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A General Framework for Subexponential Discrete LogarithmAlgorithmsAndreas Enge Pierrick GaudryLehrstuhl f�ur Diskrete Mathematik,Optimierung und Operations Research LIXUniversit�at Augsburg �Ecole polytechnique86135 Augsburg 91128 PalaiseauDeutschland Franceenge@math.uni{augsburg.de gaudry@lix.polytechnique.frJune 23, 2000AbstractWe describe a generic algorithm for computing discrete logarithms in groups of known orderin which a smoothness concept is available. The running time of the algorithm can be provedwithout using any heuristics and leads to a subexponential complexity in particular for �nite�elds and class groups of number and function �elds which were proposed for use in cryptogra-phy. In class groups, our algorithm is substantially faster than previously suggested ones. Thesubexponential complexity is obtained for cyclic groups in which a certain smoothness assump-tion is satis�ed. We also show how to modify the algorithm for cyclic subgroups of arbitrarygroups when the smoothness assumption can only be veri�ed for the full group.Keywords: discrete logarithm, index calculus, class groups, subexponentiality.R�esum�eNous d�ecrivons un algorithme g�en�erique pour calculer des logarithmes discrets dans les groupesd'ordre connu pour lesquels une certaine notion de friabilit�e est disponible. Le temps de calculde l'algorithme peut être prouv�e sans utiliser d'heuristiques et donne une complexit�e sous-exponentielle pour les corps �nis et les groupes de classes de corps de nombres et de corpsde fonctions, qui ont �et�e propos�es en cryptographie. Pour les groupes de classes, notre al-gorithme est substantiellement plus rapide que ceux pr�ec�edemment sugg�er�es. La complexit�esous-exponentielle est obtenue pour les groupes cycliques dans laquelle une certaine hypoth�esesur la friabilit�e est satisfaite. Nous montrons aussi comment modi�er l'algorithme pour dessous-groupes cycliques quand l'hypoth�ese de friabilit�e ne peut être montr�ee que pour le groupeentier.Mots cl�es: logarithme discret, calcul d'index, groupes de classes, sous-exponentialit�e.1



1 IntroductionEvery �nite abelian group is isomorphic to a direct sum of cyclic groups Z=eiZ, where the ei areunique provided that ei+1 divides ei. Given such a group a natural task is to make this isomorphismexplicit, hence two fundamental computational problems arise. The �rst one is to determine theorder of the group and its structure (i.e. the ei), and the second one is to compute discretelogarithms in it. When those two tasks are feasible, most of the questions concerning the groupcan be transferred to the simpler representation.In this paper we assume that the group order is known and we concentrate on the discrete logarithmcomputation: Given an additively written abelian group G, an element g1 2 G and another elementg2 2 hg1i, the problem consists of �nding an integer l such that g2 = lg1. Obviously, the di�culty ofthe problem depends on the representation of the group. In (Z=NZ;+), for instance, the problemreduces to taking an inverse modulo N and can be solved in polynomial time by the Euclideanalgorithm. In general the problem is hard and, following Di�e and Hellman's and ElGamal'sconstructions [DH76, ElG85], it is possible to base a cryptosystem on it.The �rst examples of such groups were the multiplicative groups of �nite �elds; it turned out that inthis case the discrete logarithm problem can be solved in expected subexponential time by so-called\index calculus algorithms" (see [Odl99] and the references therein), so that the key size in a securesystem based on such a group must be relatively large.Other important examples are class groups of number �elds [McC89, BW88] and Jacobians, i.e.divisor class groups, of elliptic [Mil86, Kob87] and hyperelliptic curves [Kob89] over �nite �elds.Extending the \index calculus" method for �nite �elds, algorithms with conjectured or rigorouslyproven subexponential running time for the discrete logarithm problem in class groups of number�elds [Buc90, D�ul91] and high-genus hyperelliptic Jacobians [ADH94, Eng99] and related structures[MST99] were devised. However, the constants of the running time bounds for these algorithmsare substantially weaker than for the �nite �eld case. This is due to the fact that the indexcalculus algorithms for class groups proceed by solving both computational tasks mentioned in the�rst paragraph: In a �rst step, the structure of the group under consideration is determined asa product of cyclic groups, in a second step, the actual discrete logarithm is computed. For themultiplicative groups of �nite �elds, which are cyclic and of known order, the �rst phase can beomitted.In the present article we close the gap between the running times of discrete logarithm algorithmsfor �nite �elds and class groups. We provide a general framework for solving the discrete logarithmproblem in �nite abelian groups which possess an analogue to the unique prime decomposition ofintegers. Our basic additional assumption is that the group be cyclic and of known order, whichclosely follows the special case of �nite �elds. If a certain smoothness assumption is satis�ed, ouralgorithm has a provable subexponential expected running time. Examining how the well-studieddiscrete logarithm problem in �nite �elds �ts into our framework, we recover the same runningtime as for the fastest rigorously analysed algorithms known so far. We obtain correspondingrunning time results for class groups, which constitute a major improvement compared to theabove mentioned algorithms.The main result of this paper is the following:Theorem 1 There exists a probabilistic algorithm that solves a discrete logarithm problem in theJacobian of a hyperelliptic curve of genus g over the �nite �eld Fq when the group is cyclic of known2



