are a function of pair-wise

sums of squared difference (SSD, Zero-Mean SSD, or photo-consistency in color space) or of

pair-wise cross-correlation function (CC or Zero-Mean Normalized CC). since reconstruction is

ill-posed, this simple functional needs to be regularized to give smooth solutions.

Traditionally, the regularization terms are directly introduced for the parametric surface patch.

The regularized problem can be formulated as a deformable surface model minimizing an

energy [23]. One possibility is to consider the functional :
∫∫

(

c(X)+α s
(
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,
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,
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dudv.

The second smoothing terms s(·) are
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The minimization is solved by local methods e.g. a set of PDEs provided by the Euler-Lagrange

equation. One common way is to use an iterative and steepest-descent method by considering a

one-parameter family of smooth surfaces X(t) : (u,v, t) 7→ (x(u,v, t),y(u,v, t),z(u,v, t)) as a time-

evolving surface X parameterized by the time t. The surface moves in the direction of the gradient

of the functional p with the velocity −∇p, according to the flow ∂X(u,v,t)
∂t = −∇p. This is the

Lagrangian formulation of the problem which describes how each point on the dynamic surface

moves in order to decrease the weighted surface. The final surface is then given by the steady

state solution ∂X
∂t = 0. The problem with this approach is well-known [24] in that it does not

handle the changes in the topology.



In the approach developed in [3], the regularization is introduced intrinsically by considering

the weighted minimal surface [25]. The weighted minimal surface is defined to be a minimizer

of the functional

p(X) =
∫∫

c(X)ds =
∫∫

c(X)
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du dv.

The consistency function is a function of the correlation ρ(X) between any pair of 2D

images. Again the minimization is solved by an iterative steepest-descent method. However,

further development shows that the formulation is intrinsic, i.e., independent of any chosen

parameterization, thus making the use of a level-set formulation possible. The level-set method

[24], [26] regards the surface as the zero-level set of a higher dimensional function. The flow

velocity is intrinsic i.e. dependent only on the surface curvature. Topological changes, accuracy,

and stability of the evolution are handled by using the proper numerical schemes developed by

Osher and Sethian [26]. Recently Boykov and Kolmogorov [22] showed that
∫∫

c(X)ds can also

be minimized by a graph cut when c(X)ds is a Riemannian metric. In contrast to the level-set

method, thanks to its one-step design, this technique can cope with local minima but on the

other hand it is impossible to adapt the functional according to the current estimate, which is a

common way to handle occlusions.

The connection between these two different formulations, one with a multiplicative regular-

ization term and another with an additive one, has been studied by many researchers [25]. In the

case of 2D curves, these two formulations correspond respectively to geodesic active contours

and classical snakes. These two formulations are equivalent [25]. It seems that their application

to 3D surfaces is still an open question.

We propose the following functional
∫∫

(

c(X)+

(

αu(u,v)
∣
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))

du dv.

Only first derivative terms are used for smoothing. Dropping the second derivative smoothing

terms is primarily due to the optimization method we will introduce in the next section to solve

the minimization problem. We also believe that the second derivative terms would lead to a

complicated solution (for instance, the Euler-Lagrange solution of deformable models would

contain fourth derivative terms) and to over-smoothed surfaces. Therefore, we believe the first

derivative smoothing terms are sufficient, and even more desirable to capture fine geometric

details, as demonstrated in our experiments. This formulation is also not intrinsic, and is therefore



dependent on the parameterization. The L1 norm is used to fulfill the smoothing objective and

leads to an efficient computation. However, our work can be extended to the L2 norm using

the work of Ishikawa [6] with higher computation time. Note that αu and αv are not restricted

to constants and thus make discontinuities possible because they allow local control of the

smoothing.

Our approach lies between the geometric methods [3], [23] that are solved by local operators

that only reach a local minimum of the functional, and the discrete techniques [1], [4]–[8],

[16]–[18] driven by a graph-cut optimization. We keep the continuous geometric formulation

as [3], [23] but guarantee to result in a global minimum as [6], [7]. In addition, the relationship

between the continuous formulation and the discrete optimization process is clearly identified.

III. GLOBAL DISCRETE SOLUTION

From the previously studied general framework, we set up a method that yields a discrete

global solution to the object surface.

We propose a graph-cut technique to determine a solution to the discrete problem. The graph-

cut technique solves the following general problem: given a water source linked to a sink through

a pipe network, what is the maximum water flow that can reach the sink or, equivalently, where

is the network bottleneck that limits the flow? Formally speaking, we have an oriented graph (the

pipe network) with a source node and a sink node and each graph edge has two associated values:

the capacity (the maximum flow through a pipe) and the flow (the actual flow in a pipe). A cut is

defined as set of edges which separate the nodes into two connected components: one including

the source and the other including the sink. Polynomial algorithms exist to find the minimal cut

(the bottleneck), which is the cut with the lowest capacity from the source component to the

sink component. The references [27], [28] give more details.

Link with surfaces

At first sight, the link between this “water flow problem” and a functional defined over a

surface may not be obvious. To help the reader to be familiar with this concept, two simple

examples are described. Neither of these examples are of practical use. They are only provided

for illustrative purposes.



Source

Source

Sink

Sink

Fig. 2. Two simple examples: a graph to find the minimum value among 3 (left) and a graph to find the minimum values of

5 sets of 3 values (right).

Consider a set of n non-negative values. Let’s use a graph cut to find the minimum of this set.

Take n edges with capacities corresponding to the n values. Link these edges to form a string.

