
CONSTRUCTIVE AND DESTRUCTIVE FACETS OF WEILDESCENT ON ELLIPTIC CURVESP. GAUDRY, F. HESS, AND N.P. SMARTAbstract. In this paper we look in detail at the curves which arise in themethod of Galbraith and Smart for producing curves in the Weil restriction ofan elliptic curve over a �nite �eld of characteristic two of composite degree. Weexplain how this method can be used to construct hyperelliptic cryptosystemswhich could be as secure as cryptosystems based on the original elliptic curve.On the other hand, we show that the same technique may provide a way ofattacking the original elliptic curve cryptosystem using recent advances in thestudy of the discrete logarithm problem on hyperelliptic curves.We examine the resulting higher genus curves in some detail and propose anadditional check on elliptic curve systems de�ned over �elds of characteristictwo so as to make them immune from the methods in this paper.1. IntroductionIn this paper we address two problems: how to construct hyperelliptic cryptosys-tems and how to attack elliptic curve cryptosystems de�ned over �elds of compositedegree over F2 .As explained in [17], there is currently no practical method which generates cryp-tographically secure Jacobians of hyperelliptic curves that have no special addedstructure. We shall present a method that will produce a hyperelliptic Jacobian re-lated to a `random' elliptic curve, which is secure assuming one believes the discretelogarithm problem on the elliptic curve is itself hard.For the second problem we turn our construction of hyperelliptic cryptosystemson its head and argue that this provides evidence for the weakness of the originalelliptic curve discrete logarithm problem. We stress that this does not provideevidence for the weakness of elliptic curve systems in general, but only those whichare de�ned over the special �nite �elds considered in this paper. These �elds areextensions of composite degree over the �eld F2 .Let E : Y 2 +XY = X3 + �X2 + �denote an elliptic curve de�ned over a �eld of characteristic two, which is not de�nedover a proper sub�eld of K = Fqn . We let m denote an integer, which is de�ned inLemma 6, that satis�es 1 � m � n. We assume that our elliptic curve satis�es oneof the following conditions; y8<: either n is odd;or m = n;or TrK=F2(�) = 0:1991 Mathematics Subject Classi�cation. Primary: 94A60, 11T71, Secondary: 11Y99, 14H52,14Q15.Key words and phrases. function �elds, divisor class group, cryptography, elliptic curves.1



2 P. GAUDRY, F. HESS, AND N.P. SMARTWe shall see that if n is even, then only approximately 1=(2q) of all elliptic curvesover K are eliminated by the above condition. We shall prove the followingTheorem 1. Let E(Fqn ) denote an elliptic curve satsifying condition (y). Let#E(Fqn ) = ph, where p is a large prime. Assuming the map � de�ned belowdoes not have kernel divisible by p, one can solve the discrete logarithm problemin the p-cyclic subgroup of E(Fqn ) in time O(q2+�) where the complexity estimateholds for a �xed value of n � 4 as q !1.The complexity in the Theorem should be compared to the time estimate ofO(qn=2) for the best general purpose algorithm, namely Pollard's rho method. Weconjecture that the condition on the kernel of the map � hold in all cryptographicallyinteresting cases.The implied constant in the O(�) notation of the Theorem contains a very baddependence on n, of the order of O(2n!). Hence, for certain values of n the crossoverpoint between the method of the Theorem and Pollard's rho method may be athigher values of q than are used in practical elliptic curve cryptosystems. However,we shall exhibit experimental evidence that for n = 4 and around 1=q of the ellipticcurves de�ned over Fq4 , the method of the above Theorem is better than Pollardrho for values of q used in practice. For other elliptic curves over Fq4 our methodis only asymptotically better than Pollard rho, and further practical experimentsneed to be carried out to deduce whether the crossover point is at a size of q whichis of cryptographic interest.Our methods are based on the idea of Weil descent on elliptic curves. Hence,much of the following is an extension of the work begun by Frey in [7] and continuedin [9], to which we refer the reader for further details. The details of elliptic curvecryptosystems which we shall require can be found in [3].The paper is organized as follows. In Section 2 we give some simple examples ofcurves de�ned over a special type of �eld extension, for which hand calculation isparticularly simple. In Section 3 we give proofs that the properties observed in thehand calculations hold in general. In addition, we shall construct an explicit grouphomomorphism � : E(Fqn )! Cl0(H);where Cl0(H) is the degree zero divisor class group of a hyperelliptic function �eldover Fq . As we stated earlier, if the map � maps the cryptographically interestingsubgroup of E(Fqn ) to the zero element in Cl0(H) then our method will fail to work.However, since it is highly unlikely that the kernel of � will contain almost the wholeof the group E(Fqn ), we expect that our method will work in all cryptographicallyinteresting examples.In Section 4 we show how our method of producing curves in the Weil restrictioncan be used to construct hyperelliptic cryptosystems, whilst in Section 5 we explainhow one could possibly attack the underlying elliptic curve system using the Weilrestriction. In Section 6 we report on an experiment using the index calculusalgorithm of Gaudry on one of the curves of genus four produced by our method;this is used to help decide which genera should be used in practice for constructingcryptographic systems and which elliptic curve systems are made weaker by ourmethods. Finally in Section 7, we turn our attention to other types of �nite �eldsand discuss why the ideas of this paper are unlikely to work in other cases. Inparticular, for a large proportion of elliptic curves de�ned over F2p , where p is



WEIL DESCENT ON ELLIPTIC CURVES 3prime, we show that the methods of this paper give no decrease in security of theresulting cryptosystem.The �rst author would like to thank R. Harley for many fruitful discussionson the hyperelliptic discrete log; some tricks are due to him. The second authorwould like to thank J. Cannon for his support while this work was in preparation.The third author would like to thank G. Frey, S. Galbraith, E. Scheafer and S.Vanstone, for various discussions whilst the work on this paper was carried out. Allthree authors would like to thank S. Galbraith, N. Koblitz and K. Paterson andan anonymous referee, who read and commented on earlier drafts of this paper.The calculations in this paper were made possible by using a variety of packagesincluding Magma, KASH, LiDIA, PARI/GP and ZEN.2. Example Curves in the Weil RestrictionLet k = Fq denote some �nite �eld of characteristic two, and let n � 2 denote aninteger. In practice we are thinking of the situation where n is quite small and q islarge enough so that qn > 2160. Let K denote the �eld extension Fqn , with k-basisf 0;  1; : : : ;  n�1g.In this section we shall consider elliptic curves E over K, given by the equation:Y 2 +XY = X3 + �;where � 2 K. Notice that for such curves condition (y) is satis�ed. We assumeE(Fqn ) contains a subgroup of prime order p with p � qn.We set � = b0 0 + b1 1 + : : :+ bn�1 n�1;X = x0 0 + x1 1 + : : :+ xn�1 n�1;Y = y0 0 + y1 1 + : : :+ yn�1 n�1;where bi 2 k are given and xi; yi 2 k are variables. Substituting these equationsinto the equation for our elliptic curve, and equating coe�cients of  i, we obtainan abelian variety A de�ned over k, of dimension n, the group law on A being givenby the group law on E(K). The variety A is called the Weil restriction, and theabove process is called Weil descent.Since A is isomorphic to E(K) as a group, the variety A will contain an irre-ducible subvariety B (we do not exclude B = A) with group order divisible by p. Incurves of cryptographic interest, where p � qn, this subvariety will either equal thewhole of A or have dimension at least n�1, which can be seen by simple cardinalityarguments. The variety B is the part of A in which our discrete logarithm problemis de�ned. We wish to �nd a curve C in A whose Jacobian contains a subvarietyisogenous to B. Recall that B is the part of A which is interesting for cryptographicapplications. Hence, we must have g = dimJac(C) � dimB where dimB as statedabove will be either n or n� 1. For the applications we would like the genus of Cto be linear in n, but it is highly unlikely such a curve exists at all.For the rest of this section we shall look at a special set of �nite �elds for whichit is relatively easy to perform calculations. Our aim is to �x the ideas and providea rich set of examples for the reader and for later in the paper. In the next sectionwe shall show that the remarkable properties we observe in this section hold ingeneral for �elds of characteristic two. The method used is a natural extension ofthe one presented in [9].