order and g= log q tends to in�nity. It takes expected timeLqg(p2 + o(1)):Assuming the extended Riemann hypothesis, there exists a probabilistic algorithm that solves adiscrete logarithm problem in the class group of an imaginary quadratic �eld of discriminant �Dwhen the group is cyclic of known order N . It takes expected timeLN (p2 + o(1)) = LD(1 + o(1)):(Here Lx(c) stands for exp(cplog xplog log x).)Note that we are interested in algorithms with a provable running time only (possibly under theRiemann hypothesis in the number �eld case), whence we do not take into account algorithms ofthe number �eld sieve type. Such algorithms are conjectured to be asymptotically faster than ours(and there are both plausible theoretical considerations and numerical evidence to support thisconjecture). In any case, they are only available for �nite �elds and not for class groups.The assumption that the group is cyclic and of known order is no restriction from a cryptographicpoint of view, as knowledge of the group order is required for digital signatures and to proveresistance against the Pohlig{Hellman attack. However, the discrete logarithm problem often hasto be solved in a cyclic subgroup, whereas the smoothness assumption can only be veri�ed for thefull group, which itself may not be cyclic. We show that a variant of the algorithm applies tocryptographically suitable subgroups. Moreover, the modi�cations allow to detect the case that nodiscrete logarithm exists, in which the original algorithm would run forever.We proceed as follows. In Section 2 we introduce the general setting in which the algorithmdescribed in Section 3 can be used to compute discrete logarithms. The subsequent sections aredevoted to the analysis of the algorithm. We extend some results on sparse linear algebra toevaluate the probability that the algorithm succeeds and verify its subexponential running time.Along the way, the general considerations are specialised to classical examples. Finally, in Section 7we explain how to adapt the algorithm for the cases where the group is not cyclic.2 Notations and prerequisitesThroughout the paper, we denote by Z the set of integers, by N the set of positive integers, bylog the natural and by log2 the dual logarithm. Let G be an additively written cyclic group ofknown order N , and let ZN denote Z=NZ. In general, one would expect that the elements of Gare represented by O(logN) bits and measure algorithmic complexities as functions of N . It is,however, possible to construct groups whose elements are naturally represented by bit strings oflength in O(logN 0) for some value N 0 considerably larger than N . For instance, Jacobian groupsof curves of genus g over F2 are given by �(logN 0) bits for N 0 = 2g, whereas the only known lowerbound on N in this case is the Hasse{Weil bound (p2 � 1)g � 1. While this situation results ina waste of bandwidth for cryptographic applications and is thus unlikely to occur, for preservingas much generality as possible we henceforth denote by logN 0 the input size of the problem andmeasure all complexities by functions in logN 0. It turns out that factors polynomial in logN 0 donot a�ect the subexponential running time. Hence to simplify the analysis we follow [GG99] andfor some positive function f of N 0 denote by O�(f) the class of functions which are in O(f) up toa factor bounded by some power of logN 0. 3



To apply the index calculus idea, G must behave similarly to the natural integers or the polynomialsover a �nite �eld in that each element of G admits a unique decomposition into a \sum of primes".To model this behaviour, assume that there is a free abelian monoid M over a countable set P, whoseelements are called primes, together with an equivalence relation � on M which is compatible withits composition law, such that G ' M = �. Thus, each element of M has a unique decompositioninto a sum of primes. Let each element of G be represented by a unique element of M of bit size inO�(1), then G inherits the unique decomposition property. We assume that the arithmetic in G(addition, negation and test for equality) is performed by manipulating these unique representativesin time polynomial in logN 0. Furthermore, we assume that there is a homomorphism of monoidsdeg : M ! R+ , which to each element of M (and thus of G) associates its \size". As M is free overP, any such homomorphism is given by assigning a non-negative size to each prime and extendingadditively. Usually the \size" deg(m) and the bit size of m are closely related in the sense that thelatter is in �(deg(m)).The setting above was introduced by Knopfmacher in [Kno75], who calls M an additive arithmeticalsemigroup and G an arithmetical formation. In addition we require that deg(p) � 1 for p 2 P anddeg(g) 2 O�(1) for any g 2 G. This ensures that the number of primes in the decomposition of agroup element, counting multiplicities, is bounded above by O�(1).For a smoothness bound S 2 N denote by PS the set of primes of size at most S, by nS thecardinality of PS and by n0S the number of elements of M of size at most S. From an algorithmicpoint of view, we demand that n0S be �nite, that the elements of size at most S can be enumeratedin time polynomial in S and linear in n0S and that an element m 2 M can be tested for being primein time polynomial in deg(m) and linear in n0deg(m) (by trial division by all elements of size smallerthan degm, for instance). Thus, PS can be constructed in time polynomial in S and quadratic inn0S. In practice, Eratosthenes's sieve could be used to lower the complexity in n0S; however, thealgorithms studied below are at least quadratic in n0S.An element of G is called S{smooth if its decomposition involves only primes of PS . As the sizeof the elements of G is in O�(1), a distinction into smooth and non-smooth elements arises onlyfor S 2 O�(1). For technical reasons we assume furthermore that log nS 2 O�(1). We requirethat elements of G can be tested for S{smoothness and, if possible, be decomposed into a sumof primes from PS in O�(nS), which usually amounts to trial division by the elements of PS . Inall cases considered below, the smoothness test and the decomposition are even in O�(pn0S) orO�(1), which results in better running times.The most e�cient smoothness test available for integers to date, which is subexponential in logn0S ,is non-deterministic and not completely reliable in that it may not recognise a smooth element.Thus, we extend our model as follows: The smoothness test rejects all non-smooth elements; itrecognises a smooth element up to a certain error probability, which may depend on the elementtested, but does not exceed 1=2.It should be noted that we could work with a more general de�nition of smoothness, which doesnot involve the notion of the size of an element. Also, unique decomposability could be de�ned inan abstract way, not involving the notion of a free abelian monoid. However, the more intuitivede�nitions apply to all groups considered in the literature so far.Examples.1. Finite prime �elds G = F�pThen G can be represented as (N; �)= �, where m1 � m2 if and only if pjm1 �m2, and P is4



