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Abstract: In this report we present an extension of an existing flow-sensitive analysis for
secure information flow for Java bytecode that deals with flows of data from and to XML
streams governed by an access control mechanism. Our approach consists in computing,
at different program points, an abstract XML content graph (AXCG) which tracks data read
from and written to XML streams relying on data tracked in the existing information flow
analysis. The extension we propose to manage XML content is generic enough to permit
connection with any role-based access control mechanism for XML. On the contrary to many
information flow techniques, our approach does not require security levels to be known
during the analysis: security aspects of information flow and access control mechanisms
for XML are checked a posteriori with security levels either inferred from access control
policies for XML streams, or given by the information flow policy for the rest of the program.
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Intégration des flux XML dans une analyse de flots
d’information pour Java

Résumé : Nous présentons dans ce rapport une extension d’une analyse de flot d’information
existante pour le bytecode Java qui permet d’intégrer les flots de données de et vers des
flux XML soumis a un mécanisme de contréle d’acceés. Notre approche consiste a calculer,
a différentes positions d’un programme, un graphe pour suivre les données lues et écrites
dans les flux XML en se basant sur les flots de données suivis dans le modéle existant.
L'extension que nous proposons est suffisamment générique pour permettre I'utilisation de
n’importe quel mécanisme de contréle d’acces pour XML de type RBAC. Contrairement a la
plupart des techniques d’analyse flot d’information existantes, notre analyse ne nécessite
pas l'assignement de niveaux de sécurité a priori: I’absence de fuite d’information est véri-
fiée a posteriori au regard des politiques de contréle d’acces assignées aux flux XML et de
la politique de sécurité relative aux flots d’information du reste du programme.

Mots-clés : flot d’information, Java, XML, sécurité, confidentialité



Integration of XML streams in information flow analysis for Java 3

Contents

4 Matching XPath descriptord . . . . ... . ... ... ... ......... 27
4 xample of acce ontrol mechanisms for XMIl . . .. .. .. .. ... ..... 28
/ attice of securi eveld . . . .. 29

W&Mk&mm&ssmﬂﬂ.mlm&i ............. 29
[Conclusion 33

[Bibli hy 35

RT n° 0387



Arnaud Fontaine

INRIA



Integration of XML streams in information flow analysis for Java i

Introduction

Information flow issues for streaming have not yet been addressed by the community. In
this report, we focus on XML streaming, a widely used technology in modern pervasive
applications. Hence, it is now quite common within applications using external data to
replace heavy databases systems by XML, which offer a light system to store information.
XML files are used to store data of small or medium size such as application configuration
files, user profiles, etc. A flow of information into a file or sent along a socket is considered
as insecure for common static analysis; conversely, information read from files or sockets is
usually considered as public. We aim to consider specific cases where such streams could
be considered as safe with respect to information flow.

The solution we propose in this report is build on previous works on abstract inter-
pretation through static analysis for Java bytecode. We keep track of the security levels
considered in the program, and use an external access control model for XML for describ-
ing at which security level the information can be accessed. We combine the rich theory
of information flow with the recent researches on access control for XML to obtain analy-
sis where XML streams are properly taken into account. Read and write operations can be
considered as dual with respect to information flow: when an information is recovered from
a file, the security level attached to it must correspond to the level of all places in which
it will be stored during the execution of the program; conversely, when a private/secure
information is written in a file, it has to be done at a position that is considered/tagged by
a high security level. One may expect from the program that it behaves safely according to
this policy.

In Chapter [1] we first introduce some notations and the basis of access control mech-
anisms for XML required to understand encountered issues. We investigate in Chapter
the most common APIs used to read/write XML content in Java in order to choose the most
appropriate to conduct an abstract interpretation in a static way, but also suitable for small
constrained devices, which are the main targets of pervasive applications. Then, we de-
scribe in Chapter [3| how data read from and written to XML streams are tracked using
Abstract XML Content Graph (AXCG). Finally, we introduce in Chapter [4] security oracles
that ensure the connection between the security levels of the existing information flow layer
and access control flow policies attached to XML input/output streams.

RT n° 0387
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Chapter 1

Preliminaries

The work presented in the following chapters of this report builds on previous work bear-
ing on flow-sensitive analysis for Java bytecode [16, |21]. In this chapter we introduce in
Section some notations specific to the work detailed in this report. Then we give in
Section[I.2]an overview of some relevant works.

1.1 Notations

The numerous definitions and notations introduced in [16} [21]] are not reminded in this
report. We complement this set of definitions and notations with some new additional defi-
nitions and notations used in the remaining parts of this report.

For a function f, we denote by f [x 2@, y] the function f’ such that f'(z) = y if ¢(x)

holds and f’(x) = f(x) otherwise.

We denote by C'hars the finite set of characters defined in UTF-8 charse. We denote by
NonEmptyStrings the infinite set of string values of finite non-null length, i.e. the infinite
set of characters tuples:

NonEmptyStrings = {(co,...,cn) | n € N,0 <1i<mn,c; € Chars}

We denote by Strings = NonEmptyStrings U {e¢} the infinite set of strings values of
finite length where ¢ denotes the empty string (of length null). For simplicity, a string
s = (cp,...,cn) € Strings can also be written “cy...c,", and € can be written “”. We denote
by StringsPool the finite subset of Strings extracted from the constant pools of all classes
in the set Classes. Let string be a function to retrieve a string value from StringsPool corre-
sponding to an abstract constant value in a given AMG G = (V, E):

string : {wj.cst; | wi.cst; € V} — StringsPool
We denote by TagNames the finite subset of Strings such that

TagNames = StringsPool U {concat(n, a) | n € StringsPool,a € StringsPool}

!This charset is Java default charset for string internal representations.

RT n° 0387
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where concat is the function defined as follows:

concat : StringsPool x StringsPool — Strings

(e,€) —> €
(e,(ch,...,eh)) — (cd, ... eh)
((ch,...,eh),e) — (e, ... ek )
((cdy o rel) (3. 2)) — (b, el B, oo c2)

1.2 Related work

Secure information flow enforcement is a well studied area. A considerable amount of
work on information flow control, based on static analysis and on theoretical foundations,
has been achieved in the last decades. We choose not to detail secure information flow
enforcement as it is discussed in articles and reports [16) [21]] presenting the information
flow analysis we rely on in the following chapters.

Access control mechanisms for XML is also a well studied area. In this section, we give
only a short overview of access control mechanisms for XML. For a detailed survey, we
encourage the reader to refer to [26, [12].

Historically, access control for XML is a topic strongly related to the database commu-
nity [28| [14]. Most access control mechanisms for XML consequently inherit some of its
paradigms from the definition of access control policies to their enforcement. Most ac-
cess control mechanisms for XML follow the Role-Based Access Control (RBAC) model, de-
scribed in Section[1.2.1] to define access control policies using ad hoc languages or a more
standard language such as XACML [4]] or XACL [23]. The enforcement of access control
policies on XML documents can then be done in two ways described in Section [1.2.2}: com-
puting a document view or limiting access to the document via XPath (or another language)
queries only.

1.2.1 Role-Based Access Control (RBAC)

Access control mechanisms that follow the Role-Based Access Control (RBAC) model [15]
34[] rely on three sets of entities to define access control policies: roles, objects and access
modes. A rule of an RBAC policy is simply a triplet (role, object, access) that defines that role
can access to object.

The roles set contains values describing who are the subjects of a rule. Roles can for
instance map to a set of concrete users of a system, groups of users or (groups of) programs.
The set of all available roles may be partially or totally ordered according to the semantics it
is given. The mapping between roles and their corresponding concrete entities is a relevant
problem that is not addressed here since this is an authentication problem.

The objects set is the critical part of RBAC, especially for XML documents and data. In-
deed, the originality of a RBAC policy enforcement tool mostly resides in the expressiveness
of the language used to describe objects. XPath [2] [3] is widely employed to describe XML
elements as it is highly expressive and is a W3C standard.

INRIA
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The access modes set contains at least the “read” operation, i.e. read access to an
object’s content. More refined read accesses also include “navigation” operation to control
access to the structure of a protected XML document. Techniques devoted to XML-based
databases also include “write” accesses such as deletion, insertion and updates of XML
content, attributes and tags.

