A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2

Abstract : Since the first use of a p-adic method for counting points of elliptic curves, by Satoh in 1999, several variants of his algorithm have been proposed. In the current state, the AGM algorithm, proposed by Mestre is thought to be the fastest in practice, and the algorithm by Satoh­-Skjernaa­-Taguchi has the best asymptotic complexity but requires precomputations. We present an amelioration of the SST algorithm, borrowing ideas from the AGM. We make a precise comparison between this modified SST algorithm and the AGM, thus demonstrating that the former is faster by a significant factor, even for small cryptographic sizes.
Type de document :
Communication dans un congrès
Yuliang Zheng. Asiacrypt, 2002, Queenstown, New Zealand. Springer Verlag, 2501, pp.621-628, 2002, LNCS. 〈10.1007/3-540-36178-2_20〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00514137
Contributeur : Pierrick Gaudry <>
Soumis le : mercredi 1 septembre 2010 - 13:22:03
Dernière modification le : jeudi 10 mai 2018 - 02:06:52
Document(s) archivé(s) le : jeudi 2 décembre 2010 - 02:45:13

Fichier

sstagm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierrick Gaudry. A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2. Yuliang Zheng. Asiacrypt, 2002, Queenstown, New Zealand. Springer Verlag, 2501, pp.621-628, 2002, LNCS. 〈10.1007/3-540-36178-2_20〉. 〈inria-00514137〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

140