4 P. GAUDRY, F. HESS, AND N.P. SMARTWe specialize to those �elds K for which we can take  i = �2i in our basis of Kover k where �+ �2 + �4 + � � �+ �2n�1 = 1. The reason for choosing such a basis isso that the curves in the Weil restriction below have `small' degree and are easy towrite down. One reason for this is that squaring an element represented by such abasis is simply a cyclic shift of the coe�cients since�2n = ��2n�1�2 = �1 + � + �2 + � � �+ �2n�2�2= 1 + �2 + �4 + � � �+ �2n�1 = �:However, such a basis does not always exist, since we require the existence of anirreducible factor of degree n of the polynomial h(x) = x2n�1 + � � �+x4+x2+x+1over the �eld k. Hence, we clearly require that the degree of k over F2 must becoprime to n, which we assume to be the case for the rest of this section. In addition,for a root � of such an irreducible factor we require that the set f�; �2; �4; : : : ; �2n�1gforms a basis of K over k.Hence, for this section, we have restricted the choice of q and n. For n = 2, wecan always use the element de�ned by �2+�+1 = 0 whilst for n = 3 we can alwaysuse the element de�ned by �3 + �2 + 1 = 0. For higher values of n we can obtainmany irreducible factors of h(x) of degree n over F2 , and by the coprimality of thedegree of k to n we see that such factors will be irreducible over k. For example, ifn+ 1 is a prime and q is a generator of the multiplicative group of the �eld Fn+1then we can take � as a generator of K over k, where �n + �n�1 + � � �+ � + 1 = 0.To produce a curve of low genus in A one could produce a curve of low degree,and hence of hopefully low genus. Such a curve of low degree can be obtained byintersecting A with the hyperplanes given by x0 = x1 = � � � = xn�1 = x. Hence,we look at the subvariety de�ned by restricting X to lie in k. We obtain a curve Cde�ned by the equationsC : 8>>><>>>: y2n�1 + xy0 + x3 + b0 = 0;y20 + xy1 + x3 + b1 = 0;...y2n�2 + xyn�1 + x3 + bn�1 = 0:That we can obtain such sparse equations is due to our choice of basis of K over k.On elimination of variables we produce a curve in x and y = y0 of the formC : y2n + x2n�1y + n�1Xi=0 x2n+2i + g(x)where g(x) is a polynomial, depending on b0; : : : ; bn�1, of degree less than or equalto 2n. The polynomial g(x) is given by the formulae:g(x) = nXi=1 b2n�ii x2n�2n�i+1 ;where we make the identi�cation bn = b0. The Jacobians of the irreducible compo-nents of the curve C are isogenous to abelian varieties which contain subvarieties ofA, by the arguments of Section 2 of [9]. In examples of cryptographic interest thesubvariety B of A has order divisible by a large prime p, hence the degree of theisogeny is likely to be coprime to p. Therefore, we can expect that the Jacobiansactually contain a subgroup isomorphic to the subgroup of B of order p.



WEIL DESCENT ON ELLIPTIC CURVES 5We give the following examples:n = 2. C2 : y4 + x3y + x6 + x5 + b0x2 + b21 = 0:If the original elliptic curve is de�ned over the base �eld, i.e. b0 = b1, then thecurve C has two irreducible components, each being an elliptic curve. In all othercases it is irreducible. Substituting a large number of elements for the parametersb0 and b1 into the equation for C2, we found that experimentally the genus of thiscurve always seems to be 2.n = 3. C3 : y8 + x7y + x12 + x10 + x9 + b0x6 + b22x4 + b41 = 0:The curve is reducible when b0 = b1 = b2, in other words when the original ellipticcurve is de�ned over the base �eld k. In all other cases it is irreducible, andexperimentally the genus of this curve always seems to be 3 or 4.n = 4.C4 : y16 + x15y + x24 + x20 + x18 + x17 + b0x14 + b23x12 + b42x8 + b81 = 0:Experimentally, when the curve is irreducible, the genus of this curve always seemsto be at most 8. This curve is reducible when b3 = b0 + b1 + b2, and when it isreducible, one of the components is given byC4a : y8 + x4y4 + x6y2 + x7y + x12 + x9 + b0x6 + (b22 + b21)x4 + b41 = 0:When C4a is irreducible it experimentally always has genus at most 4.Note, in all the cases when the curve C was irreducible, it experimentally hadgenus equal to 2n�1 or 2n�1 � 1. In addition, we noticed that the irreduciblecomponents were always hyperelliptic. In the next section we shall prove that theseremarkable properties hold in general for curves satisfying condition (y).3. Hyperellipticity and Genus of Curves in the Weil RestrictionIn this section we show that the observations of the previous section aboutthe genus, irreducibility and hyperellipticity of the curves C hold in general. Inaddition, we shall show the existence of a computable mapping from E(Fqn ) to thedivisor class group of a hyperelliptic curve. It is this mapping which translates thehard elliptic curve discrete logarithm problem into a potentially easier hyperellipticdiscrete logarithm problem.3.1. The curve in the Weil restriction. We shall now letK denote an arbitrarydegree n extension of a �nite �eld k of characteristic two of q elements. We shallmake no assumptions about the existence of special types of bases of K over k aswe did in the previous section. In this section, to keep track of which �elds we areconsidering, all �xed elements of K will be denoted by Greek letters.We take an elliptic curveE : Y 2 +XY = X3 + �X2 + �;where �; � 2 K, � 6= 0. We do not assume condition (y) unless explicitly stated.We can form the Weil restriction as in the previous section by substituting thecoordinate representations of X and Y and expanding with respect to any givenbasis of K over k, but for simplicity we assume that the sum of the basis elements



6 P. GAUDRY, F. HESS, AND N.P. SMARTis one. We intersect the resulting abelian variety A with the hyperplanes whichmark out the subvariety of values of X which lie in k. The resulting subvariety ofA will be a curve de�ned over k, in n+1 dimensional space, which we shall denoteby C, as in the previous section.We wish to study the curves C geometrically, so we consider C over the algebraicclosure of k. In fact, we shall only need to go to the extension K.Lemma 2. By a linear change of variables yi 7! wi, de�ned over K, we �nd thatC is birationally equivalent to the curve D, de�ned over K, given byD : 8><>: w20 + xw0 + x3 + �0x2 + �0 = 0;...w2n�1 + xwn�1 + x3 + �n�1x2 + �n�1 = 0;where we have �j = �j(�) and �j = �j(�), with � the Frobenius automorphism ofK over k.We can extend the Frobenius automorphism � to K[x;w0; : : : ; wn�1] via �(x) =x, �(wi) = wi+1 for 0 � i < n� 1 and �(wn�1) = w0. We obtain �(yi) = yi for all0 � i � n� 1.Proof. It is convenient to prove the Frobenius automorphism statement �rst. That� can be extended as stated is obvious. Next set T = ��j( i)�0�i;j�n�1 2 Kn�nand notice that T is invertible since TT t = �TrK=k( i j)� is invertible because�nite �eld extensions are separable. The linear change of variables of the Lemmais then (w0; : : : ; wn�1) = (y0; : : : ; yn�1)T .Let ti denote the i-th column of T , for 0 � i � n � 1. The yi are expressedas K-linear combinations of the wi via (y0; : : : ; yn�1) = (w0; : : : ; wn�1)T�1. Weapply � to (w0; : : : ; wn�1) = (y0; : : : ; yn�1)T and obtain(w1; : : : ; wn�1; w0) = (�(y0); : : : ; �(yn�1))�t1; : : : ; tn�1; t0�= (y0; : : : ; yn�1)�t1; : : : ; tn�1; t0�:The second equation holds because of the relation of the yi and wi. As the matrix�t1; : : : ; tn�1; t0� is invertible we conclude �(yi) = yi.We are left to prove the birational equivalence of C and D. Let  0; : : : ;  n�1 bea basis of K over k with P i = 1. The equations of C are obtained by expandingY =X yi i; � =X ai i � =X bi i and X = xinE, and equating the resulting coe�cients of the  i. We obtain fi 2 k[x; y0; : : : ; yn�1]such that w20 + xw0 + x3 + �0x2 + �0 = n�1Xi=0 fi(x; y0; : : : ; yn�1) i; :The corresponding equations for C areC : 8><>: f0(x; y0; : : : ; yn�1) = 0;...fn�1(x; y0; : : : ; yn�1) = 0:



WEIL DESCENT ON ELLIPTIC CURVES 7We denote the left hand sides of D by gi 2 K[x;w0; : : : ; wn�1]. Upon applying Tcolumnwise to the equations of C we then see�fi(x; y0; : : : ; yn�1)�0�i�n�1 T = �Xi fi(x; y0; : : : ; yn�1)�j( i)�0�j�n�1= ��j �Xi fi(x; y0; : : : ; yn�1) i��0�j�n�1= ��j�w20 + xw0 + x3 + �0x2 + �0��0�j�n�1= �gi(x;w0; : : : ; wn�1)�0�i�n�1;which shows that C is linearly transformed into D by T .Let Fi be the splitting �eld of the i-th equation de�ning D over K(x).Lemma 3. We can form the compositum F = F0 � � �Fn�1 over K(x) without am-biguity. Let m 2 Z such that [F : K(x)] = 2m. Viewed over K the curve Dhas 2n�m irreducible reduced components, each having function �eld K-isomorphicto F .Proof. We can form F without ambiguity because the extensions Fi=K(x) are allquadratic, hence Galois over K(x). More speci�cially, in order to generate F overK(x) we can choose a suitable subset of m equations of the equations de�ning thecurve D, such that adjoining �wli , for 1 � i � m, to K(x) gives F , with �wli a rootof the left hand side of the i-th such equation. The remaining n�m equations ofD will each have two solutions �wvj and �wvj + x in F .Consider the homomorphism� : K[x;w0; : : : ; wn�1]! K[x; �w0; : : : ; �wn�1] � F:The kernel I of this homomorphism is a prime ideal of dimension one since Fis a �eld of transcendence degree one over K being generated by x; �w0; : : : ; �wn�1over K. This prime ideal contains the left hand sides of D by construction of F .Therefore, I de�nes an irreducible reduced component of D having function �eldK-isomorphic to F .The statement about the number of these components follows from the possiblechoices of �wvj or �wvj + x in the de�nition of the homomorphism. This can be seenin detail as follows: Assume I were contained in the kernel J of a homomorphism as above which maps wvj to �wvj + x. There are f; g 2 K[x;w0; : : : ; wm�1] suchthat �(g);  (g) 6= 0 and �wvj = �(f)=�(g) =  (f)= (g). Then gwvj + f 2 I � Jand g(wvj + x) + f 2 J hence gx 2 J and x 2 J because  (g) 6= 0 and J is prime.This is clearly a contradiction as x is not mapped to zero by  .3.2. Artin-Schreier properties. If we multiply the equations de�ning D by x�2,substitute si = wi=x+�1=2i =x and z = 1=x, we see that another model for our curveD is F : 8>><>>: s20 + s0 + z�1 + �0 + �1=20 z = 0;...s2n�1 + sn�1 + z�1 + �n�1 + �1=2n�1z = 0:The advantage of this model is that we can apply Artin-Schreier theory as out-lined in [2, pp. 22{24], [14, pp. 275{281] and [18, p. 115]. We will use the followingspecial version of [14, p. 279, Thm 3.3]:



8 P. GAUDRY, F. HESS, AND N.P. SMARTTheorem 4. Let p be a prime number, }(x) = xp�x be the Artin-Schreier opera-tor, K be a �eld of characteristic p and �K be a �xed separable closure of K. For ev-ery additive subgroup � � K+ with }(K) � � � K there is a �eld L = K�}�1(�)�with K � L � �K obtained by adjoining all roots of all polynomials xp � x � d ford 2 � in �K to K. Given this, the map� 7! L = K�}�1(�)�de�nes a 1-1 correspondence between such additive subgroups � and Abelian exten-sions L=K in �K of exponent p.Before giving the result we state the following Lemma which will be used repeat-edly in the sequel.Lemma 5. Any sum of an even number of the �j is of the form v2 + v with asuitable v 2 F2 (�).Proof. For f(t) =Pi diti 2 F2 [t] we de�ne f(t)" =Pi di"2i for all " 2 K, therebyturning the additive group K+ of K into an F2 [t]-module. The required statementis then reformulated as follows: For f(t) 2 F2 [t] with f(1) = 0 there is a suitablev 2 F2 (�) such that f(t)� = (t + 1)v. But this is now easily seen to be true.Namely, f(t) is divisible by t+1 and v can thus be chosen to be f(t)=(t+1)�.Lemma 6. For m as in Lemma 3 we have the equalitym = dimF2 �SpanF2��1; �1=20 �; : : : ; �1; �1=2n�1�	� :(1)The �eld K is the exact constant �eld of F (i.e. K is algebraically closed in F ) andF is the compositum of the �rst m �elds Fi over K(z), i.e. F = F0 � � �Fm�1.The Galois group of F=K(z) is isomorphic to (Z=2Z)m. The action of � 2Gal(F=K(z)) is given by �(�si) = �si or �(�si) = �si + 1, where �si is a root of the lefthand side of the i-th equation of F in F , for 0 � i � n� 1.Proof. Consider the operator }(x) = x2+x and the additive group (or F2 -module)�0 = SpanF2�z�1 + �0 + �1=20 z; : : : ; z�1 + �n�1 + �1=2n�1z	:We further de�ne � = �0 + }�K(z)�. With this we have F = K(z)�}�1(�)� =K(z)�}�1(�0)� andm = dimF2��=}�K(z)�� = dimF2��0=�0 \ }�K(z)��;where the �rst equality holds according to Theorem 4 and the second equality holdsaccording to the �rst isomorphism theorem for groups.We have �0\}�K(z)� = �0\}(K) because applying } to non-constant functionsin K(z) would necessarily involve quadratic terms in z which are not to be foundin �0. Let us abbreviate U = SpanF2��1; �1=20 �; : : : ; �1; �1=2n�1�	. Expanding theelements in �0 into vectors in K2 by taking the coe�cients of z�1 and z gives asurjective linear map �0 ! U . Its kernel is �0 \ K. But every element of thekernel must be a sum of an even number of the �j because otherwise the z�1 wouldnot cancel. From Lemma 5 we conclude that �0 \ K = �0 \ }(K), and using�0 \ }(K) = �0 \ }�K(z)�, we obtain �0=�0 \}�K(z)� �= U . The formula for mis thereby veri�ed.In order to prove that K is the exact constant �eld of F we have to show that� \ K � }(K) (remember F = K(z)�}�1(�)�). But again every u 2 � \ K is



WEIL DESCENT ON ELLIPTIC CURVES 9congruent to a sum of an even number of the �j modulo }(K). Lemma 5 givesu 2 }(K) and K is hence algebraically closed in F .The statement about the compositum is seen as follows: The �rst m terms inthe de�nition of �0 constitute a basis of the F2 -vector space �0. This is due tothe property that, if the i-th term is dependend of the previous j-th terms for0 � j � i� 1, then the i+ 1; i + 2; : : : terms would be as well because they ariseby applying � to the i-th term. Hence F is obtained by adjoining roots of the �rstm left hand sides of F to K(z) from which the statement follows.From Theorem 4 and [F : K(z)] = 2m we obtain Gal(F=K(z)) �= (Z=2Z)m.The action of � 2 Gal(F=K(z)) is as stated because � �xes all z�1+�i + �1=2i z byde�nition and hence has to map roots of s2i +si+z�1+�i+�1=2i z to themselves.3.3. Hyperellipticity and genus. Adding the 0-th equation to the i-th equationof F for i = 1; : : : ;m � 1 and substituting ti for s0 + si, i for �0 + �i and �ifor �1=20 + �1=2i we obtaint2i + ti + �iz + i = 0; i = 1; : : : ;m� 1:(2)These equations de�ne extensions Li of K(z) such that F = F0L with L =L1 � � �Lm�1 the compositum of the Li over K(z). The �eld L is crucial to es-tablishing the hyperellipticity, since it de�nes a rational sub�eld of index two, aswe shall now show.Lemma 7. The �eld L is an extension �eld of degree 2m�1 of K(z). It is a rationalfunction �eld L = K(c) having a generator c such that z = ��1 +Pm�1i=0 �ic2i with�i 2 K and �0; �m�1 6= 0.Proof. The extension �eld statement follows from 2 [L : K(z)] = [F : L][L : K(z)] =[F : K(z)] = 2m.We now apply inductively some further transformations to (2). We wish todetermine a change of variables so that we obtain equations of the formt2i + ti + �iti�1 + i = 0; i = 1; : : : ;m� 1;(3)where t0 = z.We take the �rst equation of (2) (i = 1) to be the �rst equation of (3). Nowsuppose after already having performed some transformations (with ti, i and �isubstituted properly), for some j 2 [2; : : : ;m� 1], we are given equationst2i + ti + �iti�1 + i = 0; i = 1; : : : ; j � 1;t2i + ti + �iz + i = 0; i = j; : : : ;m� 1de�ning the extension L=K(z) as well. All left hand sides of these equations mustbe irreducible due to the choice of m and hence we must have �i 6= 0 since K isalgebraically closed in F , by Lemma 6. Because of this, being true also for the nextintermediate �i, we can carry out the following transformations:By substituting tj + (�j=�1)1=2t1 for tj and using the above equation with i = 1we obtain t2j + tj + ��j�1�1=2 + �j�1! t1 + �j�1 1 + j = 0;wherein we write �j for the coe�cient of t1 and j for the constant term. Next, weuse the equation for i = 2 to eliminate t1 in the same way as was done with z = t0,