Frequent problems arising when trying to enforce RBAC policies is how to propagate
rules and resolve conflicts between rules. Because of the tree structure of XML documents,
it is mandatory to precisely define how a rule applying to a tag influences its attributes and
child tags, and how to treat conflicts and contradictions between several applicable rules
for the same set of objects.

1.2.2 Enforcement of access control policies for XML

Enforcement of an access control policy on an XML document can be achieved by computing
a view of the document according to the requesting user [19, (34} 19}, (8|, 131}, 5} |7}, (13}, 117}, 29]].
This method consists in pruning the document tree so as to contain only parts that the
requesting user is allowed to access. The resulting document is referred to as document
view. The main problem of this approach is that the document view may not be valid with the
structure descriptor (DTD, XML schema, etc) of the original document, or an appropriate
structure descriptor may need to be rebuild [25] [22] [27].

Enforcement of access control policies on XML content can also be achieved by secure
querying instead of view computation [10| [18| [14] |28 24}, [30]. In this case, either non-
violating (valid) queries are answered and result of applying the user query to the entire
database.

We do not investigate further on both approaches as they are not appropriate in our con-
text where raw documents must be directly accessed without, possibly heavy, computations
such view computing or embedded query engine. In addition, none of these approaches
deals with the enforcement of security policies on generated XML documents.

1.2.3 Information flow and XML data

At that time, we identified no work from the literature that tries to include readings and/or
writings of XML documents with attached access control policies in an information flow
analysis. Nevertheless, we identified some works [11], [33]] focusing on semi-automatic ob-
ject serialization into XML documents that could lead to elegant solutions. Access control
policies attached to these documents could be automatically inferred from or injected to
the information flow model. This approach is however limited since it could be impossible
to deal with documents with an arbitrary structure, i.e. not mapped to/from objects hier-
archy . To solve this issue, we could use on the fly XML transformations using the work
of Castagna et al. [5] that deals with the enforcement of property equivalent to the non-
interference property of information flow over XML transformations defined in CDuce [6]
according to security labels inserted in the original XML document.

RT n° 0387
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Chapter 2

Reading and writing XML in Java

Many ways can be used to read or write XML [11] in Java. However, not all these means are
appropriate to study relevant information flow issues for small constrained Java-enabled de-
vices. In this chapter we detail advantages and disadvantages of commonly used solutions
in such context.

2.1 XML as flat text

In constrained environments, it is likely to read/write XML documents as flat text with pro-
cedures of standard input/output stream classes (namely InputStream and OutputStream).
Since these classes are part of the Java runtime environment, no extra class (or library)
needs to be deployed, which implies no additional memory consumption overhead. The
main disadvantage of this mean is that it does not guarantee that XML content read or writ-
ten is syntactically nor semantically correct. The programmer is in fact fully responsible to
ensure these properties himself.

From the static information flow analysis point of view, dealing with characters se-
quences is not easy for several reasons. Difficulties encountered are actually exactly the
same than those encountered with arrays of primitive values having different security lev-
els: each sequence needs to be partitioned into parts with different security levels. This
topic is still an open problem that is not adressed in this report . Besides these difficul-
ties, an XML content abstracted as a flat unidimensional structure is too rough to be able
to later reason on tags scope and inclusion, and thus to permit any later connection with
access control mechanisms for XML that mostly rely on the structure of XML documents.

2.2 XML API: DOM versus SAX

Besides simple text input/output streams, there exist many means to produce syntactically
correct XML content, but also semantically valid with respect to a given grammar. Two
different models are commonly used: DOM (Document Object Model), where XML docu-
ments are represented as trees, and SAX (Simple Api for Xml), where XML documents are

1Some refinements of static information flow analysis of arrays and hashed structures are investigated in the
Work Package 4 of Sfincs project (http://sfincs.gforge.inria. fr) that also supports this work.
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considered as sequences of opening/closing tags, i.e. a depth first traversal of XML tree
structures.

The tree abstraction of DOM is the web-standard abstraction of XML documents (HTML,
XHTML, etc) promoted by the W3C (World Wide Web Consortium). DOM is likely to be
best suited for applications where the document must be accessed repeatedly and/or out of
sequence order as it supports navigation in any direction. In fact, DOM paradigm implies a
complete abstract representation of XML documents in memory before (resp. after) writing
(resp. reading) them. This property makes DOM implementations not really appropriate in
memory-constrained devices.

Implementations that follow the SAX model are generally preferred in constrained Java
environments because they consume less memory than the DOM ones. XML elements are
simply read and written sequentially without traceback facilities, which avoids the need to
keep whole XML documents in memory.

The concept of the SAX approach is to produce a sequence of events (tag opening, tag
closing, etc) corresponding to structural elements (enclosing tag, tag attributes,etc) en-
countered during the parsing of an XML document. Implementations of parsers that follow
the SAX approach can be partitionned in two groups: event-driven implementations (“push-
parsers”), where each event encountered fires a callback to a specific method, and lazy
implementations (“pull-parsers”), where the programmer is in charge to enumerate the se-
quence of events. Between these two sets of implementations, lazy implementations are
clearly more likely to be used for a static analysis simply because the structure of a read-
/written XML document is not obfuscated by non predictable runtime callbacks. The struc-
ture of read/written XML documents clearly emerges in the code where lazy implementa-
tions are used, which simplifies static analysis and allow the inference of whole documents
structures.

2.3 The XMLPull API

JavaSE and JavaME include a lazy SAX implementation (Sun XML API 1.0), but unfortu-
nately signatures of its classes have not be generalized to make a clean API that could lead
to easily substitutable alternative implementations. Moreover, this library has the same
disadvantage as the StAX one: special events for comments and whitespaces occuring in
XML documents that unnecessarily complicate lazy parsing. The most practical remaining
libraries are implementations of the XMLPull API (version 1). Several implementations of
the XMLPull API exist, among which the kXML (version 2), specially designed for JavaME
environments, perfectly fits our requirements.

Basically, the XMLPull API defines two interfaces: a pull-parser (XmlPullParser) and a
push-writer (XmlSerializer). The most useful methods of the parser are given Figure
including the five predefined constants that denote considered events encountered during
parsing of XML documents. Forward iterations over an event sequence are controlled by the
next method, while the nextTag method iterates over the super-sequence of opening and
closing tags only. The require method is the most important one for the static analysis of
parsed documents as its invocation only succeeds if the current event matches the criteria

INRIA
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given in parameters, and throws an exception if these criteria are not satisﬁe. The two
remaining methods getText and getAttributeValue are used to retrieve respectively a
text content and an attribute value of the currently opened tag. Figure[2.4]illustrates how to
use a XmlPullParser instance to parse the sample XML document of Figure The most
useful methods of the writer are given Figure Each of these methods produces an XML
event in the underlying output stream. These events naturally correspond to the events
mentionned previously for the parser. The example displayed on Figure illustrates how
to use the XmlSerializer to generate the document of Figure

<?xml version="1.0" encoding="UTF-8"?7>
<bookstore name="iBook store" size="2">
<book nbauth="1">
<title>Titre l</title>
<author>Auteur l</author>
<price>10</price>
</book>
<book nbauth="2">
<title>Title 2</title>
<author>Author 1l</author>
<author>Author 2</author>
<price>20</price>
</book>
</bookstore>

Figure 2.1: Example of XML content generated by the code displayed on Figure [2.5] and
that can be parsed by the code displayed on Figure [2.4]

2.4 Contraints for static analysis purpose

Relying on the SAX approach, even with lazy implementations, is not sufficient to track
data flows from/to XML documents in a pure static way. In fact, even if XML documents
are sequentially read/written, this does not guarantee that the structure of the read/written
XML document can be inferred, even partially. Some additional constraints must be applied
on the use of methods from the XMLPull API in order to be able to detect XML markups and
their scopes.

Lazy parsing of XML content using the XMLPull API strongly relies on the require
method. We constrain its invocation with two pratical requirements. The first parameter
(the expected type of the current event) must be one of the five constants (symbols, not
concrete values) defined in the XmlPullParser. These constants are final static fields de-
clared in this interface. However, our abstract interpretation model supports only non-static
fields. For this reason, we reconsider the XmlPullParser interface to alter the definition
of these fields from static to non-static, instance fields. The two remaining parameters of

20nly exceptions-free executions are considered from hypothesis of the original information flow.