the set of natural prime numbers. The size of an element is given by its logarithm to the base2, deg(m) = log2m, and N 0 = N = p� 1.2. Finite �elds of characteristic 2, G = F�2kThen G can be represented as (F2 [X]nf0g; �)= �, where f1 � f2 if and only if f jf1�f2 for some�xed irreducible polynomial f of degree k in F2 [X], and P is the set of irreducible polynomialsover F2 . The size of an element is given by its usual degree, and N 0 = N = 2k � 1.3. Finite �elds of the form G = F�pk , p primeThen G can be represented by the polynomials of degree less than k over Fp . Denote by Fp [X]0the set of monic polynomials over Fp . Noticing that any polynomial is the unique product ofits leading coe�cient and a monic polynomial, G can be represented as (N; �)� (Fp [X]0; �)= �,where (m1; f1) � (m2; f2) if and only if pjm1 �m2 and f jf1 � f2 for some �xed irreduciblepolynomial f of degree k over Fp . The set of primes P is given by the union of the set of naturalprimes and the set of monic irreducible polynomials over Fp , each embedded into the cartesianproduct. The size of an element is deg(m1; f1) = log2m1 + deg f1, and N 0 = N = pk � 1.Notice that these de�nitions are compatible with Examples 1. and 2.4. Class groups of number �eldsLet K be a number �eld and O its ring of integers. Then the class group G of K is de�ned asM = �, where M is the set of ideals of O (a free abelian monoid over the set P of prime ideals),and � is induced by the submonoid of principal ideals. The size of an ideal is given by thelogarithm of its norm. If K has unit rank 0, then each ideal class contains a unique so-calledreduced ideal, which can be computed in polynomial time from any representative of the classas long as (K : Q) is �xed. This reduced ideal then constitutes the canonic representative forthe class.In particular, the case of imaginary quadratic �elds Q(pD) of discriminant D < 0 is covered.Let ! = D+pD2 with minimal polynomial X2 � DX + D2�D4 be an element generating anintegral power basis. Then PS can be constructed by enumerating all rational primes p � 2Sand solving the equation y2p � Dyp + D2�D4 � 0 (mod p), which can be done in expectedpolynomial time by a probabilistic algorithm. If this equation does not have a solution, thenp is inert and pO is a principal prime ideal, whence it may be omitted from the factor base.If the equation has the double solution yp = 0, then p is rami�ed and (p; !) is the only primeideal above p in O. Finally, if the equation has two solutions yp and yp, then p is splittingand p = (p; ! � yp) and p = (p; ! � yp) are the two prime ideals above p in O.A reduced ideal a = (a; ! � b) with ajb2 � Db + D2�D4 is S{smooth if and only if all primedivisors of a are bounded above by 2S . Let p be a prime divisor of a and � the exponentof p in a. Then, as the ideal is reduced, it can be shown that p is not inert, so there is anideal of the form p = (p; ! � yp) above p in O. If yp � b (mod p), then the ideal occurswith multiplicity � in the decomposition of a, otherwise, p occurs with multiplicity �. Thus,the smoothness test and the decomposition of class group elements into primes is completelyreduced to the same problems over the rational integers. Again, we let N 0 = N .5. Jacobians of curves over �nite �eldsLet C 2 Fq [X;Y ] be a plane irreducible projective curve, and G its Jacobian. Fix a divisorO of degree 1, and let P denote the set of all P � (degP )O with a prime divisor P . The sizeof such an element of P is given by degP . Then G ' M = �, where M is the free monoid overP and � is induced by the submonoid of principal divisors. If the prime at in�nity of Fq [X]5



is totally rami�ed in the function �eld of the curve, we may choose O as the prime divisorat in�nity, and the Jacobian is isomorphic to the ideal class group of the integral closure ofFq [X;Y ] in the function �eld. Of particular interest is the case of hyperelliptic curves, whichconstitute the function �eld analogue of quadratic number �elds. A hyperelliptic curve ofgenus g over Fq is the smooth projective model of a plane curve of the formH = Y 2 + hY � fwith h 2 Fq [X] of degree at most g and f 2 Fq [X] monic of degree 2g + 1 or 2g + 2.If deg f = 2g + 1, the prime at in�nity is rami�ed and the representation of the hyperellipticcurve by H is called imaginary. The use of such curves in cryptography has been suggestedby Koblitz in [Kob89]. Each divisor class of a hyperelliptic Jacobian in imaginary represen-tation contains a unique reduced divisor div(a; b) which corresponds to the ideal (a; Y � b)of Fq [X;Y ]=(H) and satis�es a, b 2 Fq [X], deg b < deg a � g and ajb2 + bh � f . Its sizeis deg a. So the input size of the problem is O(logN 0) for N 0 = qg. The assumption thatN 2 O�(N 0) holds since N � (2g + 1)qg. For q a prime, this bound is due to Artin ([Art24],x24, Formula (8)), whose arguments are easily extended to the general case replacing theArtin character by the general quadratic character. Given a divisor div(a0; b0), the canonicalreduced representative in its class can be computed in time polynomial in N 0. The set PScan be constructed by enumerating all irreducible polynomials p 2 Fq [X] of degree at mostS and solving the equation y2p + hyp � f � 0 (mod p) in expected polynomial time by aprobabilistic algorithm. All further steps are completely analogous to the case of imaginaryquadratic number �elds. The only di�erence is that testing for smoothness and decomposinga group element into primes is reduced to the corresponding problems over the univariatepolynomials instead of the rational integers.For deg f = 2g + 2, the prime at in�nity is splitting and H is called a real representationof the curve. Its Jacobian is no longer isomorphic to the ideal class group of Fq [X;Y ]=(H).Instead of working in the Jacobian, it has been suggested to base cryptosystems on discretelogarithms in the so called infrastructure of the curve [SSW96, MVZ98]. It has been observedin [PR99] that at least in odd characteristic a constant �eld extension of degree at most 2g+2allows to transform a real into an equivalent imaginary representation. Thus we restrict ourpresentation to imaginary curves.3 AlgorithmWe describe the algorithm for a cyclic group whose order is known and not necessarily prime.Unlike in the Pohlig{Hellman method we do not split the discrete logarithm problem into a seriesof problems in subgroups of prime order. In fact, we need to work in the full group to guaranteea provable proportion of smooth elements, and the generalisation of the algorithm to subgroupsposes challenges which are discussed in Section 7. However, we factor the group order to facilitatethe linear algebra step.The algorithm takes as input a generator g1 of a cyclic group G of order N and another elementg2 2 G. It outputs logg1 g2, i.e. an integer l 2 f0; : : : ; N � 1g such that g2 = lg1.1) Choose a smoothness bound S and construct the factor base PS = fp1; : : : ; png with n = nS .Set k = dlog2n+ log2log2Ne+ 1. 6