10 P. GAUDRY, F. HESS, AND N.P. SMARTand we repeat this for t2; t3; :::; tj�2; we eventually arrive att2j + tj + �jtj�1 + j = 0;as desired. By induction we go on until j = m.Next, by expressing z = (t21 + t1 + 1)=�1, t1 = (t22 + t2 + 2)=�2, and so on, weobtain z = ��1+Pm�1i=0 �ic2i with c = tm�1 and suitable �i 2 K. Since L=K(z) isseparable and [L : K(z)] = 2m�1, we �nally see that �0; �m�1 6= 0.To estimate the genus of our function �eld we shall use the following theorem,which is a special case of [18, Proposition III.7.8, pp. 115]:Theorem 8. Let L=K denote a rational algebraic function �eld of characteristictwo. Suppose that u 2 L is an element which satis�es the following condition:u 6= w2 + w for all w 2 L:Let F = L(y) with y2 + y = u. For a place P of L we de�ne the integer mP bymP =8>><>>: m if there is an element z 2 L such thatvP (u+ (z2 + z)) = �m < 0 and m 6� 0 (mod p)�1 if vP (u+ (z2 + z)) � 0 for some z 2 L:If at least one place Q of L satis�es mQ > 0 then K is algebraically closed in F ,and g = 12  �2 +XP (mP + 1) degP! ;where g is the genus of F .Lemma 9. F=K is a hyperelliptic function �eld of genus 2m�1 or genus 2m�1� 1over the exact constant �eld K.Proof. The constant �eld statement is proved in Lemma 6. Recall, we have F = F0Land [F : L] = 2. Hence, the hyperellipticity is clear, since L is rational by Lemma 7.Next we prove the genus statement. In order to obtain F from L we need toadjoin to L a root of the left hand side of the 0-th equation de�ning F. We take acloser look at the constant term (in s0) of this equation u = 1=z+ �0 + �1=20 z 2 L,where we think of z as a polynomial in c of degree 2m�1 as in Lemma 7.Since this polynomial is separable, it factors in K[c] into irreducible polynomialswith all multiplicities equal to one. The valuations vP (u) of u at the places P abovez = 0 of the rational function �eld L (i.e. those places satisfying vP (z) > 0) arethus all �1 and we obtain mP = 1. We additionally knowPvP (z)=0 degP = 2m�1,this is easily seen as we are working in a rational function �eld.We now consider the degree valuation 1 of L = K(c). Since z = ��1 +Pm�1i=0 �ic2i there are ~u; v 2 K[c] such that �1=20 z = ~u+v2+v and deg(~u) � 1. Thepolynomial v can be obtained e. g. by successively eliminating leading terms usingelements of the form (�c)2i + (�c)2i�1 . Thus v1(u+ v2 + v) � �1 and m1 = 1 orm1 = �1.The remaining places P of L have vP (u) = 0 hence mP = �1. Summing up,using Theorem 8, we �nally obtain g = 2m�1 or g = 2m�1 � 1.



WEIL DESCENT ON ELLIPTIC CURVES 113.4. Restriction to smaller constant �eld. Up to now we have used the Artin-Schreier nature of the equations de�ning D (resp. F) in an essential way, in orderto obtain the statements on the hyperellipticity and the genus. Next, we need torestrict to a smaller constant �eld, and here we will use the existence of a Frobeniusautomorphism on F which is due to the very construction of D.Lemma 10. The Frobenius automorphism � of K over k extends (non uniquely)to a k-automorphism on F of order n or 2n, again denoted by �.We have roots �si = �i(�s0) of the left hand sides of F and accordingly roots�wi = �i( �w0) of the left hand sides of D with �wi = x�si + �1=2i for all 0 � i � n� 1.Proof. The Frobenius automorphism � extends to a k-automorphism of K(x) =K(z) by leaving x, resp. z, �xed.The �eld F is obtained from K(z) by successively adjoining roots �si for 0 � i �m� 1 of the left hand sides of F to K(z). Once these m roots �si are adjoined roots�si of the other equations for m � i � n � 1 are readily to be found in F and �will be de�ned on them. For m = 1 we can simply de�ne �(�s0) = �s0. Assume wehave m > 1 and � : K(z)(�s0; : : : ; �si�1) ! F for an i with 0 � i < m� 1. We canextend � to K(z)(�s0; : : : ; �si) ! F by choosing �(�si) = �si+1 because the left handside of the i-th equation of F is irreducible over K(z)(�s0; : : : ; �si�1) and applying �to z�1 + �i + �iz gives z�1 + �i+1 + �i+1z. Hence we can extend � to the wholeof F by de�ning � on �si for 0 � i � m� 1.The order of any such � on F must be a multiple of n since K � F and � hasorder n on K. Furthermore, �n(�s0) = �s0 or �n(�s0) = �s0 + 1 because �n(�s0) mustbe a root of the left hand side of the �rst equation of F. We conclude that the orderof � on F will be n or 2n accordingly.The statement on the roots is clear and serves primarily as a de�nition for lateruse.It is at this point that condition (y) becomes important.Lemma 11. If condition (y) is satis�ed then the extension � in Lemma 10 of theFrobenius to F can be chosen with order exactly n on F .Proof. We now need to derive a precise condition for the order of such extensions�. It will turn out that we have to carefully choose a particular extension � if wewant to obtain order n. The precise condition will be obtained from the precisevalue of �n(�s0), and is then compared to condition (y).To begin with we start with any extension � of the Frobenius to F which will bechanged later as required. It is convenient to employ the following technique: Forf(t�) = Pi diti� 2 F2 [t�] we de�ne f(t�)s = Pi di�i(s) where s 2 F arbitrarily,thereby turning F+ into an F2 [t� ]-module. As a subgroup K+ inherits this F2 [t� ]-module structure which is compatible with the F2 [t]-module structure of K+ usedin the proof of Lemma 5 under the relation t� = tr for r = log2(q).We let f�0(t�) be the polynomial of smallest degree such that f�0(t�)�0 = 0 andset f(t�) = � f�0(t�) for deg f�0(t�) even;(t� + 1)f�0(t�) otherwise.The same polynomials f�0 and f are obtained upon replacing �0 with �1=20 . FromLemma 6 and its proof it is easily seen that deg f(t�) = m.



12 P. GAUDRY, F. HESS, AND N.P. SMARTSince (tn� + 1)�0 = 0 there is an h(t�) 2 F2 [t� ] such that h(t�)f(t�) = tn� + 1.We have �f(t�)�s0�2 + f(t�)�s0 = f(t�)��s20 + �s0�= f(t�)�z�1 + �0 + �1=20 z�= f(t�)�0:Now, as f(1) = 0, we can apply Lemma 5 to the last right hand side above and �nda v 2 K with v2+v = f(t�)�0. Here we actually have a choice between v and v+1which will be important later. Adding v2 + v to the �rst left hand side above weobtain f(t�)�s0 + v 2 f0; 1g. It is now that we have to choose the correct extensionof �, depending on the choice of v: If we have f(t�)�s0 + v = 1 we replace � by a�0 which satis�es �0(�si) = �(�si) for 0 � i < m � 1 and �0(�sm�1) = �(�sm�1) + 1,which we can do according to the extension process at the beginning of the proof.Since the leading term of f(t�) is tm� and �sm�1 = �m�1(�s0) we can hence assumef(t�)�s0 + v = 0:(4)Multiplying this with h(t�) yields (tn� + 1)�s0 + h(t�)v = 0 from which we draw theconclusion: � has order n on F if and only if h(t�)v = 0. The rest of the proofdeals with the relation of this condition and (y), and the suitable choice of v.Using the proof of Lemma 5 and the above compatibility remark we see that wecan choose between v = f(tr)=(t+1)�0 and v = f(tr)=(t+1)�0+1. Multiplying the�rst v with h(tr) we obtain h(tr)f(tr)=(t+1)�0 = (trn+1)=(t+1)�0 = TrK=F2(�0).Thus, depending on the choice of v,h(t�)v = � TrK=F2 (�0) orTrK=F2 (�0) + h(1):(5)Our k-automorphism � on F , depending on v, has order n if and only if we obtainzero for at least for one of the cases in the right hand side of (5). But this is impliedby (y): The case TrK=F2(�0) = 0 is clear. For n odd we obtain h(1) = 1 becauset� + 1 divides tn� + 1 only once. For n = m we obtain h(t�) = 1 hence h(1) = 1too.We remark that the conditions (y) are su�cient but not necessary for the exis-tence of an extension of the Frobenius automorphism ofK=k to F of order n. Preciseconditions can be derived from (5) and may be summarized as follows: \ The ex-tension exists either for all � 2 K or only for those � 2 K with TrK=F2(�) = 0,given any �xed � 2 K� ".Theorem 12. Let � be an extension of the Frobenius automorphism of K=k to F ,having order n, and let F 0 be the �eld of elements of F �xed by �. The �eld F 0is a hyperelliptic function �eld of genus 2m�1 or 2m�1 � 1 over the exact constant�eld k. The curve C has an irreducible reduced component having F 0 as its function�eld.Such a k-automorphism � exists if the condition (y) is satis�ed.Proof. We let L0 = F 0 \ L. The relations between the �elds F; F 0; L and L0 aredescribed by Figure 1.The �xed �eld F 0 of � has index n in F because � is of order n on F and it isclear that F 0 \K = k holds because � is of order n on K as well.
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kn 1@@@@@K k(x)2m�11 n @@@@K(x)K(E) @@@@�
���2 L2m�1 L0@@@@@ 2n