RT n° 0387
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/* Event constants x/

static final int START_DOCUMENT, /x first event x/
START_TAG, /* opening tag */
TEXT, /* text content within opened tag (PCDATA) x/
END_TAG, /* closing tag */
END_DOCUMENT; /* last event x/

/* Sets the underlying input stream reader x*/
void setInput(Reader reader);

/* Enforces the event currently processed */

void require(int type, /* event type x/
String namespace, /* namespace of the event x/
String tag) /* local name of the tag */
throws XmlPullParserException,
IOException;

/* Advances to the next event x/
int next() throws XmlPullParserException, IOException;

/* Advances to the next tag opening or closing, skipping other events x/
int nextTag() throws XmlPullParserException, IOException;

/* Reads the value of an attibute of the currently opened tag */
String getAttributeValue(String namespace, /* namespace of the attribute x*/
String name); /* local name of the attribute x/

/* Reads the text content of the currently opened tag */
String getText();

Figure 2.2: Excerpt from the XmlPullParser interface declaration.

INRIA
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/*x Sets the underlying output stream writer x/
void setOuptut(Writer writer);

/* Opens a XML document for writing at URL location x*/
void startDocument(String enc, /* charset encoding used x/
boolean standalone) /* 1s the document as an extrenal DTD ? x/
throws IOException,
IllegalArgumentException,
IllegalStateException;

/* Writes an opening tag within the currently opened tag */

XmlSerializer startTag(String namespace, /* namespace of the opening tag */
String name) /* local name of the opening tag */
throws IOException,

IllegalArgumentException,
IllegalStateException;

/* Adds an attribute to the currently opened tag */

XmlSerializer attribute(String namespace, /* namespace of the attribute x/
String name, /* local name of the attribute x/
String value) /* value to associate to this attribute x/

throws IOException,
IllegalArgumentException,
IllegalStateException;

/* Writes some content to the currently opened tag */

XmlSerializer text(String text) throws IOException,
IllegalArgumentException,
IllegalStateException;

/* Writes the closing tag that corresponds to the currently opened tag */
XmlSerializer endTag(String namespace, /* namespace of the closing tag */
String name) /* local name of the closing tag */
throws IOException,
IllegalArgumentException,
IllegalStateException;

/* Closes a previously opened XMLOutputStream x/

void endDocument() throws IOException,
IllegalArgumentException,
IllegalStateException;

Figure 2.3: Excerpt from the XmlSerializer interface declaration.

RT n° 0387
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public void reader(String path) throws IOException,
XmlPullParserException {

XmlPullParser reader = new KXmlParser();

FileReader freader = new FileReader(path);

reader.setInput(freader);

reader.require(reader.START_DOCUMENT, null, null);

reader.nextTag(); reader.require(reader.START_TAG, null, "bookstore");
System.out.println("BOOKSTORE_" + reader.getAttributeValue(null, "name"));

int nbbooks = Integer.parselnt(reader.getAttributeValue(null, "size"));

for(int i = 0; i < nbbooks; i++) {
reader.nextTag(); reader.require(reader.START_TAG, null, "book");

int nbaut = Integer.parselnt(reader.getAttributeValue(null, "nbaut"));
reader.nextTag(); reader.require(reader.START_TAG, null, "title");

reader.next(); reader.require(reader.TEXT, null, null);
System.out.println("BOOK_+_" + reader.getText());

reader.nextTag();
reader.require(reader.END_TAG, null, null); /x title */

for(int j = 0; j < nbauth; j++) {
reader.nextTag(); reader.require(reader.START_TAG, null, "author");

reader.next(); reader.require(reader.TEXT, null, null);
System.out.println("AUTHOR_+_" + reader.getText());

reader.nextTag();
reader.require(reader.END_TAG, null, null); /*x author */
reader.nextTag(); reader.require(reader.START_TAG, null, "price");

reader.next(); reader.require(reader.TEXT, null, null);
System.out.println("PRICE_+_" + reader.getText());

reader.nextTag();
reader.require(reader.END_TAG, null, null); /x price */

reader.nextTag();

reader.require(reader.END_TAG, null, null); /* book */
}

reader.nextTag();
reader.require(reader.END_TAG, null, null); /x bookstore */

reader.next(); reader.require(reader.END_DOCUMENT, null, null);

reader.close(); freader.close();

Figure 2.4: Example of XML parsing in Java using kXML API. INRIA




03O0 Ul WN -

BOR W WWWWWWWWWNNNDNNDNNNNNRRRRRRRFE R 2 2
= O O WO N U WNRFER O OWONOUE WNEFE O WU WN =R O

Integration of XML streams in information flow analysis for Java

11

public void writer(String path, Bookstore store) throws IOException,

IllegalArgumentException,
IllegalStateException {

Book[] books = store.books;

XmlSerializer writer = new KXmlSerializer();

FileWriter fwriter = new FileWriter(path);

writer.setOutput(fwriter);

writer.startDocument("UTF-8", null);

writer.startTag(null, "bookstore")

writer.attribute(null, "name", store.name);

writer.attribute(null, "size", books.length);

for(int i = 0; i < books.length; i++) {
Book book = books[il];

writer.startTag(null, "book").attribute(null, "nbaut", book.authors.size());
writer.startTag(null, "title").text(book.title).endTag(null, "title");
for(int j = 0; j < book.authors.length; j++) {

writer.startTag(null, "author");

writer.text(book.authors[j].name);

writer.endTag(null, "author");

writer.startTag(null, "price").text(book.price).endTag(null, "price");

writer.endTag(null, "book");

writer.endTag(null, "bookstore"); /* not mandatory */
writer.endDocument();

fwriter.close();

Figure 2.5: Example of XML generation in Java using kXML API.

RT n° 0387




12 Arnaud Fontaine

the require method (the namespace and the name) must be plain string values (or null),
i.e. that can be resolved into constants of the constant pool. The example displayed on
Figure [2.4] fulfill all these constraints.

For XML content generation, methods signatures of the XmlSerializer class are explicit
enough to determine the kind of structural element written. However, the same constraint
on namespace and name parameters have to be applied. The example displayed on Fig-
ure fulfill these constraints.

INRIA
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Chapter 3

XML content and information flow

In the previous chapter we have described some means to deal with XML content in Java.
In this chapter we describe how to deal with XML data flows read/written with the XMLPull
API in our static information flow model. We first describe in Section[3.1]a structure called
Abstract Xml Content Graph (AXCG) to represent a set of XML documents in this context.
Then, we detail in Sections [3.2] and [3.3] the modifications applied to our information flow
model to include data flows from/to XML documents.

3.1 Abstract XML content graph

To catch the structure of parsed/written XML documents, we use a directed graph called
Abstract Xml Content Graph (AXCG) build in parallel of the AMG during the analysis of a
method’s bytecode. Informally, vertices of an AXCG represent structural elements of XML.:
Root denotes the virtual root of a document, Child denotes an enclosing tag, Text denotes
a text content within an enclosing tag, and Attr denotes an attribute of an enclosing tag.
Edges of an AXCG describe arrangement of these structual elements. For instance, an edge
from a Child vertex v to an Attr vertex a means that the attribute a is defined in the opening
markup of v and is so an attribute of the tag v.

Since XML content, and a fortiori structural elements, can be parsed/written in loops
whose bounds can be unknown during static analysis, the set of vertices of an AXCG is
build by an approach equivalent to the allocation site model already used to build the set of
vertices of an AMG. Each vertex is thus a pair of two values: the type of structural element
(Root, Child, etc), and the position of the bytecode instruction where it is parsed/written.

The content of all documents read and written by the set of classes analysed is gathered
in a single AXCG. To get the arrangement of XML elements within each XML document,
each edge between two vertices is labelled with an abstract instance of parser/writer.

The link between the XML parts abstracted in an AXCG and abstract values from the
original information flow analysis is ensured by the vertex labelling function 7. Following
the way flows of data are tracked in the existing information flow model, n associates to
each vertex of the AXCG (given an abstract instance of parser/writer) two sets of vertices
from the related AMG: the first one contains the abstract values of the tag name (only
for Child and Attr vertices), and the second one abstract values its “content” depends on,
explicitly or implicitly.

