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2LORIA, UMR 7503, Université Nancy 2, 54506 Vandœuvre-lès-Nancy, France

Abstract—A new shape descriptor invariant to geometric
transformation based on the Radon, Fourier, and Mellin trans-
forms is proposed. The Radon transform converts the geometric
transformation applied on a shape image into transformation
in the columns and rows of the Radon image. Invariances to
translation, rotation, and scaling are obtained by applying 1D
Fourier-Mellin and Fourier transforms on the columns and
rows of the shape’s Radon image respectively. Experimental
results on different datasets show the usefulness of the proposed
shape descriptor.
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I. INTRODUCTION

Shape description is an important research topic in pattern

recognition as it is one of the basic features used to describe

image contents. Describing shape means looking for effec-

tive and perceptually important shape features based on its

boundary information and/or internal structure. A desirable

shape descriptor should have the following properties: good

retrieval accuracy, geometric invariances (translation, rota-

tion, scaling), application independence, low computation

complexity, etc.

Many descriptors have been proposed [1] for describing

shape and they can be roughly classified into two main

classes: contour-based descriptors and region-based descrip-

tors. Contour-based shape descriptors are extracted from

the shape contour exploiting its boundary information. Im-

portant extraction techniques include 1D Fourier transform

[2], curvature scale-space [3], 2D histogram of neighboring

contour pixels [4], inner-distance in the shape silhouette

[5], and rotation invariant kernel [6]. In spite of their

popularity, contour-based shape descriptors are applicable

only to certain kinds of application due to several limitations.

Firstly, they are generally sensitive to noise that exists in

shape contours. Secondly, they cannot capture the internal

structure of a shape. Thirdly, they are not suitable for disjoint

shapes or shapes with holes inside.

The limitations of contour-based shape descriptors can

be overcome by region-based shape descriptors which are

extracted from the whole shape region. Common extraction

techniques are based on the theory of moments [7], 2D

Fourier-Mellin transform [8], 2D Fourier transform [9].

Although region-based shape descriptors are more suitable

for general applications, they are more computationally in-

tensive and most methods need normalization steps (centroid

position, re-sampling, re-quantization) in order to achieve

common geometric invariances. These normalizations intro-

duce errors, are sensitive to noise, and thus induce inaccu-

racy in the later recognition/matching process.

Shape descriptors defined on the Radon transform are

region-based shape descriptors. Geometric transformation

parameters are encoded in the columns (for translation and

scaling) and rows (for rotation) of the Radon image. Current

techniques thus usually exploit this encoded information to

define invariant descriptors. Notable work in this direction

is the R-signature proposed in [10]. This approach uses

an integral function for the columns and the 1D Fourier

transform for the rows of the Radon image respectively to

get an 1D signature of the shape image that is invariant

to translation, rotation, and scaling. However, even if an

extension to 2D signature has been proposed, the obtained

signature has low discriminatory power as there is a loss

of information in the compression process from the Radon

image to the 1D signature. Recently, there was an effort to

apply the 2D Fourier-Mellin transform on the Radon image

[11]. Similarly, Mellin and Fourier transforms are applied

on the columns and rows of the Radon image respectively

to get a shape descriptor that is invariant to scaling and

rotation. The main weakness of this approach is the lack

of translation invariance. Moving the origin to the shape’s

centroid is a common solution to have translation invariance.

However, this normalization step may introduce errors.

This paper presents a new region-based geometric invari-

ant shape descriptor, called the RFM shape descriptor,

based on the Radon, Fourier, and Mellin transforms that

is invariant not only to rotation, and scaling but also to

translation. Geometric invariances are obtained by applying

1D Fourier-Mellin and Fourier transforms on the columns

and rows of the shape’s Radon image respectively. Experi-

mental results on different databases show the usefulness of

the proposed RFM shape descriptor.

The remainder of this paper is organized as follows.

Section II gives some background on the Radon, Fourier, and

Mellin transforms. The proposed RFM shape descriptor

is defined in Section III. Experimental results are given in

Section IV, and finally conclusions are drawn in Section V.



II. BASIC MATERIAL

A. The Radon transform

Let f(x, y) ∈ R2 be a two-dimensional function, L(θ, ρ)
be a straight line in R2 represented by:

L = {(x, y) ∈ R2 : x cos θ + y sin θ = ρ}, (1)

where θ is the angle L makes with the y axis and ρ is the

distance from the origin to L. Concretely, any straight line

L can be parameterized by a parameter t as follows:

(x(t), y(t)) = t(sin θ,− cos θ) + ρ(cos θ, sin θ). (2)

The Radon transform [12] of f , denoted by Rf , is a

function defined on the space of lines L by the line integral

along each line:

Rf (L) = Rf (θ, ρ) =

∫ ∞

−∞

f(x(t), y(t)) dt. (3)

The Radon transform has some useful properties on

translation, rotation, and scaling as outlined below:

• P1: A translation of f by a vector ~u = (x0, y0) results

in a shift of its transform in the variable ρ by a distance

d = x0 cos θ + y0 sin θ equal to the projection of ~u on

the line x cos θ + y sin θ = ρ.