F2 F 0@@@@ n

Figure 1. Lattice Diagram of FieldsThe automorphism � restricts to a k-automorphism of L of order n because itis the unique sub�eld of F of index 2 and K � L. Thus, [L : L0] = n, since L0 isthe �xed �eld of � restricted to L and we obtain [F 0 : L0] = 2, as desired. ClearlyF = F 0K (and also L = L0K) which gives the genus statement.From the �wi we obtain n, not necessarily distinct, elements �yi via the lineartransformation of Lemma 2. The automorphism � operates cyclically on the �wi sothat we have �(�yi) = �yi, as was proved generically in Lemma 2. The �yi are thus inF 0 and together with x they generate F 0 over k (because the �wi can be obtainedfrom the �yi over K). Due to Lemma 2 the �yi satisfy the equations of C, from whichwe �nally see that C has an irreducible reduced component with function �eld F 0(we can for example again use the kernel technique from the proof of Lemma 3).The existence of � under condition (y) was proved in Lemma 11.Note, that if condition (y) is not satis�ed and � has order 2n, then we couldhave F 0 = L0 in the arguments of the proof of Theorem 12, and hence we could notguarantee �nding a curve de�ned over k which is hyperelliptic and has genus 2m�1or 2m�1 � 1.If the value of m is too small then none of the irreducible components of C willhave a Jacobian which contains a subvariety isogenous to the subvariety B of A.For example, let E(Fqn ) denote a Koblitz curve, i.e. one de�ned over the �eld F2 .We will then obtain irreducible components of C of genus one, by the de�nition ofm. In this case, the Weil restriction A factors as the productA = E(Fq )�B



14 P. GAUDRY, F. HESS, AND N.P. SMARTwhere B is an n� 1-dimensional abelian variety de�ned over Fq . The curve in theWeil restriction we have constructed has irreducible components whose Jacobiansare isogenous to E(Fq ) and so we obtain no information about the subvariety Bfrom our curves. This does not mean that one cannot �nd useful curves in A,whose Jacobian contains a subvariety isogenous to B. It just means that the curveswe have constructed are not useful in this context. This is why we have assumedthroughout that E is not de�ned over a proper sub�eld of K.In view of Theorem 12 and Lemma 11 we assume for the rest of Section 3 thatwe are given an extension � of the Frobenius automorphismus of K=k on F of ordern and that � operates cyclically on the �si and �wi while leaving x and z �xed. Thiscan be reached when the condition (y) is ful�lled.3.5. Determination of an explicit model for F and F 0. We describe how toobtain Artin-Schreier equations de�ning F over L and F 0 over L0. The correspond-ing hyperelliptic equations are easily obtained by similar (reversed) transformationsas done in the beginning of 3.2.To compute an Artin-Schreier equation in s0 and c for F over L for the generators�s0 2 K(E) � F and c 2 L, we only need to substitute ���1 +Pm�1i=0 �ic2i��1 for zin the �rst equation s20 + s0 + z�1 + �0 + �1=20 z = 0 of F, due to Lemma 7.In order to determine the action of � on F we need to compute �i(c) and �i(�s0)for 0 � i � n� 1 as expressions in c and �s0. This can be done using the operationof � as given in (4) and by tracing back the transformations of Lemma 7. Notethat c is a K-linear combination of z and the �i(�s0) for 0 � i � m � 1 and thateach of these can in return be expressed in c (z = f(c) resp. �i(�s0) = fi(c) + �s0 forsuitable f; fi 2 K[c]).Given c and �s0 and the action of � on c and �s0 we can explicitly construct F 0and L0 as follows:Lemma 13. Choose � 2 K such that TrK=k(�) = 1 and set ~c = TrL=L0(��0c),~s = TrF=F 0(��s0). We then have L0 = k(~c) and F 0 = k(~s; ~c). An Artin-Schreierequation de�ning the �eld F 0 over L0 is given by~s2 + ~s+ 1=z +TrK=k(�2�) + TrK=k(�2�1=2) z(6) + �TrF=F 0(�2�s0) + TrF=F 0(��s0)� = 0;where the absolute coe�cient in ~s of the left hand side of this equation, the elementz and hence the last line TrF=F 0(�2�s0) + TrF=F 0(��s0) are in L0.Proof. From the extension structure L=K(z), because z = ��1 +Pm�1i=0 �ic2i and�(z) = z, it is clear that � maps poles of c to poles of c. Since L is rational we seethat there are �; �0 2 K such that �(c) = �c+ �0. Then�(z) = � ��1 + m�1Xi=0 �ic2i!= �(��1) + m�1Xi=0 �(�i)��02i + �2ic2i� :On equating coe�cients in �(z) = z, we obtain for i � 0�(�i)�2i = �i:



WEIL DESCENT ON ELLIPTIC CURVES 15For i = 0 we thus obtain�(�0c) = �(�0)(�c+ �0) = �0c+ �(�0)�0:Now from this ~c = TrL=L0(��0c) = �0c+ �00 for some �00 2 K and thus L0 = k(~c).Consider the Galois group of F=K(z). According to Lemma 6 it is an elementaryabelian 2-group whose elements send each �i(�s0) to �i(�s0) or �i(�s0) + 1. Now let� be the hyperelliptic involution on F=L, being an element of this Galois group.Since � �xes L and any of the �i(�s0) generates F over L we must have �(�i(�s0)) =�i(�s0) + 1 = �i(�(�s0)) for all i. We thus see that � and � commute in their actionon F and that hence � operates by restriction on F 0=L0. We again consider theequations de�ning F. Using TrK=k(�) = 1 we obtain �(~s) = ~s+ 1 andTrF 0=L0(~s) = ~s+ �(~s) = 1:Using ~s2 = TrF=F 0(�2�s20) = TrF=F 0(�2(�s0 + 1=z + �+ �1=2z))we obtain for the normNF 0=L0(~s) = ~s(~s+ 1)= 1=z + TrK=k(�2�) + TrK=k(�2�1=2) z+�TrF=F 0(�2�s0) + TrF=F 0(��s0)�:Putting together we thus arrive at equation (6). This equation is separable in ~s,and by construction it has coe�cients in L0. Looking at the equations de�ning Fgives that the valuation of �si at the zeros of z is only half the valuation of 1=z. Theterm in the second line of (6) is a K-linear combination of the �si and, as elementof L0, has therefore no poles except at ~c =1. It is hence a polynomial in ~c and wecan conclude that the left hand side of (6) is indeed irreducible.The elements ~s and ~c can be computed in F using �. The absolute coe�cientin equation (6) is �rst computed in K(c) and lies in k(~c) after substituting c =(~c+ �00)=�0.We let �y = x�s0 + �1=2 and ~y = TrF=F 0(��y) so that ~y = x~s + TrK=k(��1=2). Inthe case of odd n we can choose � = 1 and obtain the equation~y2 + x~y + x3 +TrK=k(�)x2 +TrK=k(�) = 0;for x the inverse of the separable polynomial ��1 +Pm�1i=0 �i((~c+ �00)=�0)2i 2 k[~c].We remark that in this case the genus of F 0=k is 2m�1 � 1 if TrK=k(�) = 0.3.6. Mapping the discrete logarithm problem. We next address the questionof mapping the discrete logarithm problem from E to F 0, where we again use thefunction �eld setting. We let Cl0(K(E)) denote the group of divisor classes ofdegree zero of the function �eld K(E) of E, and similarly for Cl0(F ). The divisorclass of the divisor D is written [D].The conorm ConF=K(E) and norm NF=F 0 maps we de�ne as in [5, pp. 65] (cf. [18,pp. 63 and 239]), on recalling that F is a function �eld extension of both K(E)and F 0. Both conorm and norm are homomorphisms of divisor groups, are wellde�ned on divisor classes and map divisor classes of degree zero to divisor classesof degree zero.The point group E(K) of the elliptic curve E is isomorphic to the group ofdivisor classes of degree zero of K(E) [16, p. 66, Prop. 3.4]. The mapping of



