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Abstract. Interoperability of heterogeneous networked systems has yet
to reach the maturity required by ubiquitous computing due to the
technology-dependent nature of solutions. The Connect Integrated
Project attempts to develop a novel network infrastructure to allow het-
erogeneous networked systems to freely communicate with one another
by synthesising the required connectors on-the-fly. A key objective of
Connect is to build a comprehensive theory of composable connectors,
by devising an algebra for rigorously characterising complex interaction
protocols in order to support automated reasoning. With this aim in
mind, we formalise a high-level algebra for reasoning about protocol mis-
matches. Basic mismatches can be solved by suitably defined primitives,
while complex mismatches can be settled by composition operators that
build connectors out of simpler ones. The semantics of the algebra is
given in terms of Interface Automata, and an example in the domain of
instant messaging is used to illustrate how the algebra can characterise
the interaction behaviour of a connector for mediating protocols.

1 Introduction

Ubiquitous computing is an emerging paradigm that is rapidly changing the
way we use technology to perform everyday tasks. The widespread availability
of digital systems, together with the introduction of new communication infras-
tructures, make it possible to run and interact with software systems on a vari-
ety of networked devices. However, computing and networking technologies have
yet to reach the maturity required by ubiquitous computing since technology-
dependent limitations reduce the effectiveness of integrating and composing het-
erogeneous networked systems.

The Connect Integrated Project3 attempts to develop a novel networking
infrastructure to allow heterogeneous networked systems to freely communicate
with one another. This would be achieved by the synthesis of emergent con-
nectors on-the-fly. Towards this aim, a key objective of Connect is to build
? This work is partly supported by the Connect European Project No 231167, and

EPSRC project EP/D076625/2.
3 http://connect-forever.eu/.
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a comprehensive theory of composable connectors, by devising an algebra that
can model complex interaction behaviours with respect to both functional and
non-functional properties. The algebra will serve as a baseline for automated
reasoning and learning about system interaction behaviours, in addition to au-
tomated synthesis, matching, refinement, composition, evolution, and (possibly
partial) re-use of connectors. This also concerns finding an adequate formalism
to express and quantify, for each connector, the desired Quality of Service levels
for end-to-end properties of the networked systems.

The comprehensive characterisation of such a connector algebra is our long-
term goal. In this paper, as a starting point for developing such an algebra, we
focus only on the functional behaviour of connectors that act as protocol me-
diators. Consequently, our algebra will characterise the behavioural mismatches
that occur during interactions among heterogeneous networked systems. Quanti-
tative aspects of networked systems and connectors are not considered hereafter;
that is left as future work.

As discussed in [14,19] (and references therein), a possible approach to proto-
col mediation involves the categorisation of recurring protocol mismatches that
must be solved by means of mediator patterns. For each type of mismatch, a
pattern can be defined as a solution to the interaction incompatibility. Clearly,
a catalogue of such problems and their related solutions would not solve all pos-
sible mismatches, but combining multiple sub-solutions should facilitate their
solution.

Inspired by the set of basic mediator patterns described in [19], this paper
presents a high-level algebra that reasons about protocol mismatches. Solutions
to basic mismatches are modelled as primitives of the algebra, while complex
mismatches can be solved by combining suitable primitives in a variety of ways.
The semantics of the algebra is given in terms of Interface Automata (IA) of de
Alfaro and Henzinger [11]. Thus, composition of terms in the algebra reduces
to composition of the underlying IA. Some of these compositions are already
defined on IA, but we will also present specific compositions that we conjecture
are necessary for a meaningful connector algebra.

Our choice of using IA for the semantics of the algebra is heavily influenced
by a previous survey of connector notations we conducted as part of Connect
[1]. In that report we surveyed a number of formalisms against eight dimensions
deemed to be of particular interest to the project. These were compositionality,
incrementality, scalability, compositional reasoning, reusability, evolution, ability
to express and reason about non-functional properties, and the existence of a
specialised notation supported by automated tools for architectural analysis.

