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Multipitch estimation of piano sounds using
a new probabilistic spectral smoothness principle

Valentin Emiya, Member, IEEE, Roland Badeau, Member, IEEE, Bertrand David, Member, IEEE

Abstract—A new method for the estimation of multiple con-
current pitches in piano recordings is presented. It addresses the
issue of overlapping overtones by modeling the spectral envelope
of the overtones of each note with a smooth autoregressive
model. For the background noise, a moving-average model is
used and the combination of both tends to eliminate harmonic
and sub-harmonic erroneous pitch estimations. This leads to a
complete generative spectral model for simultaneous piano notes,
which also explicitly includes the typical deviation from exact
harmonicity in a piano overtone series. The pitch set which
maximizes an approximate likelihood is selected from among
a restricted number of possible pitch combinations as the one.
Tests have been conducted on a large homemade database called
MAPS, composed of piano recordings from a real upright piano
and from high-quality samples.

Index Terms—Acoustic signal analysis, audio processing, mul-
tipitch estimation, piano, transcription, spectral smoothness.

I. INTRODUCTION

The issue of monopitch estimation has been addressed for
decades by different approaches such as retrieving a periodic
pattern in a waveform [1; 2] or matching a regularly spaced
pattern to an observed spectrum [3–5], or even by combining
both spectral and temporal cues [6; 7]. Conversely the mul-
tipitch estimation (MPE) problem has become a rather active
research area in the last decade [8–11] and is mostly handled
by processing spectral or time-frequency representations. This
MPE task has also become a central tool in musical scene
analysis [11], particularly when the targeted application is the
automatic transcription of music (ATM) [12–16]. While recent
works consider pitch and time dimensions jointly to perform
this task, MPE on single frames has been historically used
as a prior processing to pitch tracking over time and musical
note detection. Indeed, in a signal processing perspective, a
period or a harmonic series can be estimated from a short
signal snapshot. In terms of perception, only a few cycles are
needed to identify a pitched note [17].

In this polyphonic context, two issues have proved difficult
and interesting for computational MPE: the overlap between
the overtones of different notes and the unknown number of
such notes occurring simultaneously. As the superposition of
two sounds in octave relationship leads to a spectral ambiguity
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and thus to an ill-posed problem, some knowledge is often
used for the further spectral modeling of the underlying
sources. For instance, when iterative spectral subtraction is em-
ployed, several authors have adopted a smoothness assumption
for the spectral envelope of the notes [8–10].

Several preceding works [12–14; 16] specifically address
the case of the piano. One of the interests in studying a single
instrument is to incorporate in the algorithms some results
established from physical considerations [18; 19], in the hope
that a more specific model will lead to a better performance,
with the obvious drawback of narrowing the scope of the
application. Indeed, while a large number of musical pieces are
composed for piano solo, the performance of ATM systems is
relatively poor for this instrument in comparison to others [6].

Two deviations from a simple harmonic spectral model are
specific to free vibrating string instruments and are particularly
salient for the piano: a small departure from exact harmonicity
(the overtone series is slightly stretched) and the beatings be-
tween very close frequency components (for a single string two
different vibrating polarizations occur and the different strings
in a doublet or triplet are slightly detuned on purpose [20]).

In this work, we propose a new spectral model in which
the inharmonic distribution is taken into account and adjusted
for each possible note. The spectral envelope of the overtones
is modeled by a smooth autoregressive (AR) model, the
smoothness resulting from a low model order. A smooth
spectral model is similarly introduced for the residual noise
by using a low-order moving-average (MA) process, which
is particular efficient against residual sinusoids. The proposed
method follows a preliminary work [21] in which the AR/MA
approach was already used and MPE was addressed as an
extension of a monopitch estimation approach. In addition
to the opportunity to deal with higher polyphony levels, the
current paper introduces a new signal model for simultaneous
piano notes and a corresponding estimation scheme. The
major advance from the previous study is thus to model and
estimate the spectral overlap between note spectra. An iterative
estimation framework is proposed which leads to a maximum
likelihood estimation for each possible set of F0s.

This paper is structured as follows. In section II, the
overall MPE approach is described. The sound model is first
detailed, followed by the principle of the algorithm: statistical
background, adaptive choice of the search space and detection
function. The estimation of the model parameters is then
explained in section III. After specifying the implementation
details, the algorithm is tested in section IV using a database
of piano sounds and the results are analyzed and compared
with those obtained with some state-of-the-art approaches.
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Conclusions are finally drawn in section V.
Note that in the following, ∗ denotes the complex conjugate,

T the transpose operator, † the conjugate transpose, ⌊.⌋ the floor
function and |.| the number of elements in a set, the absolute
value of a real number or the modulus of a complex number.
In addition, the term polyphony will be applied to any possible
mixture of notes, including silence (polyphony 0) and single
notes (polyphony 1).

II. MULTIPITCH ESTIMATION ALGORITHM

A. Generative sound model

At the frame level, a mixture of piano sounds is modeled as
a sum of sinusoids and background noise. The amplitude of
each sinusoid is considered as a random variable. The spectral
envelope for the overtone series of a note is introduced as
second order statistical properties of this random variable,
making it possible to adjust its smoothness. The noise is
considered as a moving-average (MA) process.