The source and sink are the extreme vertices. The configuration is shown on Figure 2-left for

n = 3. It is straightforward to see that the minimal cut (the bottleneck) is the edge with the

smallest associated value.

Consider now m sets of n non-negative values. Let’s use a graph cut to find the minimum of

each set in a single run i.e. without using m times the previous algorithm. For each set, build a

string as previously described. Then create two additional vertices: the source and the sink. For

each string, use an edge with infinite capacity to link the source to one extremity and another

such edge to link the other extremity to the sink. Figure 2-right shows the graph for n = 3 and

m = 5. The minimal cut cannot cross an infinite edge, it therefore crosses an edge of each string.

Again, it is straightforward to see that the minimal cut crosses the edge with the minimum value

of each string. Notice that this cut “looks like” a curve.

The strategy of our graph-cut technique is to generalize this direction. Instead of considering

a one-dimensional set of values that leads to a curve, we use a two-dimensional set that results

in a surface. Adding edges between adjacent strings will account for the smoothing constraint.



Discretization

Without loss of generality, we assume that the 3D object space is described by (x,y,z) and the

object surface is locally parameterized by a function, f : X(u,v, f (u,v)), which can be seen as a

depth function z = f (x,y). Also let the domain on which f is defined be D . This parameterization

restricts the object being constructed to a single-valued depth field. If multiple depth values are

needed, multiple functions f1, f2, . . . could be used. Since x and y often play equivalent roles,

the x|y notation is used when a statement is applied to both x and y.

Our proposed functional consists of a consistency term C and a smoothing term S :

C ( f ) =
∫∫

D

c(x,y, f (x,y))dxdy, (1)

S( f ) =
∫∫

D

(

αx(x,y)
∣
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)

dxdy (2)

Our solution strategy relies on approximating of equations (1) and (2) with a discrete formu-

lation. Assuming the surface domain D is discretized as a regular rectangular grid, x, y, z have

values {x1, ...,xnx}, {y1, ...,yny}, {z1, ...,znz} separated by ∆x, ∆y, ∆z. The extension to a general

domain D with varying discretization steps is straightforward.

A discrete consistency term C d is obtained as:

C d( f ) =
nx

∑
i=1

ny

∑
j=1

c(xi,y j, f (xi,y j))∆x∆y (3)

and a discrete smoothing term S d as :

S d( f ) =
nx−1

∑
i=1

ny

∑
j=1

αx(xi,y j)
∣

∣ f (xi+1,y j)− f (xi,y j)
∣

∣∆y

+
nx

∑
i=1

ny−1

∑
j=1

αy(xi,y j)
∣

∣ f (xi,y j+1)− f (xi,y j)
∣

∣∆x. (4)

A. Building a first embedded graph

Our approach is based on a topologically embedded graph in the 3D geometric space; that

is to say, it can be seen as a 3D geometric entity. Nodes and edges correspond to 3D points

and 3D segments. Therefore, a cut is a real surface that crosses these segments. Moreover, edge

capacities are fully expressed with geometric measurements. The main idea is to build the graph



such that the cut capacity is equal to the surface functional. Then, a minimal cut will be a solution

to the discrete problem. The graph is a 3D grid superimposed on the voxels with correspondence

shown in Figure 3. All edges are bidirectional (i.e. made of two directional edges): for x-edges,

the capacity is αx(xi,y j)∆y∆z; for y-edges, αy(xi,y j)∆x∆z; and for z-edges, c(xi,y j,zk)∆x∆y. We

add source and sink nodes out of this grid and for each (xi,y j) voxel column, the voxel with

the minimum depth is linked to the source and the one with the maximum depth is linked to

the sink. All source and sink edges have an infinite capacity. From a complexity point of view,

there are three edges and one 6-connected node per regular voxel (i.e. not on a border). Thus,

the graph complexity is proportional to the number of voxels.

∆z

∆   ∆x    z(   ,   )x  yi     jαy

x

y
z

x

y
z

∆y

∆x

∆   ∆x    y(   ,   ,    )x  y   zi     j     kc

(   ,   )x  yi     jαx ∆   ∆y    z

source side

sink side

Fig. 3. A voxel grid with a surface inside (left). Correspondence between the voxel (xi,y j,zk) and the graph (right).

Note that Roy [5] and Ishikawa [6] have also described embedded graphs with designs similar

to ours. Roy associates each graph node to a disparity value although edges are the key entities

in the graph-cut methods. One of the main reasons why the results of Roy’s method are not

well defined is that no functional or equivalently rigorous characterization is provided. Ishikawa

embeds the graph in a generic Euclidean space but the links with the geometric space are unclear.

In contrast to these approaches, our embedding is stronger: our graph is a 3D entity characterized

by 3D quantities (e.g. geometric lengths) similar to [22].



B. Establishing a correspondence between a minimal cut and an object surface

We demonstrate a correspondence property which proves that our graph exactly computes a

global minimum of the functional.

Correspondence property: There is an one-to-one correspondence between a subset of cuts

called the potential minimal cuts and the surfaces defined by a function f . Moreover, the cut

capacity is equal to the functional value of the corresponding surface.

The proof is based on necessary criteria for a cut to be minimal and a careful count of cut edges.

There are three necessary conditions for a cut to be minimal:

1) A minimal cut cannot cross an infinite edge;

2) It has to cross each (xi,y j) column at least once to separate the source from the sink;

3) It cannot cross a column more than once, otherwise the capacity would be higher than the

single-crossing case.