The choice of formalisms was decided to give a thorough coverage of the space
of connectors. To give an indication: some formalisms were control-oriented [2],
while others were data-flow based [7]; some supported hierarchy [9], whereas
others provided mobility [18]. In the spirit of Connect, we also surveyed quan-
titative extensions of [7]; these included an extension involving discrete proba-
bilities with non-determinism [6], a stochastic extension [4], and an extension
with Quality of Service attributes [5]. Beyond the surveyed approaches, we also
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investigated a number of other formalisms, but space limitations prevents us
from elaborating upon them here.

Summarising the results of our survey and investigations led us to the opinion
that IA are the most suitable formalism for modelling connectors. This was based
on the fact that IA can be extended to support reasoning on non-functional
properties, together with compositionality results implying reuse and evolution
of connectors. IA are by no means complete in satisfying the properties we
require of a connector algebra, but they do give us a good starting point and
seem extensible enough to gain a good coverage of the dimensions of interest.

The remainder of this paper is organised as follows. Section 2 recalls back-
ground notions concerning IA, and offers justification for choosing these devices.
Section 3 describes a scenario that we will use to demonstrate the effectiveness
of our algebra, with models given in terms of IA. Following on, Section 4 intro-
duces the algebra in a formal way and concludes by relating the algebra to the
case study presented in Section 3. Finally, Section 5 summarises our work and
discusses possible future research directions.

2 Semantics for Connectors

As clarified in Section 1, it is our intention to ascribe semantics to our algebra
in terms of Interface Automata (IA) [11]. As we shall see later on, IA do not give
us all of the desired functionality and properties that we require to interpret our
algebra, but they do give us a good starting point.

IA may be seen as finite state machines whose actions are partitioned into
input and output sets. At the syntactic level this classification has no significance,
but examination of the semantics reveals a notion of communication well suited
to components interacting in a heterogeneous environment.

Definition 1. An Interface Automaton is a tuple (V, v0,AI ,AO,→), where:

– V is a set of states
– v0 ∈ V is the designated initial state
– A = AI ∪ AO is the set of actions. AI and AO are disjoint sets referred to

as the input actions and output actions respectively.
– →: V ×A⇀ V is the transition (partial) function.

For brevity, we write v a→ v′ iff→ (v, a) = v′. The partial transition function
ensures that the automaton is loosely deterministic (there is at most one succes-
sor for each state-action pair). This contrasts with the I/O automaton model of
Lynch and Tuttle [16], where every state must be fully input-enabled.

The automaton behaves in a manner similar to that for finite state machines;
it starts in the initial state and evolves over time according to its transition
function. However, special consideration must be given to the transition types.
Following the finite state case, a transition labelled by an input action may only
be picked when the environment is offering that action. Output actions are non-
blocking, so may be taken at any time if they are enabled in the current state.
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Since outputs are non-blocking, it follows that the environment must be willing
to accept any action it is offered.

Until now, IA have appeared as marginally generalised I/O automata. Their
overarching power becomes apparent when we consider the composition of mul-
tiple IA, and observe how they interact with the environment.

From hereon let C = (V C , vC0 ,ACI ,ACO,→C) and D = (V D, vD0 ,ADI ,ADO ,→D)
be two IA. C and D may only be composed if their action sets are compatible
with each other. Consequently, not every pair of IA can be composed.

Definition 2. IA C and D are said to be composable just if ACO ∩ ADO = ∅.
Outputs must be disjoint to prevent synchronisation.

To define the (parallel) composition on composable IA we begin by construct-
ing the product of the automata. Unfortunately, this can introduce a number of
illegal states, whereby one of the automata is willing to offer an output action
in the common alphabet, but the second is not able to offer the corresponding
input action. This is a consequence of not requiring IA to be fully input-enabled.

Definition 3. The product of C and D is an interface automaton C ⊗ D =
(V C × V D, (vC0 , vD0 ),AI ,AO,→), where:

– AI = (ACI ∪ ADI ) \ ((ACI ∩ ADO ) ∪ (ACO ∩ ADI ))
– AO = ACO ∪ ADO
– The transition function is given by

(s, t) a→ (s′, t′)⇔


s
a→C s′ ∧ t a→D t′ if a ∈ AC ∩ AD

s
a→C s′ ∧ t = t′ if a ∈ AC \ AD

t
a→D t′ ∧ s = s′ if a ∈ AD \ AC .