RT n° 0387
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Definition 3.1.1 (Abstract XML Content Graph (AXCG)). An abstract XML content graph
(AXCG) is a finite directed graph G x = (v, &,n) build upon an AMG G = (V, E) of a method
Co.mg for the call graph CG = (Vog, Fcg) where v = v, U 1, is the set of vertices and
& =&, U, is the set of edges with

vr Uy, C {Root, Child, Text, Attr} X Vg

& C {((v1, mper), (va, mpez),0) | (v1, mper) € vy A (v, mpea) € v, Ao € Readers(V)
A ((v1 = Root A vg = Child) V (v; = Child A vy € {Child, Text, Attr}))}

€w € {((v1, mpcr), (va, mpes),0) | (v, mper) € vy A (va, mpes) € vy AO € Writers(V)
A ((v1 = Root A vg = Child) V (v; = Child A v2 € {Child, Text, Attr}))}

n: (Readers(V) x v,.) U (Writers(V) x v,) — p((V(V) U {null}) x V(V)) x p(V x F)

where Readers(V) = {0 | 0 € O(V), Type(0) < XmlPullParser} denotes the set of ver-
tices of the AMG corresponding to instances implementing the XmlPullParser interface,
and Writers(V) = {0 | 0 € O(V), Type(o) < XmlSerializer} denotes the set of vertices of
the AMG corresponding to instances implementing the XmlSerializer interface.

In the same way as the set of AMG vertices, the set of AXCG vertices is built before
abstract analysis of bytecode, i.e. application of transformation rules described in Sec-
tion [3.3l Root vertices are “initial” vertices: no edge points to them. Reciprocally, Attr
and Text vertices are “terminal” ones: there is no outgoing edge from these vertices. Child
vertices can have both incoming and outgoing edges. For an inter-procedural call graph
Viere = {(wi,v) | wi € VoG, v € Vineth(wy) }» the set of AXCG vertices is defined as follows:

v = {(Root, (wi, 7)) | (wi,J) € VIcFa; Preth(w)lJ] = invokeinterface startDocument}
U {(Child, (wi, 5)) | (wi,J) € VIcFG;s Pmeth(w)lj] = invokeinterface startTag}
U {(Text, (wi, J)) | (wisJ) € VICFG; Preth(w;)lJ] = invokeinterface text}
U {(Attr, (wi, J)) | (wis J) € VICFG, Prmeth(wy)lj] = invokeinterface attribute}
vr = {(Root, (wi, j)) | (Wi, ) € VICFGs Preth(w;)lJ] = invokeinterface require(START_DOCUMENT,...)}
U {(Child, (wi, ) | (wi,j) € VicrG, Pmeth(w)li] = invokeinterface require(START_TAG,...)}
U {(Text, (wi, j)) | (wisJ) € VICFG, Pmeth(w;)lJ] = 1nvokeinterface getText}
U {(Attr, (wi, J)) | (Wi, ) € VICFG: Preth(wy)lj] = invokeinterface getAttributeValue}

3.2 Abstract states

Abstract interpretation consists in computing the abstract states of the virtual machine
before and after the execution of instructions of the analysed bytecode. The abstract state
from the original model is extended to include AXCG’s building.

INRIA



Integration of XML streams in information flow analysis for Java 15

Definition 3.2.1 (Abstract state). Let (Q,R) = ((p,3,(V,E)), (6, 0w, (vr U vy, &,n))) be an
abstract state where Q is the original abstract state part, (v,&,n) is an AXCG, and 0, (resp.
dw) is a mapping that gives for each XML parser (resp. writer) the current position within
the AXCG structure (last opened tags not yet closed).

Sy Readers(V) — p({(v,mpc) | (v, mpc) € vr,v € {Root,Child}}
Sw = Writers(V) — o({(v,mpc) | (v,mpc) € vy, v € {Root, Child}}

Two distinct mappings are used to mark the current position within a XML input/output
stream to be able to deal with a single instance that implements both XmlSerializer and
XmlPullParser interfaces.

To maintain the ascending chain property of the original model, the ordering relation
and the join operation between abstract states have to be amended.

Definition 3.2.2 (Ordering relation C on property space S). Let S; = (Qy, R1,I'1) € S and

Sy = (Qy, Ro,T's) € S be two abstract states with Q, = (p;,51, (V1, E1)), R1 = (0r,, 0wy, (v1,€1,m)),
@2 = (ﬁ2,§2, (VQ,EQ)) and Ry = (57"27 (SwQ, (1/2,52,7]2)). S, is smaller than Ss, denoted S1 T Ss,
ifand only if Q1 C Qy, R1 = Ry and 'y C I's. Ry C Ry holds iff §,, T 0y, 6wy = Suy, 11 C 1o,

&1 C & and m C ny where

or, C &y, & V0o € dom(6y,) 0 € dom(dy,) A 6y, (0) C dr,(0)
Oy C 0wy < V0 € dom(dy,) 0 € dom(duy) A 0w, (0) C 04y, (0)
m C e < V(0,(t,1)) € dom(m) (0, (t,i)) € dom(n2) Am (o, (t,i)) T na2(0, (£, 1))
and the relation C in the formula n, (o, (t,i)) C n2(0, (t,4)) is the component-wise application
of the relation C.

Definition 3.2.3 (Join operation LI on property space S). Let S; = (Q,, R1,I'1) € S and S5 =
(@27 R27F2) € S be two abstract states with @1 = (ﬁlagh (Vl,Fl)); Ry = (57"1761017 (Vhflﬂ?l))f

Qy = (P9,32,(V2, E2)) and Ry = (8yy, 6wy, (2,€2,12)). The join operation of S; and Ss, de-
noted S; U Sy, is defined as follows:

SiuUSy; & (@1 UQQ,Rl L Ry, Ty UFQ)
< (@1 u@Q? (57‘1 |—|5T275wl |_|(Sw2,l/1 Ul/2,£1 Uf27771 |—|772)7F1 UF2)

where
dr, (0) U by, (0) ifo € dom(dy,) N dom(dy,)
(0p, U 0py)(0) =< 6, (0) ifo € dom(6y,) ~ dom(dy,)
0r,(0) ifo € dom(6r,) ~ dom(dy,)
(6,0, (6) U 8, (0)  if© € dom(dp,) N dom(Su,)
(0w U 0wy )(0) = 4 by (0) ifo € dom(dyy, ) ~ dom(dy,)
O, (0) ifo € dom(du,) ~ dom(dy,)
m (o, (t,4)) Un2(o, (t,4)) if (0,(t, 7)) € dom(n) N dom(ny)
(771 U 772)(67 (tv Z)) = 771(5a (t> Z)) if (57 (tv Z)) € dOm(m) N dom(ﬁz)
n2(0, (t,17)) if (o, (t,7)) € dom(nz) ~ dom(n1)
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and the operation Ll in the formula n, (o, (t,i)) Un2(0, (t,4)) is the component-wise application
of the operation U.

3.3 Transformation rules

Evolutions from some constant initial state are dictated by the application of transformation
rules, one for each bytecode instruction, until a fixed point is reached, i.e. abstract states
at each bytecode position are unchanged by the application of transformation rules. The
original set of rules is extended to build the AXCG, but rules that do not contribute or
interfere with its build do not need to be modified: the new part added to an abstract
state is simply copied as is. New transformation rules are added to specialize invocation of
methods from the XMLPull API.

The two following sections introduce the transformations rules applying to XML writing
(Section and XML parsing (Section [3.3.2). In order to simply transformation rules
definition we introduce the two following predicates and a function to deal with string
values of tags and attributes names.

Definition 3.3.1 (Predicate pre).
pre((1,€,m),6,7,T) £V¥(0,d) €T 0 C (o) C{(t,p) |t €T, (tp) € v}
Definition 3.3.2 (Predicate prematch).

prematch((v,&,1),6,Z, T,na) = pre((v,€,1),6,Z,T)
A (V(0,d) € T 3(c,6(0),0) €

A (ma = {(null,null)}V
V(o,d) € Ve € 6(0) (N,

~— —

£)
.) =n(o,c) A gnames(na) C gnames(N))

Definition 3.3.3 (Function gnames). Let gnames be a function to build fully qualified names
of XML tags and attributes (e.g. namespace:localname) from string values contained in
constant pools.

gnames : p((V(V) U {null}) x V(V)) — @o(TagNames)
N — gnames(7, @)
(m,@)eN

gnames : (V(V) U {null}) x V(V) — TagNames

(7.7) — {string(a) ifm = null,

concat(string(n), string(a)) otherwise.