16 P. GAUDRY, F. HESS, AND N.P. SMARTthe discrete logarithm problem in the point group E(K) of E is then achieved asfollows: First we translate the problem into Cl0(K(E)). From there we use theconorm ConF=K(E) in order to map it to Cl0(F ), and from there, using the normNF=F 0 , to Cl0(F 0). On composition we thus obtain a group homomorphism� : E(K)! Cl0(F 0):The important question now is whether the large cyclic factor of E(K) of orderp is preserved by this homomorphism.Lemma 14. The kernel of ConF=K(E) : Cl0(K(E)) ! Cl0(F ) can only consist of2-power torsion elements of Cl0(K(E)).Proof. Let D be a degree zero divisor of K(E). We have according to [5, pp. 66,line 21] that NF=K(E)(ConF=K(E)(D)) = [F : K(E)]D:Thus, if ConF=K(E)(D) is principal, then [F : K(E)]D is also principal. But [F :K(E)] = 2m�1 which means that [D] has 2-power order.According to the lemma the large cyclic factor can only be mapped to zero under� by the norm NF=F 0 .For very small values of m, such as those obtained for Koblitz curves, the kernelof � will necessarily be divisible by the large prime p. But if m is larger thanlog2(n), then the large prime factor of the order of E(K) will be preserved in manyinstances. Hence, to solve our discrete logarithm problemP2 = [l]P1on E(K) we map degree zero divisor classes representing P2 and P1 over to Cl0(F 0)using the map �. Set D1 = �(P1) and D2 = �(P2). If we do not obtain D1 = D2 =0, which in practice is unlikely unless the elliptic curve is actually de�ned over asub�eld of K, we can attempt to solve the discrete logarithm problemD2 = [l]D1in Cl0(F 0).The computation of images under � is in principle feasible by general methods,such as those used for computations with algebraic number �elds and their exten-sions. Nevertheless, we want to give some rough indications on a method for ourcase. We assume that we can compute su�ciently well with �nite �elds and thatwe can de�ne the function �eld of an irreducible a�ne plane curve, that we cancompute the decomposition into places of the principal divisor of an element andof e�ective divisors and that we can evaluate elements at places.Let P1 be a place of K(E) of degree one where x; y 2 K(E) take the valuesx(P1); y(P1) 2 K respectively (we assume for simplicity that x(P1) 6= 0;1). Theplace P1 is clearly the unique common zero of x + x(P1) 2 K(E) and y + y(P1) 2K(E). Then ConF=K(E)(P1) can be computed as the greatest common divisor ofthe numerators of the principal divisors �x + x(P1)� and �y + y(P1)� taken in F .It is a divisor of degree 2m�1 according to [5, pp. 65, Lemma 1].Let P be a place of F dividing ConF=K(E)(P1) for some place P1 of K(E) ofdegree one (we decompose ConF=K(E)(P1) to compute P ). The place L \ P canbe described as the numerator of �f(~c)�, where f is the minimal polynomial of~c(P ) over K and the principal divisor is taken in L. This is possible as ~c has



WEIL DESCENT ON ELLIPTIC CURVES 17no pole at P because x(P ) = x(P1) 6= 0, which we have assumed above (~c and~y are de�ned after Lemma 13 and given as elements of F and generators of F 0).The place P can similarly be given as follows: Let h be a bivariate polynomialover K such that h(�; ~c(P )) is the minimal polynomial of ~y(P ) over K(~c(P )). ~yis de�ned at P because all of the �i(�y) are as x(P ) 6= 1. We may representP as the the greatest common divisor of the numerators of �f(~c)� and �h(~y; ~c)�,where the principal divisors are taken in F . This divisor consists of only P withoutmultiplicities because as x(P1) 6= 0 we have that L \ P is unrami�ed in F , hencethere are at most two places in the numerator of �f(~c)� and each of them occurswith multiplicity one. Furthermore, if the other place Q 6= P above L \ P existsthen h(�; ~c) has degree one as the residue class degree of P over L \ P is one. Wealso obtain ~y(Q) = ~y(P ) + x(P ) 6= ~y(P ) and h(~y(Q); ~c(Q)) 6= 0, hence Q does notoccur in the numerator of �h(~y; ~c)� (cf. [18, p. 76, Thm. III.3.7.] and its proof, his one of the 'i and ' is the minimal polynomial of ~y over K(~c)). We are actuallyinterested in determining the underlying place P 0 = F 0 \ P of F 0, so we need toexpress the situation with coe�cients in k rather than K.For this we simply compute minimal polynomials ~f; ~h as above, but over k in-stead, and compute P 0 as the greatest common divisor of the numerators of � ~f(~c)�and �~h(~y; ~c)�, where the principal divisors are now taken in F 0. This divisor consistsof only P 0 without multiplicities because of the same reasons as above.Finally, NF=F 0 (P ) = f(P; P 0)P 0 where f(P; P 0) = n deg(P )= deg(P 0) is theresidue class degree of P over P 0. We will have that NF=F 0 (ConF=K(E)(P1)) ise�ective and that its degree equals n2m�1, for the later taking [5, pp. 66, Lemma 2]and its proof into account.A program for computing F 0 and � given E has been written in KASH and isplanned to be written for inclusion in the Magma computer algebra system.4. Constructing Hyperelliptic CryptosystemsOur method for constructing hyperelliptic cryptosystems is now immediate.1. Fix a �eld k = Fq and an integer n such that K = Fqn .2. Choose an E over K of order 2lp where p is a prime and l is a small integer.This can be achieved by generating curves at random and computing theirgroup orders using the algorithm of Schoof [15].3. Construct the Weil restriction and the curve C as we did in Section 3.4. Find a model H of an irreducible component of C in hyperelliptic form.5. Check that the divisor class group of H over k has a subgroup of order p.The �nal condition is necessary since we only know that a subvariety of A is isoge-nous to a subvariety of the Jacobian of H . Clearly in step 2 we should only choosecurves for which condition (y) will automatically hold, i.e. n odd or TrK=F2(�) = 0.If in the above algorithm we choose n = 4, b3 = b0 + b1 + b2, with the specialexamples of Section 2, we will expect to obtain a hyperelliptic curve of genus 3 or4, de�ned over k, whose Jacobian will, in general, have order 2lp. If l is chosensmall then we do not expect to obtain genus 3. If we choose n = 2, and a verysmall value for l, then we expect to obtain a hyperelliptic curve of genus 2, de�nedover k, whose Jacobian has order divisible by p.4.1. Genus Four Example. We consider an example where p � 280. Clearly thisis not large enough for cryptographic use, but we use it for illustrative purposes,



18 P. GAUDRY, F. HESS, AND N.P. SMARTboth here and later. Curves with p > 2160 are just as easy to produce, they justrequire more paper to write down.Consider the �eld k = F221 generated over F2 by a root of the polynomial:w21 + w2 + 1:Let K = F284 be generated over k by a root of the polynomial�4 + �3 + �2 + � + 1:We construct the elliptic curveE : Y 2 +XY = X3 + b0� + b1�2 + b2�4 + b3�8where b0 = 0; b1 = w1127280; b2 = w171398; b3 = w1370436:Notice that b3 = b0 + b1 + b2, and so we expect to obtain a hyperelliptic curve ofgenus four. The order of E(K) is computed using the algorithm of Schoof [15] andit is equal to 24p, where p = 1208925819614311295169073:Our algorithm for producing a curve of genus four in the Weil restriction producesthe curve C4a, of Section 2. This curve has Jacobian also of order 24p. But thecurve C4a is birationally equivalent to the following hyperelliptic curve, which wecalculated using the method in Section 3,H : Y 2 +G(X)Y + F (X) = 0(7)where G(x) is given byX4 + w624429X3 + w1248858X2 + w1442662X + w386860and F (X) is given byX9 + w1859582X6 + w293124X4 + w1783647X3+ w1541982X2 + w1370912X + w1888298:4.2. Genus Two Example. We construct an elliptic curve over the �eld K =F2162 with group order equal to5846006549323611672814739995379292203636332479268which is four times a prime, p. We do not give the details of this elliptic curve herefor reasons of space. The Weil restriction, and our construction of the associatedhyperelliptic curves, produces the following example of a genus two hyperellipticcurve de�ned over k = F281 .De�ne k by k = F2 [w]=(1 + w4 + w81). The Jacobian of the hyperelliptic curveof genus two given byH : Y 2 + (X2 + w2012013793551629036365609X)Y= X5 +X4 + w1586464037343056940725724X2+w43334222987849600951547X + w774788345987798314632240has order divisible by p. Its group structure is given by C2 � C2p and it is notsubject to the Tate-pairing attack [8] since p does not divide qk�1 for small valuesof k.