A cut satisfying these three conditions is called a potential minimal cut. A direct one-to-one

correspondence between such a cut and a surface exists: the cut is limited to the consistent

voxel space (condition 1) and the single crossing point on the (xi,y j) voxel column (conditions

2 and 3) unambiguously determines f (xi,y j).

The capacity of a potential minimal cut represented by fcut can be computed as follows. The

capacity of the crossed z-edges is exactly the consistency term C d( fcut). Then, if we consider

the two adjacent columns (xi,y j) and (xi+1,y j), the cut depths are fcut(xi,y j) and fcut(xi+1,y j).

This implies that it crosses 1
∆z

∣

∣ fcut(xi+1,y j)− fcut(xi,y j)
∣

∣ x-edges. Thus, the total capacity of

crossed x-edges is αx(xi,y j)
∣

∣ f (xi+1,y j)− f (xi,y j)
∣

∣∆y. There is a similar result for the y-edges.

The total capacity of all the x-edges and y-edges crossed by the whole cut is exactly S d( fcut).

By adding these results together, we draw the expected conclusion: there is an exact corre-

spondence between a surface with the discrete functional C d + S d and a potential minimal cut

with its capacity.

Therefore, we can solve for a global minimum in polynomial time using any minimal-cut

algorithm.



C. Analyzing the smoothing term

Graph-cut techniques [1], [6]–[8] often yield flat and blocky results. This may not be fatal

if we are only building a disparity map with limited precision (e.g., 16 or 32 disparity values),

but it becomes crucial if we target 3D shape reconstruction including small details and smooth

slopes. We first elucidate the origin of this artifact, and then propose a solution by introducing

a new smoothing term.

x

z

Fig. 4. A discontinuous variation and a continuous one are equivalent in a region with uniform consistency term: they cross

the same number of x-edges (2 circles) and z-edges (3 squares). For clarity purpose, we present a 2D xz plane of the 3D grid.

Discontinuity artifacts appear in regions with depth variation and uniform smoothing and

consistency terms. Consider the following simple example (restricted to 2D for clarity) where f

is monotonic between xA and xB and α(x) is constant and equal to ᾱ:

S2D( f ) =

xB
∫

xA

α(x)
∣

∣

∣

∣

∂ f
∂x

(x)
∣

∣

∣

∣

dx = ᾱ | f (xB)− f (xA)|

If α(x) is uniform then the smoothing term only depends on the extreme values of f ignoring

its actual shape (Fig. 4). Therefore, if the consistency term is also uniform in that region, a

continuous depth change and a discontinuous one yield the same functional value. This directly

stems from the linear dependency of the smoothing term on the derivative. A convex term

makes a continuous variation have a lower functional and a concave one makes it have a higher

functional. There are three possible cases:

1) A convex smoothing term: it favors continuous variations but it may impede real surface

discontinuities.

2) A concave smoothing term: it creates spurious discontinuities. Smoothing the surface would

not be a solution because it would also remove the real discontinuities.



3) A linear smoothing term: it causes ambiguities because several surfaces have the same

functional value. Unfortunately, it can be shown that, between several equivalent cuts, a

graph-cut algorithm always “chooses” the most discontinuous one because it is the closest

to the source or to sink. This leads to same artifacts than the concave case. (See Figure 13-

a.)

This is summarized by the following property.

Smoothing term property: Concave and linear smoothing terms introduce spurious disconti-

nuities on the surface. To overcome this artifact, the smoothing term must be strictly convex.

From this analysis, we do not use a concave smoothing term like [1], [29] nor a linear one

like [7] because both introduce spurious discontinuities. We use a convex smoothing term while

controlling it to allow real discontinuities to occur as described later in Section IV-B.

D. Building a second graph with a convex smoothing term

Applying the previous analysis to our first graph design (Fig. 3), the ambiguity inherent to

the linear smoothing term is shown in Figure 4. This graph therefore needs to be adapted to

incorporate a strictly convex component. We could have chosen the graph proposed in [6] but it

introduces a constant in the smoothing term that can be difficult to handle in a multi-resolution

context. We therefore propose a new graph based on the correspondence shown in Figure 5.

We conserve the global 3D grid layout of the graph but there are now two kinds of x|y-edges:

the αx|y-edges and the βx|y-edges; the z-edges are split into 8 sub-edges. Nonetheless, the graph

complexity is still proportional to the number of voxels since there are twelve edges, four 3-

connected nodes and one 12-connected node per voxel. It adds an additional term A d in the

functional:

Ad( f ) =
nx−1

∑
i=1

ny

∑
j=1

βx(xi,y j)
[∣

∣ f (xi+1,y j)− f (xi,y j)
∣

∣−∆z
]+∆y

+
nx

∑
i=1

ny−1

∑
j=1

βy(xi,y j)
[∣

∣ f (xi,y j+1)− f (xi,y j)
∣

∣−∆z
]+∆x (5)

The correspondence property is still satisfied: The z-sub-edges are always cut by a group of

four and therefore their total capacity is always equal to the consistency term C d( fcut). Then,

the x|y-axis, as the αx|y-edges correspond to the previous x|y-edges, always form S d( fcut). Only



the βx|y-edges remain. Consider again two adjacent columns (xi,y j) and (xi+1,y j): there are
1
∆z

∣

∣ fcut(xi+1,y j)− fcut(xi,y j)
∣

∣ αx-edges as previously shown and if this number is non-zero,

because the cut can “go in the middle” of the z-sub-edges as seen in Figure 6, there is one

less βx-edge crossed. If we note [λ]+ the value max(0,λ), the capacity of the crossed βx-edges

between the columns is βx(xi,y j)
[∣

∣ f (xi+1,y j)− f (xi,y j)
∣

∣−∆z
]+ ∆y, which gives a strictly convex

function. Hence, βx|y-edges form Ad.