3.3.1 Transformation rules for XML writing

The Figure contains the transformation rules corresponding to invocations of methods
used to write XML content. The generic rules for method invocation is actually bypassed
for these methods to introduce their new specific behaviour: the frame I’ of these rules
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is left as is since their bytecode is not analysed. These methods have to be invoked on
a valid instance of the class XmlSerializer with an underlying output stream set (method
setOutput). If the reference to the instance of XmlSerializer is null, the underlying output
stream has not been set or if it is not writable, an exception is raised and the output stream
is untouched since it is assumed that no exception occurs during execution.

(Q,R)= (€T ::5,G, F), (6r,0uw, (1, &n))) V(0,d) €7 §u(0) =0 m = startDocument (€,7)

@, R) = ((p.5.G,F), (6, 6w |0 22 {(Roomwi,j))}} (& [(a (Root, (wi, §))) “22%, (o, (Root, (wi, 5))) L (B,eUmUT) )

(@Q,R)=((pa=n=7:5G,F),(0, 0w, (1,&n))) Y(0,d) €T 6uw(0) # 0 m = startTag(n,a)

(0,0)€T

(@,R)=((p,zUT ::5,G,F), (6, 6 [6 =7 {(Child, (wi, i)}, (1, &, 7)))
with & = ¢ U {(c, (7, (wi,4)),0) | (@, (wi,5)) € v, (0,d) €T, c € 5,(0)}
(0,d)€T

and 7]/ =n (61 (Child1 (WHJ))) _ 7](5$ (Childv (wlvj))) U ({(ﬂhﬁQ) | (61 vd) €mn, (527 d) € E},F)

(Q,R)=((p,v:a=7=7T:5G,F), (00w, (v,&n))) pre(R, 6w, T, {Child}) m = attribute(w,a,7)
@, R) = ((p,7UT :5,G,F), (6,60, (1 €,1)))

with ¢ = ¢U {(c, (¥, (wi, J)),0) | @, (wi,5)) € v, (0,d) € T,c € du(0)}

and ' =7 | (o, (Attr, (w;,j))) LoDeT, n(o, (Attr, (wi, 7)) U ({(v1,92) | (U1,d) € 7, (V2,d) € a},vU F)}

@R = ((pv:7:5,G,F), (0,00, (nEm))  pre(R,00,7, {Child})  m = text(p)

(G,9)€T

@ R)=((p,7UT :5,G,F), (6,00, (&', | (0, (Text, (wi, /))) ———> n(0, (Text, (wi, ))) U (0, 77U F)] )

with & = ¢ U {(c, (7, (wi,4)),0) | (¥, (wi, 7)) € v, (0,d) €T, c € 5, (0)}

(Q,R) = ((p,a=m=T:35G,F),(6r,0w,(1,&1n))) prematch(R, 6, T, {Child},m X @) m = endTag(7,a)

_ (s0)ex

13
(@/,R’) =((p,zUT ::5,G,F), (0r,0u |0 — {c| (c,6,(0),0) € f}] (v, 61))
with o/ =7 {(a, ) 2UETEW @, 5 o) U ({(B1,72) | (B, d) € T, (T2, d) € @}, r)}

(Q,R) = (5,7 ::5,G, F), (6, 0w, (v, €, 1)) V(0,d) € T §u(0) # 0 m = endDocument ()

@ R) = ((7.5.C.F), (5,60 [a B, w} Lt [(a, 0) BT D, i oy (M)] )

Figure 3.1: Abstract semantic rules XML output related methods where (@l, R) =
inStTJg.ﬁcglzeinterface XmlSerializer.m(Q7 R’ F)'

The method startDocument (e,n) writes the header (<?xml version=...) of the XML
document, with encoding € and namespace 7 applying to the whole content. This method
should be called on instances that have not already been previously opened, i.e. d,,(0) = ()
for each instance o on which it is potentially called. No edge needs to be created in the
AXCG but the position in streams is set to the Root vertex of the AXCG for the current
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bytecode instruction, and the label of this vertex is updated to include AMG vertices from e
and 7, for each referenced output stream.

The method startTag(mn,a) writes an opening tag named @ in namespace 7 (if not null).
As a result, an edge from the currently pointed vertex(vertices) to the Child vertex attached
to the current bytecode instruction is added to the AXCG for each implied stream. The label
of this Child vertex is also updated for each stream to include 7 x @, couples of AMG vertices
that denote its fully qualified name(s).

The method attribute(n,a,v) writes a new attribute to the last opened tag(s) with
name in @, namespace in n (possibly null), and string value in v. An edge from the currently
pointed vertex(vertices) to the Attr vertex attached to the current bytecode instruction is
added to the AXCG for each implied stream. The label of this Attr vertex is also updated for
each stream to include v, abstract values of the written content, as well as its fully qualified
name(s) n X @.

The method text (v) writes the string value(s) in v to the last opened tag(s). An edge
from the currently pointed vertex(vertices) to the Text vertex attached to the current byte-
code instruction is added to the AXCG for each implied stream. The label of this Text vertex
is also updated for each stream to include v, abstract values of the written content.

The method endTag(m, @) writes a closing tag named @ in namespace n (if not null).
This method succeeds only if there is a last unclosed tag with the same name, that is why
the name given to this closing tag is compared to all possible names of the last identified
opened tag(s) for each related stream. In return, the position in each stream is updated to
the corresponding parent tag(s).

The method endDocument () simply closes all unclosed start tags and flushes the under-
lying output stream. In order to reuse the XmlSerializer instances on which this method
has been called, it is mandatory to call the method setOutput to reset the underlying output
stream.

At the end of the analysis, when a fixed point is reached and the abstract state of the
last method’s instruction is correct, we can additionally check that all opened tags in XML
output streams have been explicitly closed:

Vo € Writers(V) 6,(0) =0

The Figures shows the AXCG resulting of the analysis of the method writer whose
source code is given in Figure 2,51 The graph (a) shows the edges added during its anal-
ysis: there is only one instance of XmlSerializer in this method created at line of this
method abstracted by the AMG’s vertex wg.07. On this graph clearly appears the tree struc-
ture of the generated XML content because the control flow of the method is very simple:
opening tags and their corresponding closing tags are written in a non-ambiguous way, i.e.
they are written in sequence in the same enclosing conditional branch. The graph (b) is the
same graph where vertices have been replaced by their labels for the single XmlSerializer
instance wg.07. On this graph, we can notice the second component of the label of the
vertex (Text, (wp,30)). This set consists in three values that have to be interpreted as fol-
lows: (wg.py.books.price,d) denotes that the written content directly depends on the field

!For easier understanding, positions of bytecode instructions have been replaced by their related line num-
bers in the source code.
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price of a Book instance stored in the array-field books of the second parameter of the
method, (wp.py.books.length, i) denotes that the written content implicitly depends on the
field length of a Book instance also stored in the array-field books of the second parameter
of the method, and (wy.cst1s, i) denotes that the written content also implicitly depends on
the constant appearing at line 18

3.3.2 Transformation rules for XML parsing

The Figure [3.3] contains the transformation rules corresponding to invocations of methods
used to read XML content. As previously, the generic rule for method invocation is bypassed
for these methods that have to be invoked on a valid instance of the class XmlPullParser
with an underlying input stream set (method setInput).

To infer the structure of parsed XML we strongly rely on invocations of the method
require (Section 2.4). Several transformation rules are defined according to the value of
the first parameter that denotes the expected kind of event. As it is assumed from hypoth-
esis that method calls succeed without throwing exceptions, each encountered invocation
of the method require permits to infer the existence of the structural element described
by the first parameter value. No ambiguity is consequently permitted for the value of this
parameter since it would result in intricate XML structures.

The method getAttributeValue(m,a) permits to retrieve the string value of an at-
tribute named @ in namespace n (or null if outside a namespace) defined in the last cur-
rently opened tag, and puts the corresponding abstract value wy.0; on the top of the stack,
or null if there is no such attribute. An edge from the currently pointed vertex(vertices)
to the Attr vertex attached to the current bytecode instruction is added to the AXCG for
each implied stream, and the label of this Attr vertex is also updated with the abstract
string value returned to permit its a posteriori identification. The behaviour of the method
getText () is exactly equivalent with Text vertices, except that no parameter is needed to
identify the value to be retrieved.