2) Construct a matrix A = (aij) 2 Zn�(2kn)N as follows: For j = 1; : : : ; kn, select randomly anduniformly �j, �j 2 ZN until �jg1 + �jg2 is S{smooth, and write�jg1 + �jg2 = nXi=1 aijpi: (1)For j = kn + 1; : : : ; 2kn, write j = (k + l)n +m with 0 � l � k � 1, 1 � m � n, and selectrandomly and uniformly �j , �j 2 ZN until �jg1 + �jg2 � pm is S{smooth; then write�jg1 + �jg2 = pm + nXi=1 bijpi = nXi=1 aijpi: (2)(In practice, one would only create a few more than n columns of the �rst type, see [Gau99].The second type of columns and the constant k are merely needed to make a rigorous proofof the running time possible.)3) By the randomised procedure described in Section 4, try to �nd a non-zero vector 
 =(
1; : : : ; 
2kn) 2 Ker(A). (During this step N is factored.) If the procedure fails, return to 2).4) IfP2knj=1 �j
j is invertible in ZN, then output��P2knj=1 �j
j��1 �P2knj=1 �j
j�; otherwise returnto 2).If the algorithm halts in Step 4), then it outputs the correct discrete logarithm of g2 to the baseg1. The fact that 
 2 Ker(A) means that0 = 2knXj=1 aij
j 8i = 1; : : : ; n;multiplying these equations by pi and summing them up yields0 = 2knXj=1 nXi=1 aijpi! 
j = 0@2knXj=1 �j
j1A g1 +0@2knXj=1 �j
j1A g2:As g1 and g2 are both of N{torsion, multiplying by the inverse of P2knj=1 �j
j in ZN, if it exists,shows the correctness of the result.4 Linear algebraAs rankA � n, it is possible to �nd a non-zero vector 
 2 Ker(A). How this is done, however,needs further explication. On one hand, it is desirable to exploit the sparse structure of the matrix,which has only O�(1) entries per column, and the corresponding algorithms are prone to failurewith a certain probability. On the other hand, a complication is introduced by the fact that Nneed not be prime, so that ZN may not be a �eld.To exploit the matrix sparseness, one may use a randomised Lanczos algorithm; we rely on thefollowing trivial corollary of Theorem 6.2 in [EK97].7



