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Abstract

Let C be a curve of genus 2 that admits a non-hyperelliptic involution. We show
that there are at most 2 isomorphism classes of elliptic curves that are quotients of
degree 2