WEIL DESCENT ON ELLIPTIC CURVES 19Notice, that if the original elliptic curve E(Fqn ) resists the Tate pairing attack,i.e. there does not exist a small value of k for which qnk � 1 � 1 (mod p), then theanalogous test for the Jacobian is obviously satis�ed for small values of k.5. Attacking Elliptic Curve CryptosystemsThe question remains as to whether the above construction provides either amechanism to attack elliptic curve cryptosystems or whether the hyperelliptic cryp-tosystems proposed above are strong. In this section we discuss the di�culty ofsolving the discrete logarithm problem in the Picard group of the hyperellipticcurves we have constructed. We shall assume a �xed, small, value of n and we lookat the situation as q tends to in�nity.For any group, the rho method (with Pohlig-Hellman) provides an algorithmfor computing the discrete logarithm in time O(pp) where p is the largest primefactor of the order of the group. For general elliptic curves, this is the best knownalgorithm. For the curves de�ned over Fqn considered in this paper we obtain acomplexity of O(qn=2) in general.For hyperelliptic curves, we can obtain a better complexity by using an index-calculus method. If the curve is de�ned over Fq and the genus is not too high (sayat most 8), we can proceed as follows. We consider a factor base containing all theprime divisors of the Jacobian of degree one. We can then proceed in two phases. Inthe �rst phase, relations are found between the elements of the factor base, whilstin the second phase we perform sparse linear algebra to solve the original discretelogarithm problem. The details of this algorithm are in [10], but we give somedetails in an example below.Theorem 15 (Gaudry [10]). There is an index calculus style algorithm to solvethe hyperelliptic discrete logarithm problem in a hyperelliptic curve of genus g overthe �eld Fq which requires a factor base of size O(q) and which runs in timeO �g3g!q log q�+O �g3q2 log q�for some �xed integer .Hence, for �xed values of g the complexity of this algorithm is O(q2+�), whichis better than the rho method for a (almost) cyclic Jacobian of genus at least 5.However, it is unclear where the exact crossover point between the method of [10]and the rho method lies.The theoretical complexity can be improved by reducing the size of the factorbase. The smoothness bound is already minimal, but we can decide that someof the prime divisors of degree one are `good' (we keep them in the factor base),whereas others are rejected. If we set the proportion of `good' divisors to 1=l, thenthe time for �nding a relation will be increased by a factor lg. However, we willneed l times less such relations, and the cost of the linear algebra will be reduced bya factor 1=l2. If we try to optimize the choice of l, we obtain l = �((q=g!)1=(g+1))and the complexity becomes O(q 2gg+1+�), as q !1.In the following table we give the complexities of the discrete logarithm problemon the elliptic curves studied in the previous sections and on the correspondingJacobians. We only look at the genera which are likely to occur in practice for theexample curves in Section 2 and we ignore the q� term in the complexity estimate.Notice that for the `interesting' subvariety of Jac(C) in our Weil-descent examplesthe complexity of the rho method on Jac(C) is equal to the complexity of the



20 P. GAUDRY, F. HESS, AND N.P. SMARTrho method on E(Fqn ). For a general Jacobian of genus g the rho method hascomplexity O(qg=2).Example Curve C2 C3 C3 C4 C4 C4an, g 2,2 3,3 3,4 4,8 4,7 4,4rho on E(Fqn ) q q3=2 q3=2 q2 q2 q2Index on Jac(C) q4=3 q3=2 q8=5 q16=9 q7=4 q8=5We stress that these complexities hold as q tends to in�nity and with n and g �xed.Hence, for g � 4 we obtain a complexity which is better than that of Pollard rho.In a context where we would like to build a hyperelliptic cryptosystem by a Weildescent, the Jacobians have to be almost cyclic, which occurs for the cases C2, C3and C4a. For the �rst two, this seems to be a good way to build a cryptosystemin genus two or three; however, for the last one the index-calculus provides anattack with a better theoretical complexity than the rho method, and the securityis asymptotically lower than with an elliptic curve cryptosystem with the same keysize.On the other hand, if we want to attack an elliptic curve cryptosystem, wesee that for C4 and C4a the complexity of index-calculus is better than for therho method. Thus, asymptotically, it is a good way to attack such elliptic curvecryptosystems by transferring the problem to a hyperelliptic curve.However, experiments have to be done for each �xed value of n and g to see whereis the crossover between the two attacks, since the group operations in E(Fqn ) andin Jac(C) will have di�erent complexities. Such an experiment is carried out in thenext section. 6. Solving a Hyperelliptic DLOG ProblemIt is important to decide, not only for the Weil descent attack but also for ourconstruction of hyperelliptic cryptosystems in genus four, whether the method of[10] is practical in genus four. In this section we consider the example given bythe curve in equation (7). The �elds size is q = 221 and the curve has genus 4,so the Jacobian has size approximately 284. We will solve a discrete logarithmproblem in this group using the method of [10] and then compare the running timeto known e�cient implementations of the rho method in an elliptic curve group ofthe same size. Since the rho method applied to a hyperelliptic curve will run slowerthan on an equivalently sized elliptic curve, if the method of [10] runs faster on thehyperelliptic curve compared to rho on an elliptic curve we will know that� Genus four systems are less secure than the equivalent elliptic curve system,for �eld sizes greater than 221. We would then conclude that genus fourhyperelliptic systems should not be deployed in real life.� Elliptic curves de�ned over Fqn , with m = 3 and q = 2t, are weaker thanthose de�ned over F2p with p prime and of the order of nt.We attempted to solve the discrete logarithm problem given byD2 = [l]D1



WEIL DESCENT ON ELLIPTIC CURVES 21where D1 = (X4 + w1277131X3 + w1087066X2 + w1391819X + w1964994;w1784094X3 + w131164X2 + w1975559X + w2073352);D2 = (X4 + w895988X3 + w1765969X2 + w1667155X + w1531893;w110642X3 + w2014036X2 + w927941X + w1063447);where the divisors are given in the reduced representation as in the paper by Cantor[4]. In this notation, the point at in�nity is implicitly subtracted with the correctmultiplicity in order to obtain a divisor of degree zero. The above divisor D1 is agenerator of the subgroup of prime order p � 280.The factor base consists of all prime divisors of the formp = (X + �; �)where �; � 2 k = Fq , and �2 +G(�)� + F (�) = 0:To each � there are two corresponding values of �, but we only choose one of theseto be in our factor base, since the two prime divisors are related by the equation:(X + �; �) + (X + �;G(�) + �) � 0;in the divisor class group.To reduce the factor base even further we only use divisors in the factor basesuch that the binary representation of � has a bit representation with its three mostsigni�cant bits set of zero. Where the bit representation is in the polynomial basiswith respect to w. Such prime divisors will be called `good'. In our example thenumber of such good divisors which make up our factor base F is 131294.Consider the following general reduced divisorD = (a(X); b(X))with deg b < deg a � g. A necessary condition for this divisor to factor over ourfactor base of `good' divisors will be for the binary representation of adeg a�1, the(deg a� 1)th coe�cient of a(X), to have its three most signi�cant bits set to zero.This gives us a simple test to eliminate lots of divisors which are not smooth overour set of good divisors.The algorithm proceeds as follows. We compute a set of `random' multipliersMi = [ri]D1 + [si]D2; for 1 � i � 20;for some random integers ri and si. Then setting R1 = M1, say, we compute thefollowing random walk Ri+1 = Ri +Mh(Ri)where h : Jac(H) ! [1; : : : ; 20] is some hash function. Notice that every value Rican be written as Ri = [ai]D1 + [bi]D2:We then try to `factor' Ri over our factor base to obtain a relation of the formRi =Xp2F[tp]p:



22 P. GAUDRY, F. HESS, AND N.P. SMARTDue to our choice of factor base this factorization can be achieved using root ex-traction techniques over �nite �elds rather than general polynomial factoring tech-niques. We eliminate many divisors, before we apply root extraction, by our testfor smoothness over the good divisors which we described above. The resulting tplie in [�g; : : : ; g], where for our example g = 4. We store the tp in a matrix asa column, which will have at most g non-zero entries in each column. Almost allrelations we obtain will have tp 2 f�1; 0; 1g and will have exactly g non-zero valuesof tp in each column.After collecting more relations than elements in our factor base we can applysparse matrix techniques modulo p, such as the Lanczos method, to �nd a non-trivial element in the kernel of the matrix. Using the element in the kernel we canthen �nd the solution to the original discrete logarithm problem, with overwhelmingprobability, in the standard manner.We ran the above algorithm on the above example. The relation collection phasetook about two weeks of calendar time, using the idle time of a disparate set ofmachines. If we had ran this task on a single Pentium II 450 MHz, the timingwould have been about 31 weeks. The linear algebra step took 64:4 hours using thesame machine. After which we determined the solution to D2 = [l]D1 was given byl = 12345678:An equivalent calculation on an 84 bit elliptic curve, using Pollard's rho method,would have taken 44 weeks on the same machine, with a program with a similarlevel of optimizations applied. Since the crossover point is for a value of q lessthan what would be used in practice, we can conclude that genus four hyperellipticsystems are weaker than an elliptic curve system with the same size group order.7. Other Types of Finite Fields7.1. Non-composite Fields Of Even Characteristic. In Section 5 we lookedat what happens when n is �xed and we let q tend to in�nity. In practice theelliptic curves over even characteristic �elds which are used are ones de�ned overF2p , with p a prime. Hence, we need to look at the situation where q is �xed andn tends to in�nity.Let E denote an elliptic curve, de�ned over F2p where p is prime. We expectthat the methods of this paper would produce a hyperelliptic curve of genus 2p�1over the �eld F2 . It seems unlikely that one would, in general, be able to �nd acurve of signi�cantly smaller genus in the Weil restriction of E(F2p ) over F2 .However, using equation (1) one may be able to �nd, in very special circum-stances, certain elliptic curves which have values of m slightly larger than log2 p,for which there exist curves in the Weil restriction of genus slightly larger than p,as the following example shows:Consider K = F2 [w]=(1 + w + w127) and the elliptic curve de�ned by (a; �) =(0; w), i.e. E : Y 2 +XY = X3 + w:The number points on E(K) is computed to be#E(F2127 ) = 220 � 32 � 45615671 � 395232781659164075412101:



WEIL DESCENT ON ELLIPTIC CURVES 23Along the arguments of Section 3 we computed its Weil restriction for n = 127down to F2 , obtaining the hyperelliptic curveH : y2 + (x128 + x64 + x)y + x128 + x64 + x = 0:The curve H has genus 127 and its Jacobian contains an element of order#E(F2127 )=2:We constructed this example by trying to makem as small as possible. It appearsthat one can obtain very small values of m for � a zero of a polynomial with only2-power coe�cients, in the above case �128+�2+� = 0. Another similar value for� may be obtained by a zero of the irreducible factor of degree 127 of x210 +x2+xover F2 .In general, for random �, a small value of m is very unlikely as we shall nowshow.Lemma 16. We expect at least �fty percent of all the elliptic curves over K = F2p ,for p prime to produce a value of m equal to p.Proof. By a change of variables we can put our curve in the formY 2 +XY = X3 + �X2 + �where � = 0 or 1 and � 2 K. Now by the de�nition ofm in (1), if f�; �2; : : : ; �2p�1gis a normal basis of K over F2 then m = p. But around �fty percent of all elementsof K generate a normal basis, as we shall now show.By Lemma 3.69 and Theorem 3.73 of [12] the number of elements, � 2 K, whichgenerate a normal basis over F2 is equal to2p tYi=1(1� 2�ni)where ni denotes the degrees of the distinct monic irreducible factors of the poly-nomial Xp � 1 over F2 . But by Theorem 2.47 of the same book we see that this isequal to �2(p�1)=d � 1�d = O(2p�1);where d is the number of distinct factors of the polynomial Xp�1 +Xp�2 + � � � +X + 1 over F2 . Hence, around �fty percent of all elements in K generate a normalbasis.For general curves, where m = p and g = 2p�1, one needs to bear in mind thatalthough there is a sub-exponential algorithm for the discrete logarithm problem onhyperelliptic curves of large genus, it is sub-exponential in the size of the Jacobianwhich will be of the order of 2g = 22p�1 :But we are really aiming for a sub-exponential algorithm in the size of the originalelliptic curve, which is 2p. On the other hand, for the very special elliptic curve inthe above example, we indeed obtain a possible subexponential attack. Note thatthe method of [10] should not be used in this case since it is only e�cient for `small'genera.



24 P. GAUDRY, F. HESS, AND N.P. SMARTTo obtain a sub-exponential algorithm for very large genera the methods from[1, 9, 11, 13] should be combined after suitable modi�cation for our hyperellipticeven characteristic case.Hence, for curves de�ned over non-composite �elds of characteristic two, we donot expect the techniques in this paper to contribute a signi�cant threat to ellipticcurve cryptosystems. This last statement holds assuming curves are either chosenwith values of m of the order of p, or are chosen to be curves which are de�ned overF2 , i.e. a Koblitz curve.7.2. Odd Characteristic Fields. The question arises as to whether the processof Weil descent can be applied to �elds of the form Fpn where p is an odd prime.Clearly we must have n � 2 and by similar arguments to those above n should notbe too large.The proofs in Section 3 relied heavily on the Artin-Schreier nature of the ex-tensions. It appears hard to see how they can be modi�ed to apply in the oddcharacteristic case. Indeed in the few examples we have calculated we see that theresulting curves neither have such nice genera nor are they hyperelliptic in nature.Hence, using odd characteristic �elds does not seem helpful in constructing highergenus hyperelliptic cryptosystems.Let us turn to attacking elliptic curve systems based on �elds of the form Fpn .This is an open problem which we now outline with an example: Consider the �eldFp3 = Fp[t]=(t3 + 3491750t2+ 217412320t+ 795426309)where p = 1073741839 = 230 + 15. An elliptic curve de�ned over Fp3 is given byY 2 = X3 +AX +Bwhere A = 787621733t2+ 572191144t+ 6271705;B = 167167209t2+ 739374709t+ 362095083:For this curve it is easily veri�ed that the group order is#E(Fp3 ) = 24 � 59 � 2261143 � 579962087855207501:Setting X = x0 + x1t+ x2t2 and Y = y0 + y1t+ y2t2one can construct the Weil restriction.Suppose the method of Gaudry could be extended to arbitrary Jacobians andnot just hyperelliptic Jacobians with almost prime group orders. This at �rst sightdoes not seem too implausible but is the subject of ongoing research [6]. One wouldexpect the resulting algorithm to have complexity at best O(p 2gg+1 ). Hence, to beatthe asymptotic complexity of Pollard's rho method on E(Fp3 ) we would require acurve of genus at most 3.Naively mimicking our method of Weil descent in characteristic two one formsthe curve C de�ned by the hyperplanes x1 = x2 = 0, i.e. specializing to thosex-coordinates which are �xed under the Frobenius automorphism. The resultingcurve has genus 13 and is not hyperelliptic. Trying di�erent types of bases for Fp3over Fp and di�erent hyperplanes does not appear to result in anything better.This is an avenue for further work and the construction of a suitably well behavedcurve in the Weil restriction cannot be ruled out at present.



WEIL DESCENT ON ELLIPTIC CURVES 258. ConclusionLet E(Fqn ) denote an elliptic curve over a �eld of even characteristic, which isnot de�ned over a sub�eld of Fqn and which satis�es condition (y). Then we haveshown how the Weil restriction produces a hyperelliptic Jacobian of genus at most2n�1 which, for examples of cryptographic interest, contains a subgroup isomorphicto a subgroup of E(Fqn ).Using this observation we can construct hyperelliptic cryptosystems by �rst con-structing elliptic curves using the Schoof algorithm and then determining the asso-ciated hyperelliptic curve. This appears to be a way to produce secure hyperellipticcryptosystems in genus two and three. We recommend against using this methodin genus four and above because of our experiment in solving discrete logarithmproblems in genus four, where we showed that the discrete logarithm problem inthe Jacobian of a curve of genus four was easier than on an elliptic curve of thesame group order, with a security level of at least 80 bits.However, for �xed values of n � 4, this provides evidence for the weakness of theoriginal elliptic curve discrete logarithm problem. We have shown that for n = 4and around 1=q of all such curves the crossover point, between our method andPollard rho, is at a value of q less than 221. However, for larger �xed values of n,say n = 11 or 13, the crossover between our method and Pollard rho will be muchhigher. Hence, further experiments are needed in determining the exact crossoverpoint between the two methods for various values of n.We have no evidence to suggest that the discrete logarithm problem on generalelliptic curves, de�ned over �elds of the form F2p where p is prime, has complexitysmaller than O(2p=2). Since these are the �elds of characteristic two which arerecommended in the elliptic curve standards, Weil descent does not appear to be athreat to standards compliant elliptic curve systems in the real world.However, we do recommend that elliptic curves de�ned over F2p , for p prime,should be checked to be sure that they produce a value for m in equation (1) whichis of order around p or equal to one, as in the case of curves de�ned over F2 . Onlycurves with these values for m should be deployed in real world cryptosystems. Inpractice most elliptic curves over F2p will satisfy such a requirement, but it is worthadding this check to curve generation programs and to standards documents.References[1] L. Adleman, J. De Marrais, and M.-D. Huang. A subexponential algorithm for discrete log-arithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over�nite �elds. In ANTS-1: Algorithmic Number Theory, L.M. Adleman and M-D. Huang, edi-tors. Springer-Verlag, LNCS 877, 28{40, 1994.[2] E. Artin and J. Tate. Class Field Theory. Benjamin, 1967.[3] I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cambridge Univer-sity Press, 1999.[4] D.G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48, 95{101,1987.[5] C. Chevalley. Introduction to the theory of algebraic functions of one variable MathematicalSurveys Number VI, American Mathematical Society, 1951.[6] A. Enge and P. Gaudry. A general framework for the discrete logarithm index calculus. InPreparation.[7] G. Frey. How to disguise an elliptic curve. Talk at Waterloo workshop on the ECDLP, 1998.http://cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html.[8] G. Frey and H.-G. R�uck. A remark concerning m-divisibility and the discrete logarithmproblem in the divisor class group of curves. Math. Comp., 62, 865{874, 1994.
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