As expected, with this convex term, the functional is lower for a continuous variation than

for a discontinuous one as illustrated in Figure 6. This achieves our goal but the discrete A d

term (5) has no continuous counterpart like C d with C and S d with S because of the ∆z term,

which is directly linked to the discretization step. However, βx|y can be made small because we

only need to penalize the step variations, no matter how important this penalty is. Therefore,

Ad ≈ 0. Then, we can compute a close approximation of the discrete solution to the continuous

functional while avoiding spurious discontinuities.

The last point to be observed is that crossing two z-sub-edges may lead to a lower capacity

than crossing one β-edge. To avoid this situation, we can either add a constant on the z-sub-edge

capacity (but it can be incompatible with a multi-resolution approach) or use constraint edges [6]

(i.e. keep the same capacity for the oriented z-edges from the source to the sink and assign an

infinite capacity to their reverse oriented edges) and then have no additional constant.

∆   ∆x    z(   ,   )x  yi     jαy
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x

y
z

∆z

∆   ∆x    y(   ,   ,   )x  y  zi     j    kc1
4

(   ,   )

(   ,   )x  yi     jαx ∆   ∆y    z

x  yi     jβx ∆   ∆y    z

∆y

∆x

Fig. 5. Correspondence between the voxel (xi,y j,zk) and the graph with a convex smoothing term. The 8 z-sub-edges have

the same capacity.
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z

Fig. 6. The discontinuous variation crosses one more βx-edge (the triangle) than the continuous variation. Thus, it has a higher

functional value.

IV. ALGORITHM DESCRIPTION

In the previous sections, we have described a general optimization tool. It has now to be

adapted in a surface reconstruction framework. To demonstrate the capacity of this method, we

have chosen a classical scenario which is well-known to raise precision difficulties and therefore

challenges our technique. In the chosen configuration, we assume that there exists a separating

plane: all the cameras are in the same half space and look toward the other half. This is a classical

setup which is similar to many others [1], [7], [9], [18], [22]. This corresponds for instance to

a short video sequence or to the situation in which it is impossible to go all around the scene.

These two practical cases motivate this setup. We also assume that there is no moving object

in the scene and since we are focusing on the reconstruction issue, the cameras are considered

fully calibrated.

The proposed algorithm combines voxels and graph cut in a consistent way since both rely

on the same space discretization. The advantage of this design is to deal with the visibility.

Self-occlusions and object-by-object occlusions are handled: there are detected and if an object

is partially hidden but still visible from a subset of cameras, it is reconstructed.

Before examining the details, we first give an overview of the algorithm illustrated by Figure 7.

Input: The algorithm uses a sequence of images, each image is given with its corresponding

projection matrix which relates a 3D point to its projection in the image plane. The user also

defines a bounding volume e.g. a 3D bounding box, containing the object of interest.

Initialization: Before entering the core of the process, the voxel space is built. The specific

layout of the voxels ensure several properties including a new one which is proved. This allows

a rigorous characterization of the surface boundaries.



Main loop: The algorithm is based on a multi-pass process. Each object is reconstructed one

by one while visibility is progressively updated. Each pass first collects consistency information

and localizes the potential discontinuities. Then the graph-cut optimization is run: it will be

shown how to use it while accounting for self-occlusions. Before a new pass starts, visibility

is updated (occluded regions are marked in images) so the next passes handle object-by-object

occlusions.

Post-process: The resulting mesh is aliased because of the discrete representation of space.

This artifact is removed with a specific PDE filter.

Discontinuity
computationInitialization

Images

Concistency
computation

Visibility
update

PDE
Smoothing

Graph−cut
optimization

Fig. 7. Overview of the whole process. The consistency computation and the localization of the discontinuities are based on

the input images in which the occluded regions are tagged at the end of each loop.

A. Initialization

The input bounding volume is discretized. This discrete space is seen in turn as a voxel space

and a graph (see Figures 3 and 5). The space axes are determined as follows: the x-axis is defined

by any two arbitrary cameras not orthogonal to the separating plane, the z-axis is orthogonal

to x and going through the plane and y = z× x. We then use a voxel configuration illustrated

in Figure 8. The voxels are organized by planes z = cst: each plane is a scaled version of the

z = z0 plane. It fulfills the constant footprint property [12]: each voxel has the same projected

area. There are other ways to achieve this property [10], [30] but this configuration also induces

the vertex coordinate property [31] which characterizes the surface boundary D . We here extend

this property.

Vertex coordinate property: It characterizes the voxels near a surface of uniform color. As

illustrated in Figure 9, a voxel near such a surface but not part of it can be consistent because all

the lines of sight hit the surface and give the same color. Therefore, as shown in [2], surfaces of
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z = zPlane 0
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Fig. 8. Geometric configuration of our study case: cameras roughly lie on the x-axis and the voxel space is in the z direction.

uniform color4 generate consistent regions which are bigger than the real surface. These regions

go larger with smaller baselines. Therefore in our case, these regions are poor approximations

of the real surface (Fig. 10-a). Nonetheless, these regions lead to useful properties.

Surface of
uniform color

Fig. 9. A voxel that is consistent although it is not part of the surface.