More precisely, a mixture of P ∈ N simultaneous piano
notes, observed in a discrete-time N -length frame, is modeled
as a sum x (t) ,

∑P
p=1 xp (t) + xb (t) of the note

signals xp and of noise xb. The sinusoidal model for xp is

xp (t) ,

Hp∑

h=1

(
αhpe

2iπfhpt + α∗
hpe

−2iπfhpt
)

(1)

where αhp are the complex amplitudes and fhp the frequen-
cies of the Hp overtones (here, Hp is set to the maximum
number of overtones below the Nyquist frequency). Note p is
parameterized by Cp = (f0p, βp), f0p being the fundamental
frequency (F0) and βp (f0p) being the so-called inharmonicity
coefficient of the piano note [20], such that

fhp , hf0p

√
1 + βp (f0p)h2 (2)

We introduce a spectral envelope for note p as an au-
toregressive (AR) model of order Qp, parameterized by
θp ,

(
σ2

p, Ap(z)
)
, where σ2

p is the power and 1
Ap(z) is

the transfer function of the related AR filter. Order Qp should
be low and proportional to Hp, in order to obtain a smooth
envelope and to avoid overfitting issues for high pitches. The
amplitude αhp of overtone h of note p is the outcome of a
zero-mean complex Gaussian random variable1, with variance
equal to the spectral envelope power density at the frequency
fhp of the overtone:

αhp ∼ N

(
0,

σ2
p

|Ap (e2iπfhp)|
2

)
(3)

In order to model a smooth spectral envelope without
residual peaks, the noise xb is modeled as an MA process
with a low order Qb, parameterized by θb ,

(
σ2

b , B(z)
)
, σ2

b

being the power and B(z) the finite impulse response (FIR)
filter of the process.

Furthermore, high note powers and low noise powers
are favored by choosing an inverse gamma prior for σ2

p:

1Using these centered Gaussian variables, xp is thus a harmonic process,
in the statistical sense.
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Fig. 1. Multipitch estimation block diagram.

σ2
p ∼ IG

(
kσ2

p
, Eσ2

p

)
and a gamma prior for σ2

b : σ2
b ∼

Γ
(
kσ2

b
, Eσ2

b

)
. A non-informative prior2 is assumed for Ap(z)

and B(z).
With a user-defined weighting window w, we can equiv-

alently consider the Discrete Time Fourier Transforms
(DTFT) Xp(f) of xp (t)w (t), Xb (f) of xb (t)w (t) and
X (f) ,

∑P
p=1 Xp (f) + Xb (f) of x (t)w (t). W being

the DTFT of w, we thus have

Xp (f) =

Hp∑

h=1

(
αhpW (f − fhp) + α∗

hpW
∗ (f + fhp)

)
(4)

In addition, the following synthetic notations will be used:
a mixture of notes is denoted by C , (C1, . . . , CP ); the set of
parameters for spectral envelope models by θ , (θ1, . . . , θP );
the set of amplitudes of overtones of note p by αp ,(
α1p, . . . , αHpp

)
; and the set of amplitudes of overtones of

all notes by α , (α1, . . . , αP ).

B. Principle of the algorithm

The algorithm is illustrated in Fig. 1. The main principles
are described in the current section, except for the model
parameter estimation, which is detailed in Section III.

2e.g. an improper, constant prior density, which will not affect the detection
function.



EMIYA et al.: MULTIPITCH ESTIMATION OF PIANO SOUNDS USING A NEW PROBABILISTIC SPECTRAL SMOOTHNESS PRINCIPLE 3

1) Statistical background: Let us consider the observed
frame x and the set C of all the possible mixtures of pia-
no notes. Ideally, the multipitch detection function can be
expressed as the maximum a posteriori (MAP) estimator Ĉ,
which is equivalent to the ML estimator if no a priori
information on mixtures is specified:

Ĉ = argmax
C∈C

p(C|x) = argmax
C∈C

p(x|C) p(C)

p(x)

= argmax
C∈C

p(x|C) (5)

2) Search space: The number of combinations among Q
possible notes being

(
Q
P

)
for polyphony P , the size of the

search set C is
∑Q

P=0

(
Q
P

)
= 2Q, i.e. around 3·1026 for a

typical piano with Q = 88 keys. Even when the polyphony is
limited to Pmax = 6 and the number of possible notes to Q =
60 (e.g. by ignoring the lowest and highest-pitched keys), the
number of combinations reaches

∑Pmax

P=0

(
Q
P

)
≈ 56·106, which

remains a too huge search set for a realistic implementation.
In order to reduce the size of this set, we propose to select a
given number Nc of note candidates. We use the normalized
product spectrum function defined in dB as

ΠX (f0, β) ,
1

H (f0, β)ν 10 log

H(f0,β)∏

h=1

|X (fh)|2 (6)

where X is the observed spectrum, H (f0, β) is the number
of overtones for the note with fundamental frequency f0 and
inharmonicity β, fh , hf0

√
1 + βh2, and ν is a parameter

adjusted to balance the values of the function between bass
and treble notes. As the true notes generate local peaks in ΠX ,
selecting an oversized set of Nc greatest peaks is an efficient
way for adaptively reducing the number of note candidates.
In addition, for candidate nc ∈ J1; NcK, accurate values of its
fundamental frequency f0nc

and inharmonicity βnc
are found

by a local two-dimensional maximization3 of ΠX (f0nc
, βnc

).
They are used in the subsequent estimation stages to locate the
frequencies of the overtones. In the current implementation,
the number of note candidates is set to Nc = 9. This choice
results from the balance between increasing the number of
candidates and limiting the computational time. The size of
the set C̃ of possible mixtures thus equals

∑Pmax

P=0

(
Nc

P

)
= 466,

for Pmax = 6.
3) Multipitch detection function: The multipitch detection

function aims at finding the correct mixture among all the
possible candidates. For each candidate C ∈ C̃, the parameters
α̂, θ̂ and θ̂b of the related model are estimated as explained
in section III. The detection function is then computed, and
the multipitch estimation is defined as the mixture with the
greatest value.

Since equation (5) is intractable, we define an alternate
detection function which involves the following terms:

• Lp (θp) , ln p(αp|θp, Cp) is the log-likelihood of the
amplitudes αp of overtones of note p, related to the
spectral envelope models θp;

3The fminsearch Matlab function was used for this optimization.