• P2: A rotation of the image by an angle θ0 implies a

shift θ0 of the transform in the variable θ.

• P3: A scaling of f by a factor α results in a scaling of

the ρ coordinate and the amplitude by a factor α and
1
α

of the transform respectively.

B. The 1D Fourier-Mellin transform for one dimensional

signal

Consider the Fourier transform of a function g(x) =
f(αx − x0), a scaled and translated version of f(x) (α is

supposed to be positive):

Fg(ξ) =

∫ ∞

−∞

f(αx− x0)e
−i2πξx dx, (4)

where ξ is a real number. Letting y = αx− x0, then:

Fg(ξ) =
1

α
e−i2π ξ

α
x0

∫ ∞

−∞

f(y)e−i2π ξ
α
y dy

=
1

α
e−i2π ξ

α
x0 Ff

(

ξ

α

)

. (5)

|Fg(ξ)| =
1

α

∣

∣

∣

∣

Ff

(

ξ

α

)∣

∣

∣

∣

. (6)

The translation parameter x0 has disappeared in Eq. (6),

this agrees with the shift or translation property of the

Fourier transform. The remaining scaling parameter α could

be removed by using the Mellin transform [13] Mf of a

function f :

Mf (s) =

∫ ∞

0

f(x)xs−1 dx. (7)

Thus, the Mellin transform of |Fg(ξ)| is:

M|Fg|(s) =

∫ ∞

0

1

α

∣

∣

∣

∣

Ff

(

ξ

α

)
∣

∣

∣

∣

ξs−1 dξ

= αs−1M|Ff |(s). (8)

where s = σ + iτ (σ is a constant chosen such that the

integral in Eq. (8) converges and τ is the transform variable).

Taking the absolute magnitude of the two sides of Eq. (8)

results in:
∣

∣M|Fg|(s)
∣

∣ = ασ−1
∣

∣M|Ff |(s)
∣

∣ . (9)

Defining the above calculating steps from Eq. (4) to

Eq. (9) as the 1D Fourier-Mellin transform of the function

g(x), denoted by MFg(s). Thus, this 1D Fourier-Mellin

transform is, except for a constant multiplicative factor

ασ−1, independent of the translation and scaling parameters

x0 and α of f .

C. Mellin transform implementation

Although the Mellin transform, as defined in Eq. (7),

has a very attractive property of scaling invariance, there

are reported problems with its implementation [8] and its

use with Fourier transform for feature extraction [14]. The

first problem comes from the FFT-based implementation of

the Mellin transform which requires exponential sampling

at x = 0. The second problem is the obscurity of the

discriminatory information in the input function by the 1D

Fourier-Mellin transform.

To avoid these problems, an alternative to the Mellin

transform proposed in [15], which is called the direct Mellin

transform, is adopted for this work. Assuming f(x) is in the

form of sampled data with sampling period T (the value of

f(x) is assumed to be piecewise constant), expanding Eq.

(7) gives:

Mf (s) =

∫ T

0

f(x)xs−1 dx+

∫ 2T

T

f(x)xs−1 dx

+ · · ·+

∫ NT

(N−1)T

f(x)xs−1 dx. (10)

Denoting f(iT ) = fi+1 and without loss of generality

assuming T = 1 and fN = 0, Eq. (10) becomes:

sMf (s) = f1x
s |

1
0 + f2x

s |
2
1 + · · ·+ fNxs |

N

N−1

=

N−1
∑

k=1

ks (fk − fk+1) . (11)

The direct Mellin transform, as defined in Eq. (11), is an

exact implementation of the Mellin transform for sampled

data. It can be proven to maintains the scaling invariance

property of the Mellin transform.

III. THE PROPOSED RFM SHAPE DESCRIPTOR

Let I2 be the shape image obtained after scaling, rotating,

and translating an shape image I1 using transformation

parameters α, θ0, and ~u = (x0, y0). Properties P1–3 of the



(a) Image I1 (b) RI1
(θ, ρ) (c) MFRI1

(θ, s) (d) Image I2 (e) RI2
(θ, ρ) (f) MFRI2

(θ, s)

Figure 1. Radon and 1D Fourier-Mellin transforms performed on shape images. The image I2 in (d) is a scaled, rotated, and translated version of the
image I1 in (a). Correspondingly, MFRI2

(θ, s) in (f) is a horizontally shifted version of MFRI1
(θ, s) in (c).

Radon transform imply RI2(θ, ρ) =
1
α
RI1(θ+ θ0, αρ− d),

where d = x0 cos(θ + θ0) + y0 sin(θ + θ0). It is clear that,

except for a constant multiplicative factor 1
α

, RI2(θ, ·) can

be obtained by scaling and translating RI1(θ + θ0, ·) by a

factor α and a distance d. This observation is illustrated in

Fig. 1 where shape images are given in Fig. 1(a) and 1(d)

(one of which is the scaled, rotated, and translated version of

the other) and their corresponding Radon images are given

in Fig. 1(b) and 1(e).