Theorem 2 Let Fq be the �nite �eld with q elements and let A 2 Fn�dq be a matrix of rank r with! non-zero entries and b 2 Fnq . There is a probabilistic algorithm which either returns a vectorx 2 Fdq such that Ax = b or reports failure. The algorithm requires O(r(! + d)) operations in Fqand has a failure probability of at most 11d2�d2(q�1) .Moreover, the solution vector returned by the algorithm can be made to vary uniformly over allpossible solutions by randomising the right hand side in the following way (in fact, this randomisa-tion is already part of the algorithm in [EK97]): Choose y 2 Fdq according to a uniform distribution,solve Ax = b + Ay and let x = x � y. If y varied over a �xed class of Fdq =KerA, then x wouldnot depend on y, and x would be distributed uniformly over the solution space x + KerA of theequation. Hence, the same assertion holds when y does not belong to a �xed class.When q is small compared to d, it is not possible to apply the theorem directly. Instead, onemay switch to a �eld extension. While this idea does not seem to be new | it was used, forinstance, in the implementation of [LO90], see also [KS91] | we did not �nd it detailed in theliterature and thus expand on the topic. In particular, it is possible to maintain the uniformdistribution over the solution vectors. In the situation of Theorem 2, let p be the characteristicof Fq , � = minfl : ql > 11d2; p - lg and q0 = q� . Then q��2 � 11d2, so that q0 2 O(d2q2). Wewould like to solve a matrix equation over Fq0 and project the solution onto a solution x 2 Fdq ofAx = b. For projection, one may use the trace function Tr : Fq0 ! Fq , which is a homomorphismof Fq -vector spaces and acts on Fq as multiplication by �. Let b0 = � 0b 2 Fdq with �� 0 � 1 (mod p),so that �b0 = b. The value � 0 exists because gcd(�; p) = 1 and can be computed by the extendedEuclidean algorithm in time O(log � log p), which as well as the multiplication of b by � 0 is negligiblecompared to the following linear algebra step. Solve Ax0 = b0 by the algorithm in [EK97]. Thesuccess probability for this step is at least 1� 11d2�d2(q0�1) � 12 . Let x = Tr(x0). Then from the linearityof the trace we deduce that Ax = Tr(Ax0) = Tr(b0) = �b0 = b. Moreover, any solution x 2 Fdq ofAx = b can be obtained in this way, and all of them have the same probability of occurring. Namely,for a given solution x, the set of solutions to Ax0 = b0 over Fdq0 which map to x under the tracefunction is given by � 0x+ (KerA\KerTr), whose cardinality (q0)dim(KerA\KerTr) is independent ofx. Thus, we have shown the following result:Theorem 3 Let A 2 Fn�dq be a matrix of rank r with ! non-zero entries and b 2 Fnq . There isa probabilistic algorithm which either returns a vector x 2 Fdq such that Ax = b or reports failure.The running time of the algorithm is in O(r(! + d) log2(dq)), and its failure probability is at most12 . Moreover, the resulting vector is uniformly distributed over all possible solutions.This solves the linear algebra step if N is prime. Otherwise, one factors N , computes 
 modulop� for all p�kN and combines the results by the Chinese Remainder Theorem. The computationsmodulo p� may be broken up into � iterations modulo p via a lifting procedure: Suppose that anon-zero solution 
1 2 f0; : : : ; pe � 1g2kn is known to the equation Ax � 0 (mod pe), for instanceA
1 = pe� with � 2 Z2kn. Assume that there is a solution 
2 of Ax � � (mod p). Then pe
2 � 
1is a non-zero solution of Ax � 0 (mod pe+1). If all computations modulo a prime return a randomvector according to a uniform distribution over all possible solutions, then the combined resultvaries uniformly over the kernel of A.Considering the elementary divisor form of the matrix A, however, it is easily seen that the liftingprocedure may fail if (and only if) rankQ A 6= rankZpA because then the matrix equation Ax � �8



(mod p) need not have a solution. This is the reason why, following [Pom87], we create the matrixA in a special way, generating many more than the n + 1 columns one would expect to need inpractice and introducing the canonical basis elements pm into the matrix. Indeed, it is proved inLemma 4.1 and the subsequent remark of [Pom87] that with high probability the matrix has fullrank over Zp. We recall this lemma with our notations.Lemma 4 Let V be a vector space over a �eld F with dimV = n < 1. Let S be a �nite setof vectors in V and b1; : : : ; bn a basis for V . Let k 2 N. We make 2kn independent choicesof elements from S with an arbitrary probability distribution over S, labelling the chosen vectorsv1; : : : ; vkn; w1; : : : ; wkn, and we denote by V 0 the subspace of V spanned by v1; : : : ; vkn, and thevectors bj +w(j�1)k+i for j = 1; : : : ; n and i = 1; : : : ; k. Then with probability at least 1� n2k�1 wehave V = V 0.In our case, the vector space V is the space of column vectors of size n with coe�cients in Zp, thebasis is the canonical basis, and the set S is the set of all column vectors representing a smoothelement of G. We see that the vectors generating V 0 correspond precisely to the vectors formingthe matrix A. Hence the probability that the lifting is possible on Zp is at least 1 � n2k�1 . Thereare at most log2N2 distinct primes p whose squares divide N , thus the probability that the liftingis possible for all of them is at least 1 � nlog2N2k � 12 for our choice of k. In this case, repeatinglog2(2log2N) times the algorithm of Theorem 3, we obtain a solution of one problem modulo aprime with probability at least 1� 12log2(2log2N) = 1� 12log2N . As at most log2N single problems haveto be solved, we get a solution modulo N with probability at least 12 . Altogether, Step 3) is thussuccessful with a probability of at least 14 , in which case the output vector is uniformly distributedover the kernel.5 Success probability and running timeTo estimate the success probability of the algorithm during one run of Steps 2) to 4), we assumethat Step 2) has been accomplished successfully, the study of this step being postponed to therunning time analysis below.As shown above, Step 3) succeeds with probability at least 14 . The algorithm may also fail ifP2knj=1 �j
j is not invertible in ZN in Step 4). However, this happens with a su�ciently low proba-bility. For given j � kn and any �j , as g1 is a generator of G and �j is uniformly distributed, theelement �jg1+�jg2 is uniformly distributed over all group elements. The same holds for j > kn and�jg1+�jg2� pm. Consequently, the matrix A and the vector � are independent random variables,so that 
 and � are also independent. Let p be a prime divisor of N . As 
 is uniformly distributedover all vectors of the kernel, the probability that 
 6� 0 (mod p) is at least 1� 1p . Then the orthog-onal space of 
 mod p in Z2kn has dimension 2kn�1, and the conditional probability that � mod pis not orthogonal to 
 mod p is at least 1� 1p . HenceP2knj=1 �j
j is invertible in ZN with probabilityat least QpjN �1� 1p�2 = �'(N)N �2. From (3.41) in [RS62] we have '(N)N 2 
(1= log logN).Thus, the total success probability for one run of Steps 2) to 4) is in
� 1(log logN)2� :9