• Lb (θb) , ln p(x|α, θb, C) is equal4 to the log-likelihood
ln pxb

related to the noise model θb;
• the priors ln p(θp) on the spectral envelope of the note p

and ln p(θb) on noise parameters.
We empirically define the detection function as a weighted

sum of these log-densities, computed with the estimated pa-
rameters (see Appendix A for a discussion):

L̃x (C) , w1

P∑

p=1

L̃p

(
θ̂p

)
/P + w2L̃b

(
θ̂b

)

+ w3

P∑

p=1

ln p
(
σ̂2

p

)
/P + w4 ln p

(
σ̂2

b

)
− µpol P (7)

where




L̃p

(
θ̂p

)
, 1

Hp
Lp

(
σ̂2

p, Âp

)
− µenv Hp

L̃b

(
θ̂b

)
, 1

|Fb|
Lb

(
σ̂2

b , B̂
)
− µb |Fb|

w1, . . . , w4, µpol, µenv, µb are user-defined

coefficients

|Fb| is the number of noisy bins (see eq. (14)).

III. MODEL PARAMETER ESTIMATION

A. Iterative estimation of spectral envelope parameters and
amplitudes of notes

We consider a possible mixture C = (C1, . . . , CP ). The
estimation of the unknown spectral envelope parameters θ and
of the unknown amplitudes of the overtones α is performed
by iteratively estimating the former and the latter, as described
in this section.

1) Spectral envelope parameter estimation: let us assume
the amplitudes α are known in order to estimate the spectral
envelope parameters θ in the maximum likelihood (ML) sense.
Given that note models are independent, the likelihood of α
is p(α|θ, C) =

∏P
p=1 p(αp|θp, Cp). The optimization w.r.t. θ

thus consists in maximizing the log-likelihood Lp

(
σ2

p, Ap

)
,

ln p
(
αp|σ2

p, Ap, Cp

)
w.r.t. θp =

(
σ2

p, Ap

)
, independently for

each note p. As proved in the Appendix B, the maximization
w.r.t. σ2

p leads to the expression

Lp

(
σ̂2

p, Ap

)
= c +

Hp

2
ln ρ (Ap) (8)

with

c , −
Hp

2
ln (2πe) −

1

2

Hp∑

h=1

ln |αhp|
2 (9)

ρ (Ap) ,

(∏Hp

h=1 |αhp|
2 ∣∣Ap

(
e2iπfhp

)∣∣2
) 1

Hp

1
Hp

∑Hp

h=1 |αhp|
2 |Ap (e2iπfhp)|

2
(10)

σ̂2
p =

1

Hp

Hp∑

h=1

|αhp|
2 ∣∣Ap

(
e2iπfhp

)∣∣2 (11)

4by using the substitution x 7→ x − 2Re
“

PP
p=1

PHp

h=1 αhpe2iπfhpt

”

,
t being the time instants related to the frame, this term is equal to
ln pxb

“

x − 2Re
“

PP
p=1

PHp

h=1 αhpe2iπfhpt

”

|θb

”
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Fig. 2. Estimation of spectral envelopes: the AR estimation performs a better fitting of the amplitudes for the correct model (left) than for the sub-octave
model (right).

As c is a constant w.r.t. Ap, the optimization consists in
maximizing ρ (Ap), which measures the spectral flatness (i.e.
the ratio between the geometrical and arithmetical means) of{
|αhp|

2 ∣∣Ap

(
e2iπfhp

)∣∣2
}

1≤h≤Hp

. This quantity lies in [0; 1]

and is maximum when the latter coefficients are constant, i.e.
when the filter Ap perfectly whitens the amplitudes αp. The
estimation of Ap from the discrete data αp thanks to the Digital
All-Pole (DAP) method [22] leads to a solution that actually
maximizes ρ (Ap), as proved in [23]. It is applied here to the
amplitudes αp, for each note p.

The estimation of the spectral envelope of a note is il-
lustrated in Fig. 2. A note is analyzed by considering two
possible models: the model related to the true note (Fig. 2(a))
and the model related to its sub-octave (Fig. 2(b)). In the
former case, the estimate of the spectral envelope is close to
the amplitudes of the overtones, whereas in the latter case,
the AR spectral envelope model is not adapted to amplitudes
that are alternatively high and low: the low values obtained for
the spectral flatness ρ (and, consequently, for the likelihood)
are here a good criterion to reject wrong models like the sub-
octave (see Fig. 6(a) for the whole spectral flatness curve).

2) Estimation of the amplitudes of the overtones: let us
now assume that spectral envelope parameters θ are known,
that the frequencies of the overtones may overlap, and that
the amplitudes α are unknown. In all that follows, we assume
that at a given overtone frequency fhp, the power spectrum
of the noise is not significant in comparison with the power
spectrum of the amplitudes of the overtone.

When the overtone h of note p is not overlapping with any
other overtone, the amplitude αhp is directly given by the
spectrum value X (fhp). In the alternative case of overlapping
overtones, the observed spectrum results from the contribution
of overtones with close frequencies. We propose an estimate
of the hidden random variable α, given the observation X and
the parameters θ that control the second-order statistics of α.

As defined by eq. (3), the amplitude αhp is a random vari-

able such that αhp ∼ N (0, vhp) with vhp ,
σ2

p

|Ap(e
2iπfhp )|

2 .

One can rewrite the sound model x as a sum of K sinusoids
and noise x(t) =

∑K
k=1 αke2iπfkt+xb(t) with αk ∼ N (0, vk)

and K = 2
∑P

p=1 Hp. In this formula, the couples of indexes
(h, p) related to overtones and notes have been replaced by

a single index k. In the spectral domain, the DFT X of the
N -length frame x using a weighting window w of DFT W
is X (f) =

∑K
k=1 αkW (f − fk), the noise spectrum being

removed since we are only interested in the values of X at
frequencies fhp, where the noise term is insignificant.

