Spectral measure and approximation of homogenized coefficients

Abstract : This article deals with the numerical approximation of effective coefficients in stochastic homogenization of discrete linear elliptic equations. The originality of this work is the use of a well-known abstract spectral representation formula to design and analyze effective and computable approximations of the homogenized coefficients. In particular, we show that information on the edge of the spectrum of the generator of the environment viewed by the particle projected on the local drift yields bounds on the approximation error, and conversely. Combined with results by Otto and the first author in low dimension, and results by the second author in high dimension, this allows us to prove that for any dimension $d\geq 2$, there exists an explicit numerical strategy to approximate homogenized coefficients which converges at the rate of the central limit theorem.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2012, 154, pp.287-326. 〈10.1007/s00440-011-0370-7〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00510513
Contributeur : Antoine Gloria <>
Soumis le : dimanche 22 mai 2011 - 10:51:55
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : mardi 23 août 2011 - 02:20:45

Fichier

Gloria-Mourrat-8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Gloria, Jean-Christophe Mourrat. Spectral measure and approximation of homogenized coefficients. Probability Theory and Related Fields, Springer Verlag, 2012, 154, pp.287-326. 〈10.1007/s00440-011-0370-7〉. 〈inria-00510513v2〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

111