In the following discussions, we assume that the surface color changes with its orientation

relatively to the light and that the lighting is non-uniform. Conversely this implies that an

uniform color surface is quite smooth and, for instance, cannot be peaked since it would appear

4To be precise, the surface must be uniform considering the consistency criterion used to define the c function. In many cases,

this implies the color (e.g. photo-consistency under the Lambertian assumption).



of different colors because of the shading variations. We believe this hypothesis is always met

by real scenes and therefore does not restrict our results.

Basic vertex coordinate property: For aligned cameras, if the scaling center used to build the

voxels lies between the two extreme cameras, in an epipolar plane (i.e. a plane containing the

optical centers) a surface of uniform color forms a region with consistent voxels. This region is

a quadrilateral which vertices have one and only one extremal coordinate relatively to the voxel-

grid coordinate system. Moreover, the left-most and right-most vertices belong to the surface.
Sketch of proof: The proof relies on the relationship between the camera positions, the

angles between the lines of sight and the voxel boundaries, and the slopes of these lines of sight

in the voxel coordinate system. This is illustrated in Figure 10-a. Then, the property is stated

by examining these slopes. The complete proof can be found in [31].

This first property can be generalized to the case of non-aligned cameras as long as a separating

plane exists. This results in the following property.

Extended vertex coordinate property: If the scaling center used to build the voxel grid lies on

a segment linking any two cameras Ci and C j, in the epipolar planes of Ci and C j, the consistent

voxels form 2D regions which left-most and right-most points belong to the surface.
Proof: Without loss of generality, consider two cameras C1 and C2 and name the C1C2 axis

the x-axis, and then, as described previously, the z-axis is an orthogonal axis going through the

separating plane and y = z×x. The scaling center lies between C1 and C2. The configuration of

an epipolar plane is illustrated in Figure 10-a.

We first restrict to this only two cameras. Using the basic vertex coordinate property, we know

that the left-most and right-most vertices of the corresponding consistent region belong to the

surface.

We consider now one more camera C3 lying in a general 3D position. It makes a visual 3D cone

with the surface of uniform color and then forms a 2D region in the epipolar plane as depicted in

Figure 10-b. C3 brings an additional constraint for the consistency, therefore the region consistent

with C1, C2 and C3 is the intersection between the initial quadrilateral and the new C3 region. The

resulting region may not be a quadrilateral or even a polygon anymore because C3 may create a

non-polygonal shape (Fig. 10-b). Nevertheless, since the previously characterized left-most and

right-most points are part of the generating surface, they are consistent for any camera which



l+

l− r+

r−
Positive angle
Negative angle

Voxel space Surface of
uniform color

(a) (b)

C

C

C

C

C1

1

2

2

3

Fig. 10. (a) An epipolar plane of C1 and C2: the intersection of the two visual cones defines the consistent region. Note that

the left-most and right-most vertices belong to the surface. (b) The consistent region in the epipolar plane due to a third camera

C3.

sees them. Hence they are part of the region consistent with C1, C2 and C3 and because this

region is only a restriction of the region for C1 and C2, they are still the left-most and right-most

points. C3 does not affect the property: the left-most and right-most points have not changed.

This will therefore not change for any number of additional cameras. This demonstrates the

extended property.

Thanks to this property, the optimization domain D is now defined. It is sufficient to chose

two cameras Ci and C j. The voxel space is then build as previously described: the scaling origin

is set between Ci and C j, the x axis is along CiC j, z goes through the separating plane (it is

necessary to ensure the configuration of the angles in Figure 10-a) and y = z× x. With this

setup (Fig. 8), D is characterized by its left-most and right-most points in each epipolar planes

(defined by CiC j).

B. Main loop

The algorithm has a multi-pass layout to reconstruct objects one by one, from the closest one

to the most distant. The separating plane defines unambiguously this “distance”. It is a classical

front-to-back approach [32] or it can also be seen as a plane sweep [2] in the z direction.



The iteration stops when no object remains unreconstructed in the scene.

Loop step 1: Consistency computation

For each voxel, consistency is computed. Then the voxels are thresholded to discard all

the inconsistent voxels. Since we deal with real images, the resulting voxel set may contain

some holes or isolated voxels. To overcome this point, the set is robustified with morphological

operators as described in [31], [33]: a closure is first applied to fill in the holes and then an

opening to remove isolated voxels.

In the rest of the pass, only the set of consistent voxels that is the closest to the cameras is

considered.

Loop step 2: Discontinuities

Under the previously discussed and reasonable assumption that the aspect of a surface depends

on its orientation, surface discontinuities result in image discontinuities. This remark is used to

control the two functions αx and αy that appear in the smoothing term (eq. 2). These functions

drive the continuity of the surface: If they are null, the surface is free to be discontinuous whereas

for positive values, discontinuities are penalized.

We propose to define these functions as αx|y(x,y) = Aχx|y where A is a constant which

corresponds to the desired smoothing strength when there is no discontinuity and the functions

χx|y is a discontinuity factor varying between 0 (discontinuity) and 1 (no discontinuity). βx|y is

defined similarly using Bχx|y with constant B such that B � A.

We now expose how to characterize potential surface discontinuities. The input images are

used for this purpose: the color of each surface point is estimated relatively to the input images.

But since this step occurs before the graph-cut optimization, we use the voxel approximation

which a poor geometric approximation but is sufficient for this task. In practice, we compute

the color of each voxel by averaging its color in each camera and the color of the surface at

a point (xi,y j) is the average of the colors of all the voxels in the corresponding column. This

estimation is reasonable because as discussed previously, depth uncertainty (i.e. several voxels

in a (xi,y j) column) results from surfaces of uniform color. Therefore, only similar colors are

averaged in this estimation.
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Fig. 11. The χx and χy functions (black = 0 and white = 1) for the briefcase man (Fig. 14).