In these conditions, for 1 ≤ k0 ≤ K , the optimal linear
estimator α̂k0

of αk0
as a function of X (fk0

), obtained by

minimizing the mean squared error ǫk0
= E

[
|αk0

− α̂k0
|2

]
is

α̂k0
=

W ∗ (0) vk0∑K
k=1 |W (fk0

− fk)|2 vk

X (fk0
) (12)

The proof of eq. (12) is given in the Appendix B. By
ignoring non-overlapping overtones, the expression of the
estimator of αhp can be simplified as

α̂hp ,
W ∗ (0) v2

hp∑
|fh′p′−fhp|<∆w

|W(fh′p′−fhp)|
2
v2

h′p′

X (fhp) (13)

where ∆w is the width of the main lobe of W .
The amplitude estimation is illustrated in Fig. 3 on a

synthetic signal, composed of two octave-related notes, i.e.
with overlapping spectra. As expected, the amplitudes are
perfectly estimated when there is no overlap (see odd-order
peaks of note 1). When the overtones overlap, predominant
amplitudes are well estimated (see note 1 for f = 0.04 or
note 2 for f = 0.4), as well as amplitudes with the same order
of magnitude (see amplitudes at f = 0.2). The estimation may
be less accurate when an amplitude is much weaker than the
other (see note 1 at f = 0.36).

3) Iterative algorithm for the estimation of note parameters:
in the last two parts, we have successively seen how to
estimate the spectral envelope models from known amplitudes
and the amplitudes from known spectral envelope models.
None of these quantities are actually known, and both must
be estimated. We propose to use the two methods above
in the Algorithm 1 to iteratively estimate both the spectral
envelope and the amplitudes of the overtones. It alternates the
estimation of the former and of the latter, with an additional
thresholding of the weak amplitudes in order to avoid the
amplitude estimates becoming much lower than the observed
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Fig. 3. Estimation of amplitudes from overlapping spectra: example on a synthetic mixture of 2 notes. The F0s f0,1 and f0,2 of the two notes are in an
octave relation and the estimation is performed from a N = 2048-length observation. For each note, the true amplitudes (squares) have been generated from
a spectral envelope AR model (black line) using eq. (3). The amplitudes are estimated (crosses) from the observation of the mixture (grey line) using the AR
envelope information (eq. (12)).
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Fig. 4. Iterative estimation of amplitudes cαp and spectral envelopes bθp: example of a fifth (Fig. 4(a)) and of an octave (Fig. 4(b)).

spectral coefficients5. For p ∈ J1; P K and h ∈ J1; HpK, the
estimate α̂hp of αhp and θ̂p of θp are respectively the values

of
(
α

(i)
hp

)
and

(
θ
(i)
p

)
after a number of iterations. Note that

the ML estimates of the envelopes are directly related to the
MAP estimation of the multipitch contents while amplitudes
are estimated in the least mean square sense, which is a
different objective function. Consequently, the convergence of
the iterative algorithm is not proved or guaranteed but it is
observed after about Nit , 20 iterations.

The estimation is illustrated in Fig. 4 with two typical
cases. While the energy is split between the overlapping
overtones, non-overlapping overtones help estimating the spec-
tral envelopes, resulting in a good estimation in the case of
a fifth (Fig. 4(a)), the octave being a more difficult – but
successful – case (Fig. 4(b)).

B. Estimation of noise parameters

We assume that the noise signal results from the circular
filtering6 of a white centered Gaussian noise with variance σ2

b

5In our implementation, this threshold was set to the minimum observed
amplitude minf

|X(f)|√
N

.
6The circularity assumption, which is commonly used and asymptotically

valid, leads to a simplified ML solution.

Algorithm 1 Iterative estimation of note parameters
Require: spectrum X , notes C1, . . . , CP .

Initialize the amplitudes α
(0)
hp of overtones to spectral values

X (fhp) for p ∈ J1; P K and h ∈ J1; HpK.
for each iteration i do

for each note p do

Estimate θ
(i)
p from α

(i−1)
p . {AR estimation}

end for

Jointly estimate all α
(i)
hp from X (fhp) and θ

(i)
p . {eq. (13)}

Threshold α
(i)
hp at a minimum value.

end for

Ensure: estimation of αhp and θp for p ∈ J1; P K and h ∈
J1; HpK.

by a Qb-order FIR filter parameterized by its transfer function
B (z) =

∑Qb

k=0 bkz−k, with b0 = 1.

As we assumed that in a bin close to the frequency of an
overtone, the spectral coefficients of noise are negligible w.r.t.
the spectral coefficients of notes, the information related to
noise is mainly observable in the remaining bins, i.e. on the
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(b) True note: E♭4. Selected model: E♭5.

Fig. 5. Noise parameter estimation when selecting the true model (left) and the octave model (right). Fb denotes the complement of Fb.

frequency support defined by

Fb ,

{
k

Nfft

/
∀p ∈ J1; P K, ∀h ∈ J1; HpK,

∣∣∣∣
k

Nfft
−fhp

∣∣∣∣ >
∆w

2

}

(14)

where ∆w denotes the width of the main lobe of w (∆w = 4
N

for a Hann window) and Nfft is the size of the DFT. The noise
parameter estimation is then performed using this subset of
bins, which gives satisfying results asymptotically (i.e. when
N → +∞, the number of removed bins being much smaller
than the total number of bins). As proved in the Appendix B,
it results in the maximization, w.r.t. B, of the expression

Lb

(
σ̂2

b , B
)

= cb +
|Fb|

2
ln ρb (B) (15)

where

cb , −
|Fb|

2
ln 2πe −

1

2

∑

f∈Fb

ln
|Xb (f)|2

N
(16)

ρb (B) ,

(∏
f∈Fb

∣∣∣ Xb(f)
B(e2iπf )

∣∣∣
2
) 1

|Fb|

1
|Fb|

∑
f∈Fb

∣∣∣ Xb(f)
B(e2iπf )

∣∣∣
2 (17)

σ̂2
b =

1

|Fb|

∑

f∈Fb

1

N

∣∣∣∣
Xb (f)

B (e2iπf )

∣∣∣∣
2

(18)

As for the spectral envelope AR parameters (eq. (11)
and (8)), the ML estimation of noise parameters consists
in the maximization of a spectral flatness ρb (B). It can be
achieved thanks to the MA estimation approach proposed
in [23]. However, in order to speed up the computations, we
use the Algorithm 3 described in the Appendix C, which is
simpler and gives satisfying results for the current application.