The methods next () and nextTag() have no impact on the AXCG. From the abstract in-
terpretation point of view, they just return one of the constants defined in the XmlPullParser
interface (Figure [2.2).

The Figures [3.4] shows the AXCG resulting of the analysis of the method writer whose
source code is given in Figure[2.4]l The graph (a) shows the edges added during its analysis:
there is only one instance of XmlPullParser in this method created at line 49 of this method
and abstracted by the value wp.04. On this graph clearly appears the tree structure of the
generated XML content because the control flow of the method is very simple: opening tags
and their corresponding closing tags are read in a non-ambiguous way, i.e. they are read in
sequence in the same enclosing conditional branch. The graph (b) is the same graph where
vertices have been replaced by their labels for the single XmlPullParser instance wy.04. On
this graph, we can notice the second component of the label of the vertex (Text, (wg, 40)).
This set consists in three values that have to be interpreted as follows: (wy.040,d) denotes
the string content read, (wp.012,1) denotes that the read content implicitly depends on an

2For easier understanding, positions of bytecode instructions have been replaced by their related line num-
bers in the source code.
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(Root, (wp, 11))

Wo.07

(Child, (wp,13))

wy.07

wWp.07

(Attr, (wo, 14)) (Attr, (wo, 15)) (Child, (wo,20))

(Attr, (wo,20)) (Child, (wo,22)) (Child, (wo,25)) (Child, (wo,30))
Wo .07 wWo.07 Wo. 07
(Text, (wo, 22)) (Text, (wo, 26)) (Text, (wo, 30))

(a) AXCG for the method meth(wo) = writer.

({(nulT, wo.cstis)}, 0)

Wp.07 _
wp.07 —
Wo.07

({(null, wo.cstia)}, {(wo.pp.name, d)})  ({(null,wo.cstis)}, {(wo.pp.books.length,d)}) ({(null,wo.cstx)}, {(wo Bp-books.length, i), (wo.cstis, 1)})

wo-0r
W07

({(null, wo.csta)}, {(wo.Do.boOks. length, 1), (wo.cstis, 1)})

({(nulT, wo.cstan) }, { (wo-Po.books.length, 1), (wo.cstis, 1)}) ({(nuIT, wy.csts0)}, { (wo.Pr-books. Length, i), (wo.cstis, 1)})

({(nulT, wy.cstys)}, {(wo Py-books. length, i), (wo.cstis, 1), (wo.P,-books.authors, i)}) oy 5,

Wo. 07

(0, {(wo.p,.books.length, i), (wo.p,.books.title,d)}) Wo.07 (0, {(wo.p,.books.length, 1), (wo.cstis, 1), (wo.P,-books.price, d)})

(0, {(wo.p,.books.length, 1), (wo.cstis, 1), (wo.P,-books.authors.length, i), (wy.p,.books.authors.name, d)})

(b) AXCG where vertices have been replaced by their label for the stream wo.07 (Vz € vy © — n(wo.07, )).

Figure 3.2: Example of AXCG build for the code displayed on Figure Bytecode instruc-
tion positions have been replaced by corresponding source code line numbers for easier

understanding.
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(Q,R)=((pa=mut=T:5G,F), (60w, ¥,En))) V(0,d) €% 6,(0) =0 tq = {0.START_DOCUMENT | (7,d) € T}

(0,d)€T (0,d)€T

@ R) = ((.5,G,F), (5, |0 {(Root, (wi, j )}} ,5w7(V7€,77{(@(Root,(wm)) ) ——— n(@, (Root, (wi, 7))) U (0,T)|)))

(Q,R)=(p,a=n=1:T:35G,F), (0,60, v,&n))) V(0,d) € T 5,(0) # 0 ts = {0.START_TAG | (5,d) € T}

(o,d)ex

@.R) = (750G, F), (6 { ——— {(Child, (wi, J) }} 20w, (v,€,1)))
with & = € U {(c, (Child, (ws,)),d) | (Child, (ws,j)) € v, (3,d) € T, c € 6.(0)}

and ' =7 | (o, (Child, (w;,j))) % 1(0, (Child, (wi,7))) U ({(D1,72) | (v1,d) € @, (v2,d) € a},T)

(Q,R)=(p,a=mn=1:T:3G,F),(0r, 6w, v,&1))) prematch(R, d,,Z, {Child}, 7 X @) ta = {0.END_TAG | (0,d) € T}

3

(6,d)eT

@ )= «msGFﬂé{H—‘%H@UOG&veéwﬂﬁm@@#m

(0,4)€T,c€6.(0)
_

with ' =17 [(5, c) n(o,c) U ({(v1,v2) | (01,d) €W, (V2,d) € a},r)}

CI:I

LG, F), (6r,6w, v,€,1))) pre(R,d,,z, {Root}) ta = {0.END_DOCUMENT | (0,d) € T}
(0.0 U (0.1)]))

@R = ((p.a=meix
(Qﬂ)zwxﬁfna[ﬁﬁi}ﬁwmaﬁma

(0,d)€T,c€6,-(0)
_

(a) Transformation rules for m = require(Z,n,a) and s = {0 | (9,d) € t}

(Q,R) = ((p,a=7m::3G,F),(0r, 6w, (v,&1))) pre(R, 6,, z,{Child}) m = getAttributevValue(n,a)
(@/7 R/) = ((p7 {(m7 d)7 (w15]7d)} U F :: gvé7f)7 (677 5’107 (l/7 5/777,)))

with & = £ U {(c, (Attr, (ws,7)),0) | (Attr, (wi,j)) € v, (0,d) € Z,c € 6-(0)}

(0,9)ex
—_

and 7]/ =n (57 (Attr7 (UJ“]))) 7)(57 (Attr7 (UJ“]))) u ({(@1,52) ‘ (517“1) en, (E%d) € a}v {(wiﬁjvd)} U F)

(Q,R) = (5,7 ::5,G, F), (6r, 6w, v, &,1))) pre(R, r,x,{Child}) m = getText()
(@/7 R/) = ((ﬁ, {(mv d)7 (wi'ajvd)} Ul = §767F)’ (67“7 dw, (V7 5/77]/)))

with ¢ = £ U {(c, (Text, (wi,j)),0) | (Text, (wi, j)) € v, (0,d) € T,c € 6,(0)}

and ' =7 | (o, (Text, (wi, 5))) LoDET, n(o, (Text, (wi, j))) U (0, {(wi.0;,d)} UT)

(b) Attribute and text content rules

7:5,G, F), (0r, 0w, (. &,1))) V(0,d) €T §,(0) # 0 = next()
(Q ,R,) ((pyvdoc UVtag UViext UT HEN a F) (0r 6w, (v, €, )))

(Q,R) = ((p,Z :5,G,F), (6,0, (1,&,1))) V(0,d) € T 6-(0) # 0 m = nextTag()
(@ 7R/) = ((p) Vtag ur: a F) ( 7('/7577])))

with Vo = {6.START_DOCUMENT, 5.END_DOCUMENT | (3,d) € T}  V'iext = {0.TEXT | (5,d) € T}
Vtag = {0.START_TAG,5.END_TAG | (5,d) € T}

(c) Event forwarding functions

Figure 3.3: Transformation rules for invocation of methods from the XmlPullParser inter-
face where (Q, R') = instr“"J) (Q,R,T).

invokeinterface XmlPullParser.m
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instance created at line 12 of this method, and (wy.csti4,1) denotes that the read content
also implicitly depends on a constant appearing at line 14.
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(Root, (wo, 8))

Wo-04

(Child, (wo, 10))

wWo.04

Wp.04

(Attr, (wo, 11)) (Attr, (wo, 12)) (Child, (wo, 15))

Wp.04

Wo-04 W04

(Attr, (w0, 17)) (Child, (wo, 19)) (Child, (wp, 28)) (Child, (wp, 37))
Wo .54 wo A54 wo .54
(Text,(w0,22))  (Text,(wn,31)  (Text, (wo,40))

(a) AXCG for the method meth(wo) = reader.