Two discontinuity maps Dx and Dy are computed. Dx is related to the color difference between

(xi,y j) and (xi+1,y j) (or (xi,y j+1) for Dy). As the estimation of the color discontinuities has

to be independent of the local contrast (for instance, the estimation should not change between

bright or dark lighting conditions), it is normalized by the standard deviation γN i j
x

of the color

in a small neighborhood N i j
x (e.g. 6× 5 centered on (xi+ 1

2
,y j)). Small values of γN i j

x
cause

numerical instabilities and make detect spurious discontinuities. We therefore apply a threshold

Γ according to the values of γN i j
x
:

Dx(xi,y j) =







0 if γN i j
x
< Γ

distance(color(xi,y j),color(xi+1,y j))
γ

N i j
x

else
(6)

We use the equivalent formula for Dy(xi,y j) to get:

χx|y(xi,y j) =
[

1−D2
x|y(xi,y j)

]+
(7)

Remark: Our approach is different from existing methods. Some of them [3], [7] consider

discontinuities as normal depth variations. This is obviously a drawback for important depth

changes. Or the others handle discontinuities in their optimization process but without controlling

their localization [1], [8], [16]–[18], [29] (i.e. the optimization process “decides” on its own

where are the discontinuities). Our method adds this important issue of discontinuity localization

according to the input images.



Loop step 3: Graph cut with self-occlusions

To account for self-occlusion, our graph-cut technique is adapted according to the geometric

configuration. Adapting the functional is straightforward, it is sufficient to add a visibility

term5V ( f ) which is infinite if f corresponds to a self-occluding surface and 0 in all the other

cases. Obviously, no self-occluding surface can be minimal for this functional.

Then, visibility edges are added to the graph to ensure the correspondence property. Let’s

consider a voxel A occluded by a voxel B in an adjacent column (Fig. 12-a). An oriented edge

with infinite capacity is added as shown in Figure 12-b. This edge is oriented from the sink to

the source. Therefore any surface including both A and B crosses this edge with the orientation

that makes the edge count in the cut value. Note that any surface including a voxel behind A

and/or a voxel in front of B is self-occluding and crosses also this infinite edge as it should

be. This proves that these edges correspond to the visibility term for adjacent columns. As

the relationship “is occluded by” is transitive, this is sufficient to ensure the whole visibility

5This term is not the same as [1] but has an equivalent effect when considering one disparity map: self-occlusion cannot

appear.
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Fig. 12. For illustration purpose, only a xz plane is presented and the graph is the simple non-convex one (Fig. 3). (a) A is

occluded by B. (b) The BA visibility edge and a surface containing both A and B. (c) The BA and CB edges are sufficient to

handle the occlusion between C and A.



constraint as illustrated by the Figure 12-c: if A is occluded by B which is occluded by C then

A is occluded by C and any surface included A and C must cross either the BA edge or the CB

edge.

Hence, it is sufficient to add four visibility edges per voxel to have a graph that accounts for

V ( f ). However, in practice the results we have obtained without these edges are never self-

occluding. Therefore, it seems they can be omitted to alleviate the computation without any loss

of quality.

Loop step 4: Visibility

After each pass, the lines of sight blocked by the previously reconstructed objects are computed

and ignored in the following passes. In practice, the reconstructed objects are projected in the

input images and the covered pixels are flagged “occluded”.

C. Post-process: Mesh smoothing

As the whole process up to this step is purely discrete, it suffers from aliasing artifacts. A

smoothing filter, inspired by PDE based image denoising [34] is well adapted to a geometric

surface because it is driven by the principal curvatures κ1 and κ2. Also, because the potential

discontinuity lines are already located, the PDE smoothing filter is adapted to avoid diffusing

across these lines.

First, since χx|y evaluates the discontinuity between two adjacent columns, we define χ̂x|y

a column-centered function χ̂x(xi,y j) = 1
2

(

χx(xi,y j)+χx(xi−1,y j)
)

and equivalently for χ̂y. To

adapt to the directions θ1 and θ2 of the principal curvatures, we define a discontinuity factor χ̂θ

for the direction θ with the classical interpolation: χ̂θ = cos2(θ) χ̂x + sin2(θ) χ̂y

Thus, we can formulate the filter as a surface evolution driven by the following PDE with

virtual time t:
∂ f
∂t

= χ̂θ̃1
g(κ̃1)κ1 + χ̂θ̃2

g(κ̃2)κ2 (8)

where g is a stopping function that controls diffusion to preserve the curvatures (its role is

discussed in detail in [35]), κ̃ and θ̃ are computed on a Gaussian filtered version of the surface,

which leads to more robust estimations to control the filter [36]. Note that there are two con-

trolling components: g driven by the surface geometry and χ̂ accounting for color discontinuity.

These assure that both curvature and discontinuities are preserved.



V. DISCUSSIONS

A discussion of comparisons of our method with existing methods is given in this section.

A. Global versus local minimum

The main difference between our approach and other existing methods [1], [3], [8], [16]–

[18] is that we find an exact global minimum of the discrete functional. Other approaches use

variational techniques: for level set methods, the variation is given by the Euler-Lagrange relation

and for graph-cut methods it comes from an α-expansion [17]. These methods suffer from the

same limitations:

• They are dependent on the starting point. Different results may be obtained from different

starting points.