The noise parameter estimation is illustrated in Fig. 5.
When the true model is selected (Fig. 5(a)), most of primary
lobes of the sinusoidal components are removed from Fb

and the resulting spectral coefficients are well-fitted by an
MA envelope. In the case a wrong model is selected and a
lot of Fb bins are related to sinusoids (Fig. 5(b)), the MA
model is not adapted to the observations which are not well-
fitted. The resulting ρb value and likelihood will be low so
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Fig. 6. ln ρ
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cA1

”

(top) and lnρb

“

bB
”

(bottom) as a function of a single-

note model (true note: A♭4).

that the wrong model will be rejected. As shown in Fig. 6,
the spectral flatness criterion for the spectral envelope and
noise estimations are complementary cues for rejecting wrong
models and selecting the right one. The criterion on spectral
envelopes (Fig. 6(a)) shows many high values but also large
minima for sub-harmonic errors (e.g. notes D♭3, A♭3 and
D♭3 in this example). Conversely, the criterion for the noise
model (Fig. 6(b)) has a few high peaks located at the sub-
harmonics F0s of the true note – i.e. for every model all the
sinusoids have been removed from the noise observation –, but
is efficient for discriminating the other errors. Thus, if taken
separately, these criteria are not good pitch estimators, but they
efficiently combine into the detection function.
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IV. EXPERIMENTAL RESULTS

A. Implementation and tuning

The whole method is summarized by Algorithm 2. The MPE
algorithm is implemented in Matlab and C. It is designed to
analyze a 93ms frame and to estimate its polyphonic content.
A preprocessing stage aims at reducing the spectral dynamics
and consists in flattening the global spectral decrease by
means of a median filtering of the spectrum. The values of
the parameters of the MPE algorithm are given in Table I.
The order Qp of the spectral envelope filter Ap(z) of a note
p is set to Qp = Hp/2 in order to be large enough to
fit the data and small enough to obtain a smooth spectral
envelope7. Parameters

(
kσ2

p
, Eσ2

p

)
,
(
kσ2

b
, Eσ2

b

)
, µenv, µb, µpol

and (w1, . . . , w4) have been estimated on a development
database composed of about 380 mixtures from two different
pianos, with polyphony levels from 1 to 6. They were jointly
adjusted by optimizing the F-measure using a grid search, the
bounds of the grid being set by hand.

Algorithm 2 Multipitch estimation.
Preprocessing
Computation of periodogram 1

N
|X |2

Selection of Nc note candidates
for each possible note combination C do

Iterative estimation of the amplitudes of overtones and of
spectral envelope of notes (algorithm 1)
For each note p, derivation of Lp (eq. (8)) and of prior

p
(
σ̂2

p

)

Noise parameter estimation (algorithm 3)
Computation of Lb (eq. (15)) and of prior p

(
σ̂2

b

)

Derivation of the detection function related to the note
combination (eq. (7))

end for

Maximization of the detection function

Parameter value Parameter value

Pmax 6
“

kσ2
p
, Eσ2

p

”

`

1, 10−4
´

Nc 9

“

kσ2
b
, Eσ2

b

”

`

2, 10−3
´

ν 0.38 µenv −8.9·10−3

fs 22050Hz µb −2.2·10−4

N 2048 µpol 25

w Hann w1 8.1·10−1

Qp Hp/2 w2 1.4·104

Qb 20 w3 6.2·102

Nit 20 w4 5.8

TABLE I
PARAMETERS OF THE ALGORITHM.

B. Evaluation

The proposed MPE algorithm has been tested on a database
called MAPS8 and composed of around 10000 piano sounds

7Note that the number of degrees of freedom for the AR models is Hp/4 =

Qp since half the poles are affected to the positive frequencies, the remaining
poles being their complex conjugates.

8MAPS stands for MIDI Aligned Piano Sounds and is available on request.

either recorded by using an upright Disklavier piano or
generated by several virtual piano software products based
on sampled sounds. The development set and the test set
are disjointed. Two pianos are used in the former while the
latter comprises sounds from other five pianos. In total, two
upright pianos and five grand pianos were used. Recording
conditions and tunings vary from one instrument to the other.
Polyphony levels lie between 1 and 6 and notes are uniformly
distributed between C2 (65Hz) and B6 (1976Hz). One part
of the polyphonic mixtures is composed of randomly related
pitches whereas the other part comprises usual chords from
western music (major, minor, etc.). For each sound, a single
93ms-frame located 10ms after the onset time is extracted and
analyzed. Two additional algorithms have been tested on the
same database for comparison purposes. The first one is Tolo-
nen’s multipitch estimator [24] for which the implementation
from the MIR Toolbox [25] was used. As the performance of
the algorithm decreases when F0s are greater than 500Hz (C5),
the system was additionally tested in restricted conditions –
denoted Tolonen-500 – by selecting from the database the
subset of sounds composed of notes between C2 and B4 only.
The second one is Klapuri’s system [26]. The code of the latter
was provided by its author.

Our algorithm was implemented in Matlab and C. The com-
putational cost on a recent PC is about 150×real time. It thus
requires more computations than other algorithms like [26]
but the proposed algorithm is computationally tractable, par-
ticularly when comparing it to the greedy and intractable
joint-estimation approach where no note candidate selection
is performed, as discussed in section II-B.

General results are presented in Fig. 7. Relevant items
are defined as correct notes after rounding each F0 to the
nearest half-tone. Typical metrics are used: the recall is the
ratio between the number of relevant items and of original
items; the precision is the ratio between the number of
relevant items and of detected items; and the F-measure is
the harmonic mean between the precision and the recall.
In this context, our system performs the best results for
polyphony 1 and 2: 93% F-measure vs 85% (polyphony 1)
and 91% (polyphony 2) for Klapuri’s system. The trend then
reverses between Klapuri’s system and the proposed one, the
F-measure being respectively 91% and 88% for polyphony 3,
and 72% and 63% for polyphony 6. Moreover, the precision is
high for all polyphony levels whereas the recall is decreasing
when polyphony increases. Results from Tolonen’s system are
weaker for the overall tests, even with the restricted F0-range
configuration.