(0,0)
wo.mJ

({(@uTT, wo.cstio)}, 0)

Wp.04 _
Wp.0q \\
0-04

({(@ull, wo.cstin)}, {(wo-011,d)}) ({(aull, wo.cstiz) }, {(wo-012,d)}) ({(@ull, wo.csti5)}, {(wo-Br2, 1), (wo-cstia, 1)})

Wp-04

({ (@0TT, wo.5T17) . { (w0912, 1), (0.5T14, 1), (wB7, ) }) w003

({(@UTT, wo.c5t10)}, { (w0012, 1), (wo.C5F1a, 1) }) ({(AuTT, wo.csts) }, {(wo.0r2, 1), (wo-cota, 1)})

o Bs ({(RUTT, wo.e5828) Y, { (wo.B12, 1), (wo.e5T1, 1), (wo 17, 1), (wo-eTr, DY) oy

(@, {(wo-012, 1), (wo.C5t14,1), (wo.022,d) }) Wo.04 (0, {(wo.012, 1), (wo-C5%14, 1), (Wo.0a0,d) })

(@, {(wo.012, 1), (wo-c5t1a, 1), (w0017, 1), (wo.CStar, 1), (wo.031,d)})

(b) AXCG where vertices have been replaced by their label for the stream wo.04 (Vx € vy, x — 1n(wo.04, T)).

Figure 3.4: Example of AXCG build for the code displayed on Figure 2.4l Bytecode instruc-
tion positions have been replaced by corresponding source code line numbers for easier

understanding.
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Chapter 4

Secure information flow and AXCG

The AXCG resulting of the abstract analysis of a method contains all the links between XML
content read/written through the XML API and values abstracted in the related AMG. In
this chapter we extend the original application of the information flow analysis to secure
information flow to connect it to access control mechanisms for XML. Actually, we focus
on security policies that apply only to XML documents instances and not to their structures.
We describe in Section[4.1lan abstract way to connect our extended information flow model
to access control mechanisms for XML based on XPath descriptors, and illustrate how this
can be instantiated for a concrete access control mechanism in Section [4.2]

4.1 Interface between information flow policy and access con-
trol for XML

Many definitions of (secure) information flow exist in the literature from traditional non-
interference from the earliest years to notions related to software engineering like [32].
The basic idea of all the approaches is to define a lattice of security levels and to control
the flows of data between the different security levels. Previous works on non-interference
require the lattice of security levels and the model for security policy to be known from
the beginning. This requirement is avoided with AMG since it contains points-to and de-
pendency between data, and can thus be labeled by security levels and non-interference
checked a posteriori. The main advantage of this approach is to support changes of secu-
rity levels without reanalyzing programs.

Since AXCG reuses AMG'’s vertices to keep track of data flows from/to XML streams, it
is natural to extend to AXCG the scheme of labelling used for AMG with the same security
lattice (£, L, C). For the purpose of connecting secure information flow and access control
mechanisms for XML, we introduce security oracles. We describe the type of security oracle
functions and introduce several facilities to instantiate these oracles, such as a simple way
to practically set the access control policy of an XML parser/serializer and an algorithm to
identify AXCG vertices matching a XPath descriptor.
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4.1.1 Security oracles
Security oracle for data written to XML streams

Attribute and content values written to XML streams identified in the AXCG have security
levels coming directly from the information flow model and its security policy. The security
level of an AXCG vertex, given by the function )\, , is inferred using the least upper bound
of security levels of abstract values representing its content.

Definition 4.1.1 (Security function A, ). Let A\, be a function that assigns a security level
to the vertices of the AXCG related to XML output streams using security levels assigned to
AMG'’s vertices by the function )\, [16, 21]].

A, @ Writers(V) x vy — L
(0,v) —> | ] Ao (T)
(N.C)en(ow),ze{m,al(m,a)e N U{el(e,.)eC}
We have to ensure that the security level inferred for each written data is coherent with

the expected security level coming from its related access control policy. The expected
security level of an AXCG vertex is given by the security oracle function

O : Writers(V) x vy, — L
Assuming that access control is enforced on all XML output streams produced, we can
amend the original definition of secure information flow to check access control policies
specified by the security oracle {2,,.

Definition 4.1.2 (Secure information flow). A method has secure information flow ac-
cording to the Definition 6.1 of [21|]] with the additional constraint related to XML output
Streams:

Vo € Writers(V)Vv € vy Aw(0,v) C Q4 (0, )

Security oracle for data read from XML streams

XML documents parsed have access control policies that need to be integrated into the in-
formation flow policy. Basically, data read from XML streams have security levels that need
to be mapped to their corresponding abstract values generated during AMG’s computation
and positioned in XML streams thanks to AXCG. The mapping of access control mechanisms
for XML to information flow is concretely ensured by the oracle function

Q, : Readers(V) x {w;.0; | I(Attr, (w;,5)) € v V I(Text, (wi, j)) € v} — L

Properly speaking, the assignment of security levels to abstract values corresponding
to XML data read (attribute and content values) requires to slightly modify the original
security function A\,. Because of approximations in the static analysis, especially because
of the allocation site model, different data coming from an XML input stream can have
been abstracted with the same abstract value. For instance this case occurs if the same
code (same invocation instruction in the bytecode) is used to acquire the value of attributes
with the same name but attached to different opening tags. In this case it is mandatory
to compute the least upper bound of corresponding security levels given by access control
policies.
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Definition 4.1.3 (Security function \,). The function \, from Definition 6.1 of [21]] is mod-
ified to include security levels of data incoming from XML streams:

AV — L
SN {I—l(-7-,wi-aj)€£ Qr(wz’ﬁj,@) ifv= w'k.al and 3(t, (wg,l)) € v and t € {Attr, Text}
U z.(7,0ne A (S Type(v')) otherwise.

Since the security function now includes access control policies for XML data, the defi-
nition of secure information flow is untouched.

4.1.2 Access control policy of an XML input/output stream

The first argument of the security oracle functions is an abstract instance of XmlPullParser
for €),, and an abstract instance of XmlSerializer for the function 2,. Outside the static
analysis context, it is not convenient to deal with such entities, especially because it de-
pends on the positions of their allocation in bytecode instructions.

As mentioned in the previous section, all access control policies applied to the XML
input/output streams existing in analysed methods must share the same security lattice.
Upon this lattice, each policy defines its own set of rules. To simplify the assignment of
an access control policy to an XML stream, we rely on the namespace feature of the XML
language.

Each access control policy is assigned a unique namespace, and each XML input/output
stream must refer to elements within a unique namespace. Since access control policies
are strongly related to the structure of XML documents on which they are applied, such
constraints can be easily achieved in practice. Once each access control policy refers to a
unique namespace, we can merge all access control policies into a unique one. In addition,
a default access control policy can be appended for elements without a namespace or not
matching any available access control policy.

4.1.3 Matching XPath descriptors

Most access control mechanisms for XML rely on XPath descriptors to identify parts of XML
documents. We provide an algorithm to identify the set of AXCG’s vertices matching a XPath
descriptor.

XPath restrictions

All features of the XPath language cannot be supported because of approximations in the
abstract analysis and unknown run-time control flow paths. First, we only consider abso-
lute path descriptors to avoid cross-documents requests, i.e. path descriptors only starting
with “/”. Then, because of the loss of elements ordering, i.e. order between tags with the
same parent tag, we are not able to use the following navigation and position-dependent
operations and tests:

¢ preceding: selects the elements that are descendants of the root of the tree in which
the context element is found, are not ancestors of the context element, and occur
before the context element in document order;
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¢ following: selects the elements that are descendants of the root of the tree in which
the context element is found, are not descendants of the context element, and occur
after the context element in document order;

e preceding-sibling: selects the children of the context element’s parent that occur
before the context element in document order;

e following-sibling: selects the children of the context element’s parent that occur
after the context element in document order;

 fn:last(): denotes the position of the last element in the context;

e fn:position(): denotes the position of an element in its context;

e [x = y]: tests the equality between x and y where x is not an attribute name (@something),

or y is not a string literal.

From XPath to AXCG vertices

The Algorithm [4.1.1] gives the ResolveXPath procedure to retrieve the set of AXCG vertices
matching a given XPath descriptor according to the restrictions from the previous section.
This generic algorithm relies on the procedure ResolveElement, for which a simplified ver-
sion is given by the Algorithm to illustrate how it can be implemented.