The invariant property of the 1D Fourier-Mellin transform

thus guarantees the same transformed data when applying it

on RI2(θ, ·) and RI1(θ + θ0, ·). Fig. 1(c) and 1(f) provide

the image data obtained after performing the 1D Fourier-

Mellin transform on Radon images in Fig. 1(b) and 1(e)

respectively using 169 values of τ ranging from 2.0 to 18.8
with increment of 0.1. The two images in Fig. 1(c) and

1(f) demonstrate clearly the scaling and translation invariant

property of the 1D Fourier-Mellin transform, they have the

same pattern except for a horizontal shift by θ0 as a result

of the rotation in I2. In order to have a geometric invariant

shape descriptor, this shifting phenomena can be overcome

by applying Fourier transform on the rows of the Fourier-

Mellin image MFRI
(θ, s) and then ignoring the phase

information in the coefficients. And finally, by normalizing

these coefficients by the magnitude of the DC component

(ξ = 0), the effect of the multiplicative factor, which is a by-

product of the 1D Fourier-Mellin transform due to scaling,

will be eliminated.

To sum up, the proposed descriptor of a shape image I that

is invariant to scaling, rotation, and translation is calculated

by RFM(I) =
∣

∣

∣
FMFRI

(ξ, s)
∣

∣

∣
, namely:

• The Radon transform on the shape image I .

• The 1D Fourier-Mellin transform performed on the

columns of the obtained Radon image.

• The magnitude of Fourier transform performed on the

rows of the obtained Fourier-Mellin image normalized

by the DC component.

Similarity measure: For any two shape images I1 and I2,

their measure of similarity is defined as the ℓ2-norm distance

between their RFM descriptors:

sim(I1, I2) = ‖RFM(I1)−RFM(I2)‖2. (12)

IV. EXPERIMENTAL RESULTS

Performance of the proposed RFM shape descriptor has

been evaluated on two different datasets and compared to

other commonly used shape descriptors. The first dataset

is the Shapes216 [16] which contains 18 classes of shape

with 12 samples per class. Shapes216 is used to evaluate

the robustness of the proposed descriptor to occlusion and

elastic deformation. The second dataset is the Logos275

which contains 25 classes corresponding to the first 25 logo

images of the UMD Logo dataset [17]. Each class has 11
samples obtained after scaling, rotating, and adding salt-

and-pepper noise to the original logo image. This dataset

is used to evaluate the robustness of the proposed descriptor

to noise. Fig. 2 provides some images in the Shapes216 and

Logos275 datasets.

The RFM shape descriptor is compared with shape

context (SC) [4], generic Fourier descriptor (GFD) [9],

Zernike moments [18], angular radial transform (ART) [19],

R-signature [10], and Radon 2D Fourier-Mellin transforms

(R2DFM) [11]. Except for the contour-based SC descriptor,

all other descriptors are region-based and additionally R-

signature and R2DFM descriptors are also defined on the

Radon transform. These descriptors are selected because

they are commonly used and have good reported perfor-

mance. The average relevant rank (ARR) is used to measure

the performance of all the comparing descriptors. Each of

the images in the dataset is used as a query to which all

images in the dataset are compared with. Thus, 46656 and

75625 comparisons are performed for the Shapes216 and

Logos275 datasets respectively. ARR is then computed as

the average of retrieval correctness for the first kth nearest

match (k = 12 for Shapes216 and 11 for Logos275).

Comparison results are given in Fig. 3 for the two

datasets. For the Shapes216 dataset, the performance of

the RFM descriptor outperforms the performance of R-

signature and is comparable to the performance of SC,

GFD, ART, Zernike, and R2DFM descriptors. However,

for the Logos275 dataset, the RFM descriptor outstrips

all other descriptors and has nearly perfect performance.

The insensitivity of the RFM descriptor to noise can be

attributed to the use of the Radon transform. In continuous

domain, the effect of random noise will be reduced when



Figure 2. Some sample images taken from the Shapes216 dataset (top row) and the Logos275 dataset (second row).

an integral along a line L is to be taken. In addition, the

R2DFM descriptor, even it also uses the Radon transform,

performs less than the RFM descriptor. This is due to

the incorrectness of the calculated centroid position in the

presence of noise.

It should also be noted from the comparison results that

although the contour-based SC descriptor provides good

performance for the Shapes216 dataset, it performs poorly

with the Logos275 dataset. This demonstrates clearly the in-

appropriateness of the contour-based descriptors for datasets

of noisy shape images.
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Figure 3. Comparison results in term of average relevant rank.

V. CONCLUSION

This paper presents a new region-based shape descrip-

tor that is invariant to geometric transformation based on

the Radon, Fourier, and Mellin transforms. Invariances to

translation, rotation, and scaling are obtained by applying

1D Fourier-Mellin and Fourier transforms on the columns

and rows of the shape’s Radon image respectively. Experi-

mental results show that, when compared to commonly used

shape descriptors, the proposed RFM shape descriptor has

comparable performance on elastic deformation dataset and

outperforms on noisy dataset.
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