The ability of Klapuri’s system and ours to detect polyphony
levels (independently of the pitches) is presented in Tab. II.
For polyphony levels from 1 to 5, both systems succeed in
detecting the correct polyphony level more often than any
other level. It should also be noted that the proposed system
was tested in more difficult conditions since polyphony 0 (i.e.
silence) may be detected, which is the case for a few sounds9.
The proposed system tends to underestimate the polyphony

9Note that silence detection could be improved by using an activity detector
as a preprocessing stage, since silence is a very specific case of signal that
can be detected using more specific methods than the proposed one.



8 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

1 2 3 4 5 6
0

20

40

60

80

100

Polyphony

%

 

 
Tolonen Tolonen-500 Klapuri Proposed method

(a) F-measure

1 2 3 4 5 6
0

20

40

60

80

100

Polyphony

%

(b) Recall

1 2 3 4 5 6
0

20

40

60

80

100

Polyphony

%

(c) Precision

Fig. 7. Multipitch estimation results with unknown polyphony: for each
algorithm, the F-measure, the precision and the recall are rendered as a
function of the true polyphony. For the proposed method, the performance
on the training set is plotted using a dashed line.

P
Pest 1 2 3 4 5 6

0 7 2 4 6 9 0
1 90 14 8 8 8 12
2 3 83 18 12 8 19
3 0 1 68 27 16 25
4 0 0 2 47 27 32
5 0 0 0 1 31 11
6 0 0 0 0 1 1

P
Pest 1 2 3 4 5 6

0 0 0 0 0 0 0
1 92 21 5 2 1 3
2 1 74 18 7 4 7
3 1 3 65 24 10 12
4 0 1 9 49 24 27
5 1 0 1 14 36 23
6 5 1 1 4 25 28

Proposed method Klapuri’s method

TABLE II
POLYPHONY ESTIMATION: DETECTION RATE (%) W.R.T. TO THE NUMBER

OF SOUNDS WITH TRUE POLYPHONY P , AS A FUNCTION OF THE TRUE

POLYPHONY P AND OF THE ESTIMATED POLYPHONY PEST .

level since the parameter tuning consists in optimizing the
F-measure on the development set. This objective function
could have been changed to take the polyphony level balance
into account. This would result in reducing the polyphony
underestimation trend. However, the overall F-measure would
decrease. From a perceptive point of view, it has been shown
that a missing note is generally less annoying than an added
note when listening to a resynthesized transcription [27].
Thus, underestimating the polyphony may be preferred to
overestimating it. Still, this trend turns out to be the main
shortcoming of the proposed method, and should be fixed in
the future for efficiently addressing sounds with polyphony
higher than 5 notes.

The case of octave detection has been analyzed and results
are presented in Fig. 8. Octave detection is one of the most
difficult cases of multipitch estimation and the results are lower
than the global results obtained for polyphony 2 (see Fig. 7).
The proposed method reaches the highest results here, the F-
measure being 81%, versus 77% for Klapuri’s system and
77%/66% for Tolonen’s (depending on the two F0 ranges).
This would suggest that the proposed models for spectral
envelopes and overlapping spectra are significatively efficient.

Recall Precision F−measure
0

20

40

60

80

100

%

Octave detection

 

 

Tolonen Tolonen-500 Klapuri Proposed method

Fig. 8. Octave detection: results for the 97 octave sounds extracted from the
database (45 sounds for the Tolonen-500 system).

Finally, we report additional results which are not depicted.
First, if polyphony is known, the performance of our sys-
tem reaches the second rank after Klapuri’s system, with
correct detection rates from 95% (polyphony 1) down to
55% (polyphony 6). Second, F-measure values are between
5% and 10% better for usual chords than for random-pitch
chords. This has been observed with all the tested methods
for polyphony levels higher than two. While the algorithms
face more harmonically-related notes in usual chords – i.e.
more spectral overlap –, it seems that simultaneous notes with
widely-spread F0s in random chords are a bigger difficulty.
Third, the results obtained on the development set and the
test set are comparable, with only a few % deviation. This
shows that the parameter learning is not overfitting and that
the system has good generalization abilities for other models
of piano and different recording conditions. Fourth, the whole
database includes sounds from seven different pianos. The
results are comparable from one piano to the other, with about
3%-standard deviation. Results do not significantly depend on
the upright/grand piano differences, on recording conditions
or on whether a real piano or a software-based one is used,
which suggests robustness for varying production conditions.
Fifth, the proposed method uses a candidate selection stage
which may fail, causing the subsequent multipitch estimation
to fail. The performance of the candidate selection stage has
thus been checked: satisfying results are obtained for low to
medium polyphony levels, 99% of true notes being selected
for polyphony 1 and 2, 94% for polyphony 3 and 86% for
polyphony 4. Performance is slightly decreasing in polyphony
5 and 6, the scores being 78% and 71% respectively. Along the
original-pitch dimension, these errors are mainly located below
A2 (110Hz), and above A6 (1760Hz). Selecting a set of likely
F0s is a challenging issue for future works since a lot of MPE
algorithms would benefit from it. Indeed, they often consist
in optimizing an objective criterion that presents a lot of local
optima along the pitch dimension. Some basic solutions like
exhaustive or grid search [27] or more elaborated ones like
Markov chain Monte Carlo methods [28] have already been
proposed for searching the global optimum, and an efficient
candidate selection stage would be very helpful to reach the
result more quickly.

C. Integration in an automatic transcription system

The proposed MPE method has been introduced for a single-
frame analysis. Beyond the multipitch issue, the automatic
transcription task is addressed by integrating this method in



EMIYA et al.: MULTIPITCH ESTIMATION OF PIANO SOUNDS USING A NEW PROBABILISTIC SPECTRAL SMOOTHNESS PRINCIPLE 9

a system that performs pitch tracking over time and outputs
not only pitches but note events. In the current case, the MPE
method can be used in the transcription framework proposed
in [19]. The automatic transcription of piano music is thus
obtained by:

1) using an onset detector to localize new events;
2) detecting a set of pitch candidates after each onset;
3) between two consecutive onsets, decoding the multipitch

contents thanks to a frame-based Hidden Markov Model
(HMM), the states being the possible combinations of
simultaneous pitches, the likelihood being given by the
proposed MPE method (eq. (7));

4) postprocessing the decoded pitches to detect repetitions
or continuations of pitches when an onset occurs.