We must now identify the illegal states in the product C ⊗ D, denoted by
Illegal(C,D). The kernel of the illegal states is taken to be the set of states
(p, q) for which there is some a ∈ (ACI ∩ ADO ) ∪ (ACO ∩ ADI ) such that one of p
and q can make an a-labelled output transition, but the other cannot match it
with the corresponding input transition. The illegal set is then taken to be all
those states in the kernel, plus those that can reach a state in the kernel by a
sequence of transitions labelled by output actions.

Definition 4. The composition of two composable IA C and D, written as C ||
D, is defined to be C ⊗D after pruning all states in Illegal(C,D), providing the
initial state (vC0 , v

D
0 ) is contained within the remaining automaton. Otherwise,

the composition is undefined.

In the words of de Alfaro and Henzinger [11], the pruning yields an opti-
mistic notion of composition. The pruning is equivalent to making the assump-
tion that the environment will not issue inputs that can lead to illegal states.
Consequently, composed IA place an assumption on the environment about what
inputs will be issued and when. This is in stark contrast to I/O automata where
the composition must handle any input the environment offers.
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From a system designer’s point-of-view, we are interested in modelling con-
crete connectors by means of a term in our algebra. We could certainly develop
an algebra that addresses this sole goal, however we are looking for something
considerably more high-level. To that extent, and conflating the desiderata from
Section 1, we believe that our algebra should also support abstractions of con-
nectors, or more precisely specifications.

IA have an explicit correspondence with specification theories, which is why
we are using them to express the semantics of our algebra. In [11], de Alfaro
and Henzinger define a refinement relation v4 on IA in terms of alternating
simulation5 [3]. Consequently, we have a test for when a connector can be safely
substituted with another. Since refinement on IA is a congruence with respect to
composition (see next theorem), substitution can be performed compositionally.

Theorem 1. For suitable restrictions on the composability of C, C′ and D, if
C || D is defined and C v C′, then C′ || D is defined and C || D v C′ || D.

Besides parallel composition, a conjunctive operator ∧ can be defined on
IA. C ∧ D yields the least specified interface automaton that refines both C
and D. This is of direct use in defining a connector that must satisfy multiple
specifications. More verbosely, this means we can build up specifications in a
distributed and compositional manner. This supports the separation of concerns
principle, and again allows for compositional development.

IA can be synthesised in a specification theory by means of a quotienting
operator \, as described in [8]. Given IA D and E , E \D yields the least specified
interface automaton C such that E v C || D. Thus, given a specification of
what a connector should do, together with an implementation of a connector
that implements part of that behaviour, we can synthesise a connector that
when composed with the partial connector fulfils the desired behaviour. The
advantages of such a feature are self-evident.

Applicability to notions of specification was a key justification for adopting
IA, yet another essential reason relates to their extensibility. We would eventually
like to develop an algebra that can handle a number of quantitative extensions,
such as time and probability. A timed-extension of I/O automata has already
been developed [10], and the model completely supports all of the specification
constructs and relations we have mentioned. Furthermore, there is a probabilistic
extension of I/O automata [20], although this is not given in terms of a specifica-
tion theory. Nevertheless, recent work has augmented interactive Markov chains
with specification notions [21], with a bridge between these and probabilistic
I/O automata seeming highly plausible.

4 P v Q if, and only if, P is refined by Q. Refinement tends to be one of the most
prevalent relations in any specification theory.

5 The simulation must be alternating as the inputs and outputs of a refining automaton
must be related contravariantly to those of the original.
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Since IA and I/O automata are closely related to each other, we would like to
combine the aforementioned quantitative extensions with the optimistic compo-
sition techniques of IA. Accordingly, IA appear to support many of the features
we would like of a connector algebra. Section 4 will demonstrate just how effec-
tive they are when we assign semantics to the algebra.

3 Case Study

To illustrate in Section 4 the efficacy with which our algebra can model and
reason about protocol mediators, we present a simple yet challenging example
of universal instant messaging inspired by [14].

Fig. 1. (A) MSN messaging service. (B) XMPP messaging
service. (C) CFring client.

Fring6 is an instant messaging program that allows one to exchange text mes-
sages between a predefined set of heterogeneous messaging services. At present,
the service supports connection to the MSN Messenger and XMPP Messenger
services, amongst many others, with the collection of supported services being
static. This contrasts with the evolving world of Connect, where messaging
services to be bridged should not be known a priori. We therefore propose a
generalisation of Fring, let it be called CFring, where connectors between un-
known messaging services are generated on-the-fly. This generalisation will allow
us to express the full power of the algebra.

As the interface automaton in Figure 1.C shows, the CFring service provides
only core functionalities for “abstract” authentication and message exchange.
In particular, when receiving (resp., sending) a message mi (resp., mo), CFring
expects to receive (resp., send) the identity idi (resp., ido) of the sender (resp.,
receiver) as well.

The behavioural models of MSN and XMPP, which are unknown to CFring,
are expressed as IA in Figures 1.A and 1.B. In contrast to the behavioural model

6 http://www.fring.com.
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for CFring, both MSN and XMPP when receiving (resp., sending) a message
expect to have provided (resp., provide) the identity of the sender (resp., receiver)
first. Furthermore, unlike the others, MSN expects to receive (resp., send) an
acknowledgement for the message sending (resp., receiving).

It is obvious that the MSN and XMPP services should both be able to inter-
operate with CFring, since they amount to supporting authentication and then
message exchange. This requires “specialising” the CFring communication proto-
col in order to mediate the communication between the other messaging services.
Note that this is far from trivial, especially if one wishes to rigorously charac-
terise the achieved interoperability (e.g., for supporting automated reasoning,
detecting possible mismatches, etc.). Nevertheless, in Section 4 we realise such a
connector that mediates the communication between CFring and MSN/XMPP
as a term of our algebra.

4 Towards a Connector Algebra: primitives and operators

Section 1 briefly mentioned a number of existing connector formalisms that we
had surveyed in [1]. The formalisms vary quite considerably; some support hi-
erarchical development, whereas others have resolute granularity. Some support
mobility, while others assume a fairly static environment. In essence, the for-
malisms have niche environments where they work well, while outside their haven
of assumptions the quality of modelling is often variable.

In Connect, we are interested in generating connectors on-the-fly to bridge
communication inconsistencies at both the application and middleware layers.
For the purposes of this paper, we are concerned with exchanging structured
messages between components, rather than worrying about, say, data transfer
at the transport level.

In [19], the authors attempt to characterise mismatches between functionally
equivalent yet behaviourally different protocols that wish to communicate. For
each type of communication discrepancy they provide a mediating connector that
can handle and resolve the mismatch. This is a high-level approach to analysing
and addressing interoperability issues.

Following this insight, it is our intention to develop a high-level algebra for
reasoning about mismatches. We shall model each basic mismatch solution as
a primitive of our algebra, with semantics given in terms of IA. Complex mis-
matches can be decomposed into combinations of basic ones, and so an algebraic
connector for a complex mismatch can be obtained by composing primitive con-
nectors. For most cases, composition of terms in the algebra will reduce to com-
position of the underlying IA as described in Section 2. However, as we shall see,
we will also require our own specific operators on connectors.

Components wishing to communicate with each other are modelled by arbi-
trary IA, which we assume have disjoint action sets7. We will treat the action
sets associated with IA as sets of message ports that can send (resp., receive) a
7 Under the aegis of Connect, equivalence of actions is assumed to be specified in an

ontology. This allows us to assume disjoint component actions.
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signal depending on whether they are an output (resp., input) port. Hence, at
this stage we do not allow for the exchange of data over a domain.

From hereon let A be a global set of message ports. The primitives of the
connector algebra AP(A) corresponding to the mismatches in [19] are described
below.

1. Extra send. This first mismatch considers a component that generates a
redundant message a. Such a mismatch may be resolved by introducing a
consumer that swallows the superfluous message. We model this by a pa-
rameterised primitive Cons(a).

2. Missing send. This mismatch describes the case in which a component ex-
pects a message a that is not sent by another component. A mismatch of this
type may be resolved by introducing a producer that generates the required
message. This may be modelled by a parameterised primitive Prod(a).

3. Signature mismatch. There are occasions when a message to be exchanged
between two components is functionally compatible yet syntactically incon-
sistent. In the case of Connect, the functional equivalence of the messages
a and b is assumed to be specified in an ontology. Such a mismatch may
be resolved by means of a translating primitive Trans(a, b) that accepts
message a as input and produces message b as output.

4. Split message mismatch. A component may expect to receive a mes-
sage a as a sequence of fragments of a. If message a can be decom-
posed into a1, . . . , an, then the mismatch may be resolved with a primitive
Split(a, [a1, . . . , an]) which accepts message a as input and offers a1, . . . , an
as output in that order.

5. Merge message mismatch. Similar to the previous case, some components
expect to receive a single message a in place of a fragmented version of
a. If messages a1, . . . , an can be composed into a, then the mismatch may
be resolved with a primitive Merge([a1, . . . , an], a) which accepts messages
a1, . . . , an as input in that order, and generates a as output.

6. Ordering mismatch. A component can expect to receive messages
in an order different from the order used by the sending component.
The mismatch can be resolved by introducing an ordering primitive
Order([a1, . . . , an], π, [a′1, . . . , a

′
n]), where π is a permutation of {1, . . . , n}.

The primitive accepts inputs from one component in the order a1, . . . , an,
and produces outputs for the other in the order a′π(1), . . . , a

′
π(n). Note that

port ai is related to port a′i.

Besides the mismatch primitives above, a further primitive is required to
force the algebra to work in a sensible way. The primitive does not perform
any interactions, so is fittingly called NoOp. Equipped with all of the basic
primitives, a term s of the algebra is given by the following grammar:

s ::= s� s | s + s | s ∧ s | s \ s | s⊥ | (s) | p

p ::= NoOp | Cons(a) | Prod(a) | Trans(a, b) | Split(a, [a1, . . . , an]) |
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Merge([a1, . . . , an], a) | Order([a1, . . . , an], π, [a′1, . . . , a
′
n])

where a, ai, a
′
i, b ∈ A and π is a permutation of {1, . . . , n}. The symbols �,

+, ∧, and \ are binary operators called plugging, alternation, conjunction and
quotienting respectively, and ⊥ is a unary operator called inversion.

The semantics of the algebra AP(A) is given in terms of a function J·K :
AP(A)→ IA ∪ {Err}, where IA is the universal set of IA and Err represents
the undefined IA. For any term s, the denotation JsK is defined inductively.

First and foremost, if s is a primitive, then JsK is the corresponding interface
automaton defined in Fig. 2, providing the parameters are well-defined (otherwise
the semantics of the primitive is taken to be Err). The parameters of each
primitive are single or lists of uninterpreted message ports of A. Lists must
have finite length, and message ports in the parameters of a primitive must be
pairwise disjoint. In the case of Merge and Split, we require that a and a1 . . . an
are equated in the ontology. Furthermore, for the case of the Order primitive,
we require that both lists have the same length.

Fig. 2. Semantics of the primitives.

If s is a compound term (i.e., consists of operators), then JsK is given by the
mappings below. However, an informal description is in order first. An operator
on terms of the algebra induces a behaviour on the behaviours of the operands.
The operator � connects terms of the algebra on common message ports; this
is equivalent to plugging the corresponding IA into each other, or synchronising
them. On the other hand, the operator + behaves like alternation in regular
expressions; a connector defined in terms of + behaves like one of its operands.
The operators ∧ and \ were both defined in Section 2. Finally, ⊥ acts like the
inverse of its operand by interchanging inputs and outputs.

– s = t � u. If either of JtK or JuK is equal to Err, then JsK = Err. Alter-
natively, if JtK and JuK are not composable or JtK || JuK is not defined, then
JsK = Err. Otherwise, JsK = JtK || JuK.
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– s = t + u. If either of JtK or JuK is equal to Err, then JsK = Err. Otherwise,
JtK and JuK are IA C and D. If ACI ∪ADI and ACO ∪ADO are not disjoint, then
the alternation is not defined and JsK = Err. For the case when the action
sets do agree, JsK = Determinise(C +D), where C +D is defined to be the
IA (V, v0,ACI ∪ ADI ,ACO ∪ ADO ,→) such that:

• V = V C
·
∪ V D

·
∪ {v0} i.e., V C , V D and {v0} are pairwise disjoint

• → = →C ∪ →D ∪ {(v0, a, v) : vC0
a→C v} ∪ {(v0, a, v) : vD0

a→D v}.

Determinise(C +D) is the deterministic IA equivalent to the possibly non-
deterministic IA C+D. Thus, Determinise is a function on IA which imple-
ments a suitable variant of the algorithm described in [13], that determinises
a finite state automaton.

– s = t ∧ u. If either of JtK or JuK is equal to Err, then JsK = Err. Otherwise,
JtK and JuK are IA C and D. If ACI ∪ADI and ACO ∪ADO are not disjoint, then
the conjunction does not exist and JsK = Err. For the case when the action
sets do agree, JsK is an IA (V C×V D, (vC0 , vD0 ),ACI ∪ADI ,ACO∩ADO ,→), where
→ is the smallest relation satisfying the following rules:

1. If p a→C p′ and q
a→D q′ with a ∈ ACO ∩ ADO , then (p, q) a→ (p′, q′)

2. If p a→C p′ with a ∈ ACI \ ADI , then (p, q) a→ (p′, q)
3. If q a→D q′ with a ∈ ADI \ ACI , then (p, q) a→ (p, q′)
4. For a ∈ ACI ∩ ADI :

(a) If p a→C p′ and q 6 a→D, then (p, q) a→ (p′, q)
(b) If p 6 a→C and q

a→D q′, then (p, q) a→ (p, q′)
(c) If p a→C p′ and q

a→D q′, then (p, q) a→ (p′, q′).

– s = t \ u. Based on [8], it follows that quotienting is a derived operator of
the algebra. Thus, JsK = J(t⊥ � u)⊥K.

– s = t⊥. If JtK = Err, then JsK = Err. Otherwise, JsK is equal to JtK with the
input and output sets exchanged in the signature of JtK.

– s = (t). Simply JsK = JtK.

The operators �, +, ∧, \ and ⊥ satisfy a number of axioms, as we briefly
elaborate below.

1. Plugging � is commutative and associative, but is not idempotent. It has
an identity element NoOp, so (AP(A),�,NoOp) is a commutative monoid
(i.e., an abelian semigroup with an identity). Plugging does not distribute
over +, ∧ nor \.

2. Alternation + is commutative, associative, and idempotent. The identity of
+ is also NoOp, so (AP(A),+,NoOp) is a commutative monoid. Alternation
does not distribute over � nor \, however it does distribute over ∧.
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3. Conjunction ∧ is commutative, associative, and idempotent. The operator
does not have an identity element in the algebra, and does not distribute
over � nor \, but it does distribute over +.

4. Quotienting \ is not associative, commutative, nor idempotent. NoOp is a
right-identity element for the operator. Quotienting does not left or right
distribute over �, +, nor ∧.

5. Inversion ⊥ distributes over +, but not �, ∧ nor \. Double inversion of a
term is an identity function on that term.

As we remarked in Section 2, a desirable property of a connector algebra is
its ability to support notions of specification. Consequently, there should be a
concept of refinement on terms, and indeed our algebra does support this.

Definition 5. Let s and t be terms of the algebra, and let v be the alternating
simulation refinement relation defined on IA JsK and JtK. Term t refines term
s, written as s P t, iff the denotation of t refines the denotation of s at the
semantic level or JsK = Err. Formally, s P t⇔ JsK v JtK ∨ JsK = Err.

Establishing refinement on terms allows us to define equivalence. Semantic
equality of terms is too strong for equivalence of connector behaviours, so we
choose to express it in terms of the weaker refinement relation.

Definition 6. Term s is said to be equivalent to term t, written as s ≡ t, if,
and only if, s P t and t P s.

Our choice of equivalence seems most natural for connector behaviours, as it
allows for seamless substitutivity. However, it is unfortunate that the equivalence
is expressed in terms of the underlying semantics, rather than the syntax of the
terms. Nevertheless, this correspondence with the IA semantics means that the
algebra is trivially both sound and complete, even after equating all incompatible
and undefined terms with Err.

Theorem 2. Let $ denote the equivalence of IA (i.e. mutual refinement). For
any terms s and t it holds that s ≡ t⇔ (JsK $ JtK) ∨ (JsK = Err = JtK).

Having defined equivalence and established that the algebra is sound and
complete, it is an easy consequence that our axiomatisation is correct. The reason
for � failing to be idempotent is closely related to the reason that JsK || JsK is
not defined in general, because of restrictions on composability.

The formal definition of the semantics, as well as the example of idempotence
failing, has a notable consequence for the algebra. If s and t are well-formed
terms whose semantics are not equal to Err, then it is not the case that the
semantics of s � t, s + t, s ∧ t and s \ t are not equal to Err, because of the
restrictions imposed by these operators. This seems undesirable, but it is a direct
consequence of IA.

This shortcoming might seem unpalatable at first, but we do not believe it
to be a problem; in fact, it is an advantage. In the context of Connect, we are
concerned with generating connectors in a compositional manner. If we take two
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connectors, each of which is expressed by a term in the algebra, we can combine
the two terms and observe if the outcome is equal to Err. If it is, then it follows
that the two connectors do not work with each other. Thus the algebra allows
for compositional reasoning.

Another requirement of Connect is the ability of our algebra to serve as a
baseline for automated connector synthesis, as stated below. This is closely re-
lated to the quotienting operator defined in [8], but requires suitable modification
to be applicable to the algebra.

Connector Synthesis

Instance: Components E and F represented by IA.
Problem: Find a term x ∈ AP(A) such that inv(E) v F || JxK and

inv(F) v E || JxK, where inv inverts input and output actions.

The connector synthesis problem aims to find a connector x expressible in our
algebra that can mediate interoperability incompatibilities between components
represented by arbitrary IA. We require that (i) every interaction exhibited by
inv(F) is allowed by JxK || E , and (ii) every interaction exhibited by inv(E) is
permitted by JxK || F . This allows us to formally characterise interoperability
between components in our algebra.

CFring example. A connector for the scenario described in Section 3 may be
expressed in terms of the algebra AP(A) as the following compound term:

((Trans(aut,handshake) � Cons(handshake ok) � Prod(auth) � Trans(auth ok,aut ok)) �

(Trans(quit,close) � Trans(close ok,quit ok)) �

(Order([mo,ido],(2,1),[mo’,ido’]) � Trans(ido’,desti) � Trans(mo’,messagei) � Cons(acko))�

(Order([desto,messageo],(2,1),[desto’,messageo’]) � Trans(messageo’,mi) �

Trans(desto’,idi) � Prod(acki)))

+

((Trans(aut,log) � Trans(log ok,aut ok)) �

(Trans(quit,out) � Trans(out ok,quit ok)) �

(Order([mo,ido],(2,1),[mo’,ido’]) � Trans(ido’,di) � Trans(mo’,msgi)) �

(Order([do,msgo],(2,1),[do’,msgo’]) � Trans(msgo’,mi) � Trans(do’,idi)))

This expression seems quite complex, but it is worthwhile noticing how it can
easily be decomposed into distinct portions corresponding to the original pro-
tocols. There is close correspondence between the four branches of the CFring
protocol shown in Figure 1.C, and the paths of the MSN and XMPP protocols
shown in Figures 1.A and 1.B, respectively. Each of these branches neatly map
onto a sub-term of the connector expression above. This suggests that connec-
tor terms can be defined by analysis of the corresponding protocols’ transition
systems. Unfortunately, the connector only allows the sending and receiving of
a single message, but we shall elaborate on this observation further in Section 5.

Relating the connector synthesis problem to our example, we built our con-
nector by constructing two sub-connectors x′ and x′′. The term x′ was used
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to mediate MSN and CFring. Note how inv(MSN) v Jx′K || CFring and
inv(CFring) v Jx′K || MSN . Analogously, x′′ mediates XMPP and CFring.
We combined x′ and x′′ by means of a suitable composition operator (i.e., +),
thus obtaining x. Automating this kind of reasoning represents a specific area
that we wish to explore, in order to develop a comprehensive theory of compos-
able connectors in Connect.

5 Concluding Remarks

In this paper, we formalised an initial high-level connector algebra for reason-
ing about protocol mismatches. Solutions to basic mismatches are modelled as
primitive terms and complex mismatches are solved by combining primitives of
the algebra by means of different composition operators. The semantics of the
terms and operations on them are given by IA, which is a suitable candidate for
expressing the behaviour of connectors that reside within a highly heterogeneous
environment, as we shall remark later.

Our formulation sets the scene for a yet-to-come comprehensive algebra fa-
cilitating the rigorous characterisation of complex interaction behaviours. Such
an algebra should allow reasoning with respect to both functional and non-
functional properties, in addition to supporting automated reasoning and learn-
ing about system interaction behaviour, as well as automated synthesis, match-
ing, refinement, composition, evolution, and (possibly partial) re-use of connec-
tors.

The case study highlights a shortcoming of our current algebra, in that we
cannot construct a connector that exhibits looping behaviours. The form of our
algebra dictates that for any term whose semantics are equivalent to an IA (as
opposed to Err), the structure of the automaton is a directed graph in which
every state is visited at most once. Such a restriction on the behaviour of the
connector is unduly restrictive. This is evident from our case study, where the
connector only supports the sending and receiving of a single message. If the
number of messages to be sent and received is known in advance, then we can
build a connector whose size is related polynomially to the number of messages
to be transmitted. This, however, is inadequate.

In a future version of the algebra, the restriction on looping would need to be
lifted. We already have an idea of how this could be done, by introducing looping
equivalents of the primitives. It also seems likely that we would need a fix-point
operator to encode complex looping behaviours in the algebra, beyond those
at the primitive level. It would be interesting to see whether looping operators
make it easier to model connectors in our algebra or not. Naturally, we would
hope so.

This shortcoming of the algebra is not to say that IA are a bad choice of model
for assigning semantics to terms; after all, it is the algebra that is restricting
the behaviour of IA. As a consequence of having chosen IA as the semantic
model, our algebra supports specifications of behaviours, which we claim are
necessary for building scalable connectors. Furthermore, IA support a notion of



14 Autili, Chilton, Inverardi, Kwiatkowska, and Tivoli

refinement which is a congruence with respect to a number of our composition
operators. Accordingly, substitution (e.g., for connector reuse or evolution) can
be performed compositionally. We have also defined a notion of equivalence over
the terms of the algebra and, based on this, we established that the algebra
is sound and complete. These properties advocate the adoption of IA as the
semantic model for the algebra, based on how closely they align with the key
dimensions of Connect that we specified in Section 1.

Our case study shows that the algebraic term representing a connector maps
intuitively onto the models of the protocols to be mediated. The purpose of the
algebra was to give system designers a high-level tool for specifying and reasoning
about connector behaviours, which is why we favoured the utilisation of high-
level primitives rather than developing yet another low-level process calculus.
It seems that our high-level algebra allows a designer to easily and intuitively
specify complex connectors, although further justification would be required for
this claim based on further case studies.

We have not considered quantitative aspects of connectors as part of our
algebra. As a minimum we would like to support time and probability. Although
we have not introduced such aspects to our algebra yet, we have been looking
at interactive Markov chains [21] and quantitative extensions of I/O automata
[10,20]. Further work in this area involves looking at how these extensions may
be carried across to IA. Besides having a quantitative model for expressing the
semantics of our algebra, we would also need to consider how the syntax of
our algebra would change. Clearly, primitives of the algebra will need to be
annotated with quantitative values, but it will also be necessary to see whether
it is meaningful to combine these values under the operators of the algebra.

In addition to IA, we are looking at modal specifications as a formalism for
connectors [15]. These models are to some extent dissimilar to IA, yet they do
share some common functionality [17]. We would like to compare and contrast
these models with IA so that we can try to combine the best features of both
for our algebra. Besides this future work, it is also our intention to determine
whether the set of identified primitives is complete enough. Increasing the set
of basic solutions should allow us to increase the types of behaviours that our
algebra can capture. Discovery of such primitives is likely to come from analysis
of further scenarios.

As broached at the end of Section 4, we need to take a closer look at au-
tomated connector synthesis. This is likely to be a definitive area on which
our algebra is judged as to whether it has made a meaningful contribution to
component-based design. We already have ideas relating to this in terms of
rewriting systems [12], although the details require further fleshing out.

Thus, our preliminary algebra has raised a number of issues that we should
take account of in formalising a comprehensive algebra to meet the demands
imposed by Connect. Moving on from here, we intend to combine the positive
features of our current algebra and refine its limitations in order to develop an
algebra suitable for modelling connectors that reside in a truly heterogeneous
world of ubiquitous devices.
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