Require: An AXCG Gy = (v,&,n) build upon an AMG G = (V, E)
Require: A XPath descriptor P € Strings where P[i] denotes the (i — 1)* substring of P
delimited by “/”, with 0 < ¢ < n and n is the number of such substrings in P

Require: An abstract XML input or output stream 6 € Writers(V') U Readers(V)
R < ResolveElement(Gx, P[0])
fori < 1lton—1do
R < (R x ResolveElement(Gx, P[i]) x {o})N¢

end for

return R

Algorithm 4.1.1: ResolveXPath procedure to retrieve AXCG vertices matching a XPath
descriptor.

4.2 Example of access control mechanisms for XML

The generic approach of security oracles permits to connect to many different access con-
trol mechanisms for XML. We choose the one from Gabillon et al. [19] to illustrate how this
can be achieved in practice.

Gabillon et al. define a simple RBAC mechanism (Section relying on two struc-
tures: the XML Subject Sheet (XSS) that defines roles considered in the system, and the
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Require: An AXCG Gx = (v,&,1)
Require: A string e € Strings representing an XPath element

if e equals to “” then
return v
else
if e equals to “text()” then
return {(Text, (w;,j)) | (Text, (w;,j)) € v}
else
if e starts with “@"” then
a <+ attribute name of e
return {z | v = (Attr, (w;, 7)),z € v, (N,.) = 7(0,7),a € gnames(N)}
else
return {z |z €v,(N,.) =7n(0,7),e € gnames(N)}
end if
end if
end if

Algorithm 4.1.2: Simplified ResolveElement procedure to select vertices of an AXCG given
a XPath element.

XML Authorisation Sheet (XAS) that defines access control rules. In order to connect to
our information flow model to this access control mechanism, we first define the common
lattice of security levels extracted from a single XSS. Then, we build the security oracles
from a set of XAS.

4.2.1 Lattice of security levels

The XML Subject Sheet (XSS) defines a set of Users and a set of Groups. A group is simply
a set of users and/or other groups. Equipped with a greater element T and a lower one L,
Users U Groups is a lattice with the following ordering relation C:

Vu € Users LCu T T Vg € Groups L CgC T Vg € GroupsVr €g gLCux

4.2.2 Security oracles build from access control policies

The XML Authorisation Sheet (XAS) defines a set Rules of access control rules. Each rule
is a quadruple (s,0,a,p) where s € p(Users U Groups) is the set of users aimed by the rule,
o € Strings is a XPath descriptor specifying the part(s) of the XML document aimed by the
rule, a € {grant, deny} is the privilege given to the users in s for the described part(s), and
p € Z is the priority level of this rule. In this model, when the descriptor o matches a tag,
it implicitly means that the corresponding rule applies to all its content and attributes, but
also to all its child tags recursively.

A default privilege is set for parts of XML documents not matching any rule, which is
equivalent to add a rule that matches all users, applies to the root of the document ("/")
and has the lowest priority. When the default privilege is set to open it is equivalent to set
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the grant privilege for this rule, while the default privilege closed is equivalent to set the
deny privilege.

When several rules match the same XML portion with a conflict for a user about the
privilege to be given (grant or deny), the rules with the highest priority are selected. If
several rules have the highest priority value, then the rule that appears last in the XAS is
selected.

According to the remarks of Section[4.1.3] several constraints have to applied on access
control rules defined in XAS in order to obtain a coherent system. All XPath elements
occurring within each XAS must be prefixed with a common unique namespace. In addition,
for simplicity, we bypass the default privilege of each XAS and define two default privileges:
one for XML content read, the other one for XML content written. Given theses restrictions
and hypothesis, the Algorithm sketches the algorithms of Gabillon et al. to build the
two corresponding security oracles €2, and €2,,.

Require: An AXCG Gx = (v,£,7) build upon an AMG G = (V, E)
Require: An abstract XML input or output stream o € Writers(V) U Readers(V)
Require: A set of vertices I C v

N < {vy | (v1,v2,0) € &, v1 € [,v9 & I}

if N = () then

return /
end if
return Closure(Gx,G,0,I UN)

Algorithm 4.2.1: Closure procedure that computes the transitive vertex closure of a set of
vertices in a given AXCG.
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Require: An AXCG Gx = (v, Uy, &, 1) build upon an AMG G = (V, E)

Require: A set of access policy rules Rules € o(UsersUGroups) x Strings x {grant, deny} xZ
Require: A security lattice (Users U Groups U{T, L}, ,C)

Require: A default privilege d, € {open, closed} common to all XML input streams
Require: A default privilege d,, € {open, closed} common to all XML output streams

/** Security oracle for output streams **/
AttributesAndContents < {(t, (wi, 7)) | (¢, (wi,j)) € vp A (t = Attr Vit = Text)}

for all o € Writers(V') do
forallv € v, do

1 ifd, = ,
Qu(0,v) v open
T ifd, = closed.
seen(v) + L
end for

for all (S, z,a,p) € Rules do
for all v € Closure(Gx, G, 0, ResolveXPath(Gx,G,z,0)) do
if seen(v) = L or seen(v) = p' Ap’ < p then

0 (5.v) |_|S€Ss if a = grant,
w )

I—lse(( UsersUGroups)\.S) s ifa= deny.
seen(v) < p
end if
end for
end for
end for

/** Security oracle for input streams **/
for all 6 € Readers(V) do
for all v € AtiributesAndContents do
1 if d, = open,
T ifd, = closed.
seen(v) < L
end for

0, (0,v) +

for all (S,z,a,p) € Rules do
for all v € Closure(Gx, G, 0, ResolveXPath(Gx, G, z,0)) N AttributesAndContents do
if seen(v) = L or seen(v) = p' Ap’ < p then

0 (6.0) {|_|8€S s if a = grant,
s€((UsersUGroups)\.S) s ifa= deny.
seen(v) < p
end if
end for
end for
end for

Algorithm 4.2.2: Building the security oracles €, and €2, for Gabillon et al..
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Conclusion

This report introduces foundations to properly include data read from and written to XML
documents with access control policies in a static information flow analysis for Java byte-
code. We first investigate in Chapter [2] the different means to read/write XML content in
Java, and exhibit their (dis)advantages in constrained environments and for the purpose of a
static analysis. In Chapter[3|we describe the Abstract XML Content Graph (AXCG), a graph
structure to track data flowing from and to XML streams through the XMLPull API, and the
modifications brought to our original information flow model to include AXCG’s building.
We finally detail in Chapter Ml security oracles, two functions that ensure the connection
between a secure information flow policy applying to the set of analysed classes and access
control policies attached to XML input and output streams.

The work presented in this report builds on an existing information flow analysis for
Java bytecode. The major advantage of the original model has been preserved: secure
information flow policy, and now access control policies of XML streams, do not require
to be known during the analysis. Changes to the whole security policy can be made a
posteriori without the need to re-conduct the analysis. The second advantage of the solution
presented is its genericity: any access control mechanism for XML that follows the RBAC
approach can be used to define the security policies of XML input/output streams.

Since we conduct an abstract interpretation in a static way, the structure of some gener-
ated/parsed XML documents cannot necessarily be inferred correctly. This is especially the
case when implementations involve intricate control flow paths. It is conceivable to propose
dynamic artifacts, such as code injection or run-time monitoring, to achieve a more precise
verification, but such mechanism are not suitable for small constrained systems.

In order to fully include this work in the original information flow framework, it is re-
quired to get into practical details such as how to extend the proof-elements embedded in
the bytecode for the PCC-like on-device verification of bytecode at loading-time. As is, AX-
CGs are actually too large to be embedded as approximated AMGs are with STAN tool [20].
A practical solution has to be found to loosen AXCGs with a good compromise between kept
information and memory footprint.

A second perspective of this work is to provide a verification of generated/parsed XML
documents against an expected XML structure described, for instance, by a DTD or XML
Schema sheet. Conversely, it could also be feasible to statically infer valid structure de-
scriptors for generated/parsed XML documents.

Finally it could be interesting not to deal only with access control policies of XML data
but also with policies on structural elements such as the presence/absence of a particular
tag or attribute.
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