This transcription system was presented at the Multiple
Fundamental Frequency Estimation & Tracking task of the
MIREX10 contest in 2008 (system called EBD2). For the
piano-only test set, the evaluation is performed in two different
ways, depending on how a correct note is defined. In the first,
more constraining evaluation, where a correct note implies a
correct onset (up to a 50-ms deviation), a correct offset (up
to a 20%-duration or 50-ms deviation) and a correct pitch
(up to a quartertone deviation), the proposed system reaches
the 3rd rank with a 33.1% F-measure, out of 13 systems
scoring from 6.1% to 36.8%. For that evaluation, the duration
estimation is evaluated by the average overlap between correct
estimations and reference notes: the proposed method reaches
the 7th position with 80%, the values being in a narrow interval
([77.4%; 84%]). In the second evaluation, where correctness
only requires the onset and pitch criteria above, the proposed
system reaches the 7th rank with a 56.9% F-measure, out of
13 systems scoring from 24.5% to 75.7%. The best rank is
obtained for average overlap with a 61% value, the lowest
value being 40.1%.

Thus, when the proposed MPE method is integrated in
a full transcription system for piano music, state-of-the art
results are reached in terms of global performance. In addition,
good average overlap scores show that the proposed method
is suitable for pitch tracking over time and note extraction.

Note that one can wonder whether the reported performance
is significant when comparing MPE and ATM quantitative
results (with roughly 20% F-measure deviation, no matter the
method is). It actually depends not only on the database, but
on the different testing protocols. While isolated frames com-
posed of one chord are used in the proposed MPE evaluation,
ATM evaluation implies other difficulties like having asyn-
chronous notes overlaping in time; detecting onsets; estimating
the end of damping notes; dealing with reverberation queues
and so on. More, polyphony levels in musical recordings
are often high and are not uniformly distributed at all, with
a 4.5 average polyphony and a 3.1 standard deviation reported
for a number of classical music pieces [29, p.114]. Hence, F-
measure for MPE and ATM should be evaluated separately.

10http://www.music-ir.org/mirex/2008/

V. CONCLUSIONS

In this paper, a sound model and a method were proposed
for the multipitch estimation problem in the case of piano
sounds. The approach was based on an adaptive scheme,
including the adaptive matching of the inharmonic distribution
of the frequencies of the overtones and an autoregressive
spectral envelope. We have shown the advantage of using a
moving average model for the residual noise. The estimation
of the parameters was performed by taking the possible overlap
between the spectra of the notes into account. Finally, a
weighted likelihood criterion was introduced to determine the
estimated mixture of notes in the analyzed frame among a set
of possible mixtures.

The performance of the method was measured on a large
database of piano sounds and compared to the state-of-the-
art. The proposed method provides satisfying results when
polyphony is unknown, and reaches particularly good scores
for mixtures of harmonically-related notes.

This approach has been successively integrated in a full
transcription system [19] and alternative investigations [30]
are ongoing. Future works may deal with the use of differ-
ent spectral envelopes in a similar modeling and estimation
framework. Indeed, while the proposed AR envelope model
may be too generic to characterize the spectral envelope
smoothness of musical instruments, this information can be
easily replaced, as the variance of the amplitude Gaussian
models, by any parametric envelope model. The method may
also be extended to other instruments or to voice. Keeping the
proposed sound model, it could be useful to investigate other
estimation strategies in order to reduce the computational cost.
This may be achieved by means of a hybrid approach with an
iterative selection of the notes and a joint estimation criterion.
Furthermore, the log-likelihood function related to the model
for spectral envelopes is not very selective. Hence, some
investigations on more appropriate functions could improve
the performance of decision step. Finally, one could conduct
others investigations about how to prune the set of all possible
note combinations more efficiently. They may include iterative
candidate selection or MCMC methods.

APPENDIX A
DISCUSSION ON THE DETECTION FUNCTION

According to eq. (5), the multipitch estimation is theoreti-
cally obtained by maximizing, w.r.t. C, the likelihood p(x|C),
which is expressed as a function of the parameters of the
proposed model as:

p(x|C) =

∫∫
p(x, α, θb|C) dαdθb (19)

=

∫∫
p(x|α, θb, C) p(α|C) p(θb) dαdθb (20)

=

∫∫∫
p(x|α, θb, C) p(α|θ, C) p(θ) p(θb) dθdαdθb

(21)

Since the derivation of eq. (21) is not achievable, a simpler
detection function must be built. The proposed function can be
interpreted as a weighted log-likelihood and is obtained from
the integrand of eq. (21) by:

http://www.music-ir.org/mirex/2008/
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• considering the estimated parameters θ̂p, α̂p, θ̂b;
• taking the logarithm, thus turning the product into a sum;
• normalizing the sums over the number of notes by P ,

and log-likelihoods Lp and Lb by the size Hp and |Fb|
of their respective random variable;

• introducing penalization terms using the C-dependent
sizes P , Hp, |Fb| with coefficients µpol, µenv, µb;

• weighting each quantity by the coefficients w1, . . . , w4.

The normalization operation aims at obtaining data that can
be compared from one mixture C to another, since the di-
mension of the random variables depends on the mixture. The
penalization is inspired by model selection approaches [31], in
which an integral like (21) is replaced by a likelihood penal-
ized by a linear function of the model order. The weighting by
w1, . . . , w4 is finally used to find an optimal balance between
the various probability density functions. Note that in eq. (7),
priors related to filters Ap and B have been removed since they
are non-informative, and thus can be considered as constant
terms.