• They only reach a local minimum. At best, Boykov et al. [17] have demonstrated a highest

bound of the error committed by their method on the functional. Currently, the geometric

error is unknown.

We can determine this global minimum because we use a convex smoothing term coupled to

an a priori discontinuity detection which results in a polynomial problem opposite to [1], [8],

[16]–[18] which rely on a concave term to handle discontinuities. Moreover our discontinuity

handling seems more consistent as it is driven by input images as discussed in Section IV-B.

(a) (b) (c) (e)(d)

Fig. 13. 3D reconstructions with various parameters (a) Without PDE filter and with a linear smoothing term: spurious

discontinuities (on the shoulders and on the arms) (b) Without PDE filter and discontinuity maps: details are blurred (on the

face and in the briefcase) (c) Without PDE filter: aliasing. (d) An input image. (e) Final result with all our contributions.



B. Geometry versus labels

Another important feature of our approach compared to the existing graph cut techniques [1],

[6], [8], [16]–[18] is its geometric formulation. Up to now, graph-cut methods have mainly

described the problem in terms of image disparity: different disparity values are selected and

each image pixel has to be labeled with one of those values. Even if there is a link between

the disparity and the depth, none of these methods has used it to characterize the functional.

Therefore, the relation between the discretized resolution and the different terms of the functional

is unclear: for instance, if one wants to work with a resolution twice coarser, it is not clear how

to set the various values to ensure that the same underlying problem is solved. On the other

hand, our approach makes explicit the measure functions dx, dy and dz whose relation with ∆x,

∆y and ∆z is straightforward and then any change of resolution can be handled while solving

the same underlying problem.

From this point of view, our method is quite similar to the level-set approach that first defines

a continuous geometric functional before looking for a solution with a specific method. But our

solution technique is purely discrete whereas the level-set is a local numerical method.

C. Occlusions

Our algorithm through the multi-pass design is able to handle strong occlusions for recon-

structing partially hidden objects. From this point of view, these results are equivalent to those

obtained with space-carving [2] or level-set methods [3]. They are more general than those

obtained with disparity maps [1], [6]–[8] which detect occlusions but do not reconstruct hidden

objects. Contrary to these methods, ours handles visibility to reconstruct objects which are only

visible by a subset of the cameras.

D. Open and closed surfaces

The presented method is designed to reconstruct the front-facing parts of the objects because

the viewpoints are grouped on the same side of the scene. Therefore, the surfaces we are dealing

with are intrinsically open. This has to be compared with the disparity maps which are also

open surfaces if one considers them as 3D entities. The main difference is that a disparity map

builds a single surface representing the whole scene whereas our algorithm may results in several

surfaces, one for each object. This difference is a key feature to handle occlusions and reconstruct



partially hidden objects. This also explains is why a disparity map cannot “go behind” partial

occlusions. The price for this feature is that the non-trivial boundary problem has to be solved.

In this paper, a specific voxel setup and the general vertex coordinate property are proposed and

demonstrated to characterize the surface boundaries. So the framework is complete and we can

both determined the boundaries and the surfaces.

Then, this open-surface approach has also to be compared with the closed-surface techniques

based on voxels [2], level sets [3] or graph cuts [22]. Theses methods have the obvious advantage

to fully reconstruct the objects. However, this clearly implies that there are many views all around

the scene to ensure no hidden part. Such a configuration is not always available and therefore the

corresponding algorithms cannot be applied. Nonetheless, we consider in future work to develop

and adapt our implementation to closed surface by working with a specific parameterization of

the surface. This clearly deserves deeper studies.

VI. EXPERIMENTAL RESULTS

The implemented system has been demonstrated on many real examples. We show three typical

sequences: a briefcase man, keyboard, and lantern sequences illustrated in Figures 14, 17 and 18.

There are 40 frames for the street from Dayton Taylor’s time-freezing setup with aligned and

regularly spaced cameras. Except the time-freezing system which captures attractive “moving”

scene, this setup is rather similar to short video sequence: baseline is short (40 images spanning

1.5 meter), image resolution is limited (about 40×40 for the face of the man), the images contain

a significant amount of noise and an exposition change occurs throughout the sequence due to

the back light. This sequence can be considered as representative of an input provided by a non-

specialist user. It is calibrated by a commercial system with about 70 points manually extracted

from the sequence. There are 11 frames of resolution 640×480 for the keyboard sequence and

23 frames of 800× 600 for the lantern sequence captured by a hand-held digital camera. The

geometry of the cameras for these sequences has been automatically computed using the system

of Lhuillier and Quan [37]. To compute effective solution for results, there is a broad range

for the definition of consistency. For simplicity, we use the photo-consistency [2], [9] in the

hue-saturation-value color space for our current examples.

The space resolution ranges typically from 1 to 10 million voxels with 5 nodes and 12

double edges per voxel (Fig. 5). The precision of the reconstruction results is very high. We



notice even the geometric details on the face of the man (Fig. 14), which comes from only a

small patch of about 40× 40 pixels. Almost every key on the keyboard is reconstructed and

distinguishable (Fig. 17). We measured the physical size of the keyboard and the keys. This

gives a 1/10 pixel accuracy.

Fig. 14. Man with briefcase reconstruction (right) 40 images at 692× 461, face is about 40× 40 (left). Notice that the

discontinuities are preserved.



Figure 18 shows a case with strong occlusion. The folded chess-board is hidden by the lantern

in half of the images. Nevertheless, our algorithm is able to exploit the remaining unoccluded

views to rebuild it.

