Inferring Meta-Models for Runtime System Data from the Clients of Management APIs

Abstract : A new trend in runtime system monitoring is to utilize MOF- based techniques in analyzing the runtime system data. Approaches and tools have been proposed to automatically reflect the system data as MOF compliant models, but they all require users to manually build the meta-models that define the types and relations of the system data. To do this, users have to understand the different management APIs provided by different systems, and find out what kinds of data can be obtained from them. In this paper, we present an automated approach to inferring such meta-models by analyzing client code that accesses management APIs. A set of experiments show that the approach is useful for realizing runtime models and applicable to a wide range of systems, and the inferred meta-models are close to the reference ones.
Type de document :
Communication dans un congrès
Proceedings of the 13th International conference on Model-driven Engineering Languages and Systems (MODELS 2010), Oct 2010, Oslo, Norway. Springer Berlin/Heidelberg, 6395, 2010
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00513246
Contributeur : Franck Chauvel <>
Soumis le : mercredi 1 septembre 2010 - 04:01:04
Dernière modification le : lundi 13 septembre 2010 - 07:12:56
Document(s) archivé(s) le : jeudi 2 décembre 2010 - 02:38:06

Fichier

2010-MODELS-CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00513246, version 1

Collections

Citation

Hui Song, Gang Huang, Ying Fei Xiong, Franck Chauvel, Yanchun Sun, et al.. Inferring Meta-Models for Runtime System Data from the Clients of Management APIs. Proceedings of the 13th International conference on Model-driven Engineering Languages and Systems (MODELS 2010), Oct 2010, Oslo, Norway. Springer Berlin/Heidelberg, 6395, 2010. 〈inria-00513246〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

214