APPENDIX B
PROOFS

Proof of eq. (8): Using eq. (3), the log-likelihood to be
maximized is

Lp

(
σ2

p, Ap

)
= −

Hp

2
ln

(
2πσ2

p

)
+

1

2

Hp∑

h=1

ln
∣∣Ap

(
e2iπfhp

)∣∣2

−
1

2σ2
p

Hp∑

h=1

|αhp|
2 ∣∣Ap

(
e2iπfhp

)∣∣2 (22)

The maximization w.r.t. σ2
p leads to the estimate σ̂2

p given
by eq. (11), which is used in eq. (22) to obtain eq. (8).

Proof of eq. (12) and (13): The expected linear estimator
is expressed as α̂k0

, ηX (fk0
) with η ∈ C. The mean squared

error is then ǫk0
(η) = E

[
|αk0

− ηX (fk0
)|2

]
. The optimal

value η̂ is such that
dǫk0

dη
(η̂) = 0, which is equivalent to the

decorrelation between the error (αk0
− η̂X (fk0

)) and the data
X (fk0

):

0 = E
[(

α∗
k0

− η̂∗X∗ (fk0
)
)
X (fk0

)
]

= E
[
α∗

k0
X (fk0

)
]
− η̂∗

E

[
|X (fk0

)|2
]

(23)

which leads to η̂ =
E[αk0

X∗(fk0 )]
E

h

|X(fk0)|
2

i , where

E [αk0
X∗ (fk0

)] =

K∑

k=1

W ∗ (fk0
− fk) E [αk0

α∗
k]

= W ∗ (0) vk0
(24)

and E

[
|X (fk0

)|2
]

=

K∑

k=1

K∑

l=1

W (fk0
− fk)

× W ∗ (fk0
− fl) E [αkα∗

l ]

=
K∑

k=1

|W (fk0
− fk)|2 vk (25)

The related error is

ǫk0
(η̂) = E

[
|αk0

|2
]

+ |η̂|2 E

[
|X (fk0

)|2
]

− η̂E
[
α∗

k0
X (fk0

)
]
− η̂∗

E [αk0
X∗ (fk0

)]

= E

[
|αk0

|2
]
−

|E [αk0
X∗ (fk0

)]|2

E

[
|X (fk0

)|2
]

=

(
1 −

|W (0)|2 vk0∑K
k=1 |W (fk0

− fk)|2 vk

)
vk0

(26)

Note that this approach has some connections with the Wiener
filtering technique [32] widely used in the field of audio
source separation. In both cases, the aim is to estimate a
hidden variable thanks to its second-order statistics and to the
observations. In the considered short-term analysis context, the
proposed approach explicitly models the overlap phenomenon
and takes the resulting frequency leakage into account. As
expected, the estimation error is all the larger as the estimated
overtone is masked by another component, which justifies the
approximation of eq. (12) in eq. (13).

Proof of eq. (15): In a matrix form, the filtering process is
expressed as xb = Bcircwb, where xb is an N -length frame of
the noise process xb, wb ∼ N

(
0, INσ2

b

)
and Bcirc is the N ×

N circulant matrix with first column (b0, . . . , bQb
, 0, . . . , 0).

Thus, we have xb ∼ N
(
0, Bcirc (Bcirc)

† σ2
b

)
. Bcirc is circulant,

so det
(
BcircB

†
circ

)
=

∏N−1
k=0

∣∣∣B
(
e2iπ k

N

)∣∣∣
2

. The likelihood of
xb is then

p
(
xb

)
=

e−
1

2
xb

†(BcircB
†
circσ

2

b)
−1

xb

√
(2π)N det

(
BcircB

†
circσ

2
b

) (27)

=
e
−
‖B

−1

circ xb‖
2

2σ2
b√

(2πσ2
b )

N ∏N−1
k=0

∣∣∣B
(
e2iπ k

n

)∣∣∣
2

(28)

In the spectral domain, the log-likelihood of the noise signal
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is thus obtained using the Parseval identity:

Lb

(
σ2

b , B
)

= −
N

2
ln 2πσ2

b −
1

2

N−1∑

k=0

ln
∣∣∣B

(
e2iπ k

N

)∣∣∣
2

−
1

2σ2
b

N−1∑

k=0

1

N

∣∣∣∣∣∣
Xb

(
k
N

)

B
(
e2iπ k

N

)

∣∣∣∣∣∣

2

(29)

When only considering the observations on the spectral bins
Fb, the log-likelihood (29) becomes

Lb

(
σ2

b , B
)

= −
|Fb|

2
ln 2πσ2

b −
1

2

∑

f∈Fb

ln
∣∣B

(
e2iπf

)∣∣2

−
1

2σ2
b

∑

f∈Fb

1

N

∣∣∣∣
Xb (f)

B (e2iπf )

∣∣∣∣
2

(30)

The maximization w.r.t. σ2
b leads to the estimate given by

eq. (18), which is used in eq. (30) to obtain eq. (15).

APPENDIX C
MA ESTIMATION

The algorithm is based on the decomposition rb = Bb of
the first (Qb + 1) terms rb of the autocorrelation function
of the process, as a product of the coefficient vector b ,

(b0, . . . , bQb
)T by the matrix

B ,




b0 b1 . . . bQb

0 b0 . . . bQb−1

...
. . .

. . .
...

0 . . . 0 b0


 (31)

The estimate b̂ of b is obtained using Algorithm 3. As B̂

is upper triangular, the estimation of b̂ in r̂b = B̂b̂ is fast
performed by back substitution, instead of inverting a full
matrix. The algorithm convergence was observed after about
20 iterations.

Algorithm 3 Iterative estimation of noise parameters
estimate the autocorrelation vector rb by the empiric corre-
lation coefficients r̂b obtained from the spectral observations
{X (f)}f∈Fb

;

initialize b̂ ← (1, 0, . . . , 0)
T;

for each iteration do

update the estimate B̂ of B from b̂;
re-estimate b̂ by solving r̂b = B̂b̂;
normalize b̂ by its first coefficient;

end for
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