We have tested the behavior of the technique with decreasing number of cameras. We used the

sequence of the man with briefcase that is a rather difficult input as discussed previously. With

20 images among a total of 40 (Fig. 15-middle), some details are slightly blurred away on the

face and the briefcase but the overall accuracy is almost the same. With 10 images, (Fig. 15-left),

some spurious geometry appears on the briefcase and the contours are less precise. However, the

algorithm still performs well and reaches satisfying results. We have tested with only 5 cameras,

the quality loss becomes unacceptable: Large spurious shapes appear due to the background

and the silhouettes are too degraded. This result does not seem reasonably usable. So we have

reached the limit of our technique. It shows that it works well for 10 cameras or more, even with

non-perfect images. This number depends on the “quality” of the images. The input images used

in Figure 15 are significantly noisy (outdoor scene, contrast has been raised and the time-freezing

system is likely not to be perfectly synchronized). Therefore, it can be considered as a “worst

from 10 images from 20 images from 40 images

Fig. 15. Reconstruction from the same sequence as Figure 14 but with a varying number of images. The technique achieves

precise results with only 10 images.



case” experiment. Hence 10 images are a safe threshold for any sequence and less images could

be used if “better” pictures are available. This number has also to be related to occlusion: The

chess-board in Figure 18 is occluded half of the time, so it requires 20 images or more to be

sure to reach a satisfying result.

Comparison with disparity maps: We have run the algorithm of Kolmogorov et al [1]6 on

the sequence of the man with a briefcase (Fig. 14). We have tried to match as close as possible

our setup: we have used the same calibrated cameras with an equivalent bounding region. For

the labels, we have placed 10 planes which span the whole depth of the subject, and 5 planes

for the background in order to avoid spurious influence of background objects. As suggested

in their paper, we have used the robustified L1 distance to compute the smoothing term. Since

the input values are limited to integers, we have tried all the relevant values for the smoothing

term and selected the one leading to the best result. The obtained disparity map is shown in

Figure 16.

Fig. 16. Disparity map computed with the method of Kolmogorov et al. [1] on the same sequence as Figure 14.

We can remark that contours are very precise but depth precision is limited: only 5 labels

appear for the man (among 10 possible). This let us think that this method is not able to reach a

higher precision on this sequence even if we allow more labels. Moreover, these labels introduce

strong discontinuities in some regions where there is no clear reason to do so e.g. on the briefcase

6The code is available at http://www.cs.cornell.edu/People/vnk/software.html



and on the left arm. This clearly comes from the concave shape of the robustified L1 distance.

From the presented study, this point can be overcome with a convex smoothing term associated

with an image-driven detection of the discontinuities.

A side-by-side comparison (Fig. 1) outlines the dramatic improvement of the depth precision

brought by our technique.

Graph flow implementation: The graph-cut optimization process is time consuming. These

examples took abuot 15 minutes to compute on an Intel Xeon 2.4GHz and they need between

300MB and 700MB of RAM. These values have to be evaluated considering the size of the

graph (≈ millions of vertices and edges). This has to be compared to the graphs used in [1] (at

most 600 000 vertices and 4 millions directed edges). The huge graph-flow problem exceeds the

existing graph-flow implementation. It has been made tractable through a careful implementation

of the algorithm and heuristics presented by Cherkassky and Goldberg [38].

Then we add our own improvements. For memory space, the key point of our implementation

is that it computes adjacency information on-the-fly instead of storing it. Then we ensure that

there is no circular flow in double edges so that the flow in double edges can be stored in a

single signed value instead of two. Note that the other classical implementation proposed by

Boykov and Kolmogorov [39] is not suitable for our graphs because it is specifically designed

for small graphs and they have shown that its higher complexity degrades performance for large

graphs. This is a real drawback in our case.

Our code is available at artis.imag.fr/Members/Sylvain.Paris/

Complexity and timing: The complexity of the algorithm is dominated by the graph-cut

computation which is theoretically polynomial of degree 2.5 [38] relatively to the number of

voxels. It seems however to be almost linear in practice for grid-aligned graphs (degree 1.2

from [4]).

The graph cut is also the most time-consuming step with about 15 minutes. Among the other

steps, the consistency computation is the only significant one with 5 minutes. The remaining

treatments last a few seconds. These measures are made on an Intel Xeon 2.4GHz using code

which could be further optimized.



Fig. 17. Keyboard reconstruction (right) from 11 images at 640 × 480 (left). Notice that the keys of the keyboard are clearly

distinguishable.

VII. CONCLUSIONS

We have described a new geometric formulation of the surface recovery problem. It is based

on a functional that is simpler than those of the level set method or of other graph cut approaches.

However, we believe that the geometric formulation is more meaningful than the labeling

interpretation commonly proposed by graph-cut methods. Moreover, it explicitly takes into

account discontinuities compared to the other methods which either do not handle discontinuities

or consider them but have no control over their localization. We have integrated this into a voxel-

based process to achieve complete reconstruction system. We demonstrate that this system handle

self-occlusions and occlusions to reconstruct partially hidden objects. It also has the capacity to

achieve very precise results even for complex configurations.

We believe that this new approach is promising and provides new solutions for interesting

issues. The high robustness of the method coupled with a specific consistency evaluation may

for instance lead to results for a more general reflectance model than the Lambertian model



Fig. 18. Lantern and folded chess-board reconstruction (right) 23 images at 800×600 (left) The folded chess-board is occluded

from images 4 to 15.

commonly used in Computer Vision. We also plan to study a generalization of the method to

more general surfaces to make the link with other methods tighter.
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