In accordance with Section 2, denote by n0 = n0S the number of elements of the monoid M whosesizes are bounded above by S.With the assumptions set forth in Section 2, PS can be constructed in time O�(n02).Denote by NS the number of S{smooth elements of G, and let ts and td be upper bounds on theexpected time needed for a smoothness test and the decomposition of a smooth group element intoa sum of primes, respectively. The time needed for computing one linear combination of g1 andg2 and testing for smoothness is in O�(ts); this has to be repeated an expected NNS times untila smooth element is obtained. This smooth element is recognised with a probability of at least1=2, so that no more than two repetitions of the previous procedure are needed on average until acolumn of the matrix can be �lled. So the total time used in Step 2) is inO��n� NNS ts + td�� � O��n NNS ts + n2�as 2kn, td 2 O�(n).Let tf be a time bound for factoring N . As explained in Section 4, log2(2log2N)log2N 2 O�(1)executions of the algorithm behind Theorem 3 are required for Step 3). The number of entries ineach column of A is in O�(1), so that Step 3) needs time in O�(tf + n2).Finally, Step 4) can be performed in O�(n).As only O((log logN)2) � O�(1) repetitions of Steps 2) to 4) are needed on average and n � n0,the total running time of the algorithm is inO��tf + n02 + n0 NNS ts� : (3)(In all cases under consideration, n and n0 di�er only by polynomial factors in logN 0, i.e. O�(n) =O�(n0), so that we do not lose anything when replacing n by n0.)Examples.1. G = F�p , p primeWith deterministic algorithms due to Pollard and Strassen [Pol74, Str76] we have ts 2O�(pn0). A more e�cient probabilistic method has been proved using hyperelliptic curves.The test of [LPP93] recognises (and decomposes) a smooth number with probability at least1=2 in time ts 2 O�(Ln0(2=3; c)), where L is the subexponential function as de�ned in Sec-tion 6 and c some positive constant. Thus, the total running time is inO��tf + n02 + n0Ln0(2=3; c) NNS� :2. G = F�2kNow ts 2 O�(1), as a smoothness test can be performed in deterministic polynomial time bycomputing the distinct degree factorisation of the polynomial representing the group element.Precisely, let f 2 F2 [X]0 be the element to be tested, and g = fgcd(f;f 0) its square-free part.10



Then f is S{smooth if and only if g is. As X2i�X is the product of all irreducible polynomialsof degree dividing i in F2 [X]0, the latter is the case if and only ifg = lcm�ngcd(g;X2i �X) : i = 1; : : : ; So� :Computing X2i�X mod g by successive squaring and reduction modulo g, this can be testedin time polynomial in S and deg f 2 O(logN). Thus, the total running time of the algorithmis in O��tf + n02 + n0 NNS� :3. G = Fpk , p primeAn element (m; f) 2 N � Fp [X]0 is S{smooth if and only if m and f are S{smooth. Thesmoothness of m can be tested in time in O�(Lp(2=3; c)) as mentioned in Example 1. Thesmoothness of f can again be checked by distinct degree factorisation in time O�(1). Thus,the total running time of the algorithm is inO��tf + n02 + n0Lp(2=3; c) NNS� :4. Class groups of imaginary quadratic number �eldsAs the smoothness test and the decomposition into primes are reduced to the case of naturalintegers, the analysis of Example 1. shows that the running time is inO��tf + n02 + n0Ln0(2=3; c) NNS� :5. Jacobians of hyperelliptic curvesNow the smoothness test and the decomposition are reduced to the case of monic polynomials,and the analysis of Example 2. carries over and shows that the running time is inO��tf + n02 + n0 NNS� :6 SubexponentialityRecall the de�nition of the subexponential function with respect to the input size logN 0 andparameters � 2 (0; 1) and c > 0:LN 0(�; c) = ec(logN 0)�(log logN 0)1�� :The smaller �, the closer this function is to the polynomial LN 0(0; dce) = (logN 0)dce in logN 0. Allrigorously proven subexponential algorithms for discrete logarithms, and also the algorithm of thisarticle, have � = 1=2. Thus we simplify the notation by omitting the �rst parameter when it is1=2. We state the simple relationsLN 0(c1) � LN 0(c2) = LN 0(c1 + c2)11



and LN 0(c1) + LN 0(c2) 2 �(LN 0(max(c1; c2))):Furthermore, functions in O�(1) or O(LN 0(�; c)) for � < 1=2 are in LN 0(o(1)), where o(1) standsfor the set of real valued functions tending to zero as N 0 !1.Assume that we have a smoothness result of the following form:The bound S can be chosen such thatn0 2 O(LN 0(�+ o(1)))and NNS 2 O(LN 0(� + o(1)))for some constants �, � > 0.The assumption N 2 O�(N 0) implies that LN (c) 2 O(LN 0(c) + o(1)). Taking into account that Ncan be factored in expected time in O(LN (1+o(1))) � O(LN 0(1+o(1))) by the algorithm presentedin [LP92] and introducing an exponent � such that ts 2 O�(n0� ), we can specialise (3) to obtainO (LN 0 (max(1; 2�; (1 + �)�+ �) + o(1))) :In fact, the constants for all examples presented below are worse than 1 anyway, so that the needfor factoring N has no in
uence on our running time bounds.Examples.1. G = F�p , p prime; N 0 = N = p� 1With the usual notation  (x; y) for the number of integers between 1 and x all prime factorsof which are not larger than y, we have NNS = N (N;2S) . Let S = dlog(LN (�))e, so thatn0 = 2S 2 [LN (�); 2LN (�)]. Then Lemma 3.1 in [Pom87] shows that NNS 2 O(LN (� + o(1)))with � = 12� . Moreover from n0 2 O(LN (�)) we deduce Ln0(2=3; c) 2 LN (o(1)). The runningtime of the algorithm is thus inO�LN �max�2�; �+ 12� ; 1�+ o(1)��for any � > 0; the optimal choice � = 1=p2 yields a running time inO(LN (p2 + o(1))):This is precisely the complexity of the fastest known algorithm described in [Pom87].2. G = F�2k ; N 0 = N = 2k � 1Denote by Nq(d;m) the number of monic polynomials of degree d over Fq all prime factorsof which have degree at most m. Then NNS � 2kN2(k�1;S) . Let S = dlog(LN (�))e, so thatn0 2 �(LN (�)). Theorem 2.1 in [BP98] shows that N2(k � 1; S) 2 2k�1u(1+o(1))u for u = k�1S �12



1�q logNlog logN � 1�plogN . Thus, a few computations reveal that NNS 2 O(LN (� + o(1))) for� = 12� , and the running time of the algorithm is in O �LN �max�2�; � + 12� ; 1�+ o(1)�� forany � > 0. The optimal choice � = 1=p2 again yields a running time inO(LN (p2 + o(1)));which corresponds to the fastest known algorithms described in [Pom87] and [BP98].3. G = Fpk , p prime; N 0 = N = pk � 1Notice �rst that in the polynomial representation we have chosen, it is impossible to obtaina subexponential running time for �xed k � 2 and p ! 1. If we let S = 0, then only theconstants have a chance of being smooth, and NNS � pk�1p�1 � pk�1 is exponential in N . IfS � 1, then all p monic linear polynomials are contained in the factor base, which is thus ofexponential size. Hence, we must restrict our attention to instances in which p is su�cientlysmall compared to k.Letting S = dlogp(LN (�))e, we obtain the estimateNNS � p (p� 1; 2S) � pk�1Np(k � 1; S) 2 O�pLN � 12� + o(1)��as in Example 2, which introduces an unwanted factor of p. Moreover, since we have to roundup S, it need not be true any more that n0 2 O(LN (�)). In fact,n0 = SXi=0 ��ff 2 F0p [X] : deg f = ig�� � jfm 2 f1; : : : ; p� 1g : log2m � S � igj= SXi=0 pimin�p� 1; 2S�i	� S�1Xi=0 pi+1 + pS2 O �pS�� O(pLN (�)):For a �rst special result we consider the case p 2 O(logN) or more generally p 2 O�(1),which implies n0 2 O�(LN (�)) and Lp(2=3; c) 2 LN (o(1)). So the running time analysis ofExample 2. carries over without modi�cation.More generally, we must ensure that p is subexponential in logN = k log p. Following theideas in [Eng99], we consider the case k � # log p for some positive constant #, in whichp � LN � 1p#�. Then n0 2 O �LN ��+ 1p#�� and NNS 2 O �LN � 12� + 1p# + o(1)�� for thesame value of S as above, Lp(2=3; c) 2 LN (o(1)) and the total running time is inO�LN �max�2�+ 2p#; �+ 12� + 2p#; 1�+ o(1)�� :The optimal choice for � is p22 , which yields a running time ofO�LN �p2 + 2p# + o(1)�� :13



Asymptotically for #!1 (e.g., for p �xed), we recover the running time of Example 2.In [AD93], Adleman and DeMarrais describe an algorithm with conjectured subexponentialrunning time for p > k. They represent the �eld as the ring of integers of a number �eldmodulo a prime ideal. See also [Sem95]. It is an interesting open question whether there is aprovably subexponential algorithm for all �nite �elds using possibly such a representation.4. Class groups of imaginary quadratic number �eldsLet D denote the discriminant of the number �eld. It is shown in [Sey87], Proposition 4.4,that assuming the generalised Riemann hypothesis, NNS 2 O �LjDj � 14c + o(1)�� for S =dlogLjDj(c)e. Due to a theorem of Siegel's [Sie36], log jDj 2 (2 + o(1)) logN so that LjDj(c+o(1)) = LN (p2c + o(1)). Letting S = dlogLN (�)e, we deduce n 2 O(LN (�)) and NNS 2O �LN � 12� + o(1)��. Repeating the analysis of Example 1 shows that our algorithm has arunning time in O �LN �p2 + o(1)�� = O �LjDj (1 + o(1))�under the generalised Riemann hypothesis. This improves the running time of O(LjDj(p2 +o(1))) of the algorithm described in [HM89] for determining the class group structure withoutany previous information.5. Jacobians of hyperelliptic curvesRecall that N 0 = qg. Letting S = dlogq Lqg(�)e, we have n � 2qLqg(�). Again, we follow[Eng99] and consider only instances with g � # log q for some positive constant #, so thatq � Lqg � 1p#�. It is shown in [ES00] that then NS � qgLqg �� 12��, so that NNS 2 O� � N 0NS � �O �Lqg � 12� + o(1)��, and the running time of the algorithm is inO�Lqg �max�2�+ 2p#; �+ 12� + 1p#; 1� + o(1)�� :A similar analysis as that of Example 3. shows that the optimal choice of � isminf�; ��(#)g = min(p22 ;r12 + 14# � 12p#) =r12 + 14# �r 14#;which yields an overall running time ofO Lqg  p2 r1 + 12# +r 12#!+ o(1)!! :This improves considerably on the running time ofO Lqg  5p6  r1 + 32# +r 32#!+ o(1)!!in [Eng99], and asymptotically for # ! 1 (e.g., for q constant), the constant of the subex-ponential function is again the same as in Example 2.Hence, our algorithm shows that cryptosystems based on high-genus hyperelliptic Jacobiansare signi�cantly weaker than expected so far, in particular they o�er no security gain whencompared to cryptosystems in �nite �elds of comparable size.14



7 Cyclic subgroupsUnlike �nite �elds, many groups of cryptographic interest do not have a cyclic structure. Forinstance the number of cyclic factors of hyperelliptic Jacobians can be up to twice as large as thegenus. Hence it is an important task to compute discrete logarithms in a cyclic subgroup H = hg1iof a given abelian group G. From a heuristic point of view, this does not pose any problems:The algorithm in its formulation of Section 3 remains applicable. With the usual assumptionthat smoothness and membership in a subgroup are independent concepts, i.e. the proportion ofsmooth elements is the same in H as in G, the running time analysis carries over from the groupto its subgroup. However, we are concerned with provable running times in this article, and thesmoothness results presented so far apply exclusively to the full groups under consideration. Inthis section, we discuss a few approaches to deal with this situation.Perturbing with elements of the complementThe simplest situation arises when gcd�jHj; jGjjHj� = 1; then H admits a complement H 0 in G, i.e.,G = H � H 0. Assume that it is possible to select independently elements hj of H 0 according toa uniform distribution in time polynomial in logN 0. This is for instance the case if we can selectrandom elements in G, because multiplying a uniformly distributed element of G by jGjjHj yields auniformly distributed element of H 0. Another favourable situation is the case where we know abasis of H 0. (In this context, we understand by a basis of H 0 a set fb1; : : : ; brg such that H 0 is equalto the direct sum hb1i � � � � � hbri. The cardinality r of a basis is not an invariant of H 0, but it isbounded above by log2jH 0j.)Then �jg1+�jg2+hj is uniformly and independently of � distributed over G, so that the algorithmmay be carried out with these group elements instead of �jg1 + �jg2. If it is successful, then0@2knXj=1 �j
j1A g1 +0@2knXj=1 �j
j1A g2 = � 2knXj=1 
jhj 2 H \H 0 = f0g;so that logg1 g2 = 0@2knXj=1 �j
j1A�10@2knXj=1 �j
j1Aas before. Also, the running time analysis remains unchanged.While this situation seems to be very special, it is typical for cryptographic applications in whichH is supposed to have large prime order and the cofactor jGjjHj is small, so that jHj and jGjjHj areautomatically coprime. Moreover, for jGjjHj polynomial in logN 0, the structure and, in particular,a basis of H 0 ' G=H can be determined in polynomial time (see, for instance, [Coh93]), and theassumptions of this subsection are satis�ed.Using a basis for GAssume that a basis fb1; : : : ; brg of G along with the orders e1; : : : ; er of its elements are known.Then the discrete logarithm problem can be solved in two steps. Instead of directly writing g2 as a15



multiple of g1 we �rst express g1 as a linear combination of the basis elements and then proceed inthe same way for g2. The discrete logarithm can be computed by a few operations modulo the ei.In order to write g1 in terms of the bi, a slight variation of the algorithm allows to use the smoothnessproperties. For given j � kn, pick random elements �ij and �j untilP�ijbi+�jg1 is S{smooth andwrite this element asP aijpi. Similarly, for j > kn pick random elements untilP�ijbi+�jg1�pmis S{smooth. Here again, the elements of G which are tested for smoothness are distributeduniformly and independently of �, so that the same analysis as in Section 5 can be carried out.Hence with high probability a non-zero vector of the kernel is obtained and g1 is expressed as alinear combination g1 =P 
ibi. The same process yields g2 =P �ibi. Now try to solve the systemof modular equations �i � l
i (mod ei). If this is possible, then l is the correct discrete logarithmof g2 with respect to g1. Otherwise, g2 does not lie in the cyclic subgroup generated by g1. In thiscase, which does not occur in the cryptographic setting, the original algorithm of Section 3 wouldrun forever without giving proof of the non-existence of the discrete logarithm. Thus, the abilityto detect this case is an additional advantage of the modi�ed algorithm.8 ConclusionsWe have presented a generic probabilistic algorithm for computing discrete logarithm in cyclicgroups of known order in which a notion of smoothness is available. Many groups suggested forcryptosystems �t into this context. The running time of the algorithm can be analysed rigorouslywithout any heuristic assumptions. The analysis leads to a subexponential complexity as soon asa certain smoothness assumption is veri�ed. In particular, we recover the running time bounds ofthe fastest algorithms with proven complexity for �nite �elds and obtain substantial improvementsover the previously known algorithms for class groups. This theoretical result is backed by a recentimplementation of the algorithm for hyperelliptic Jacobians, which shows that even curves of arather small genus are insecure in a cryptographic context [Gau99].When examining subexponential algorithms, it is common to distinguish between ine�cient meth-ods with a provable running time and practical methods with a conjectured running time. Ouralgorithm breaks with this tradition. It is the fastest known algorithm for the discrete logarithmproblem in hyperelliptic Jacobians both in theory and in practice. In fact, the implementation of[Gau99] was the starting point of our study, and while the modi�cations described in this article arenecessary to prove the running time, they do not alter the nature of the algorithm fundamentally.In general, the groups we are concerned with are not cyclic, but we have shown that suitablemodi�cations allow to apply the algorithm to a wide class of non-cyclic groups, preserving thesubexponential running time. Among these are all groups of cryptographic interest. In particular,the analysis of the algorithm remains valid when a basis of G is known. It is thus an interestingquestion whether a basis can be built if only the group order and its factorisation are known. Inthe case that the order is square-free, an obvious probabilistic method constructs a basis. If theprimes which occur with multiplicity are of polynomial size, they can be dealt with by an exhaustiveconstruction. Considering the remaining case of a power of a large prime, it seems plausible thatthe notion of smoothness available in the group should allow to construct a probabilistic algorithmfor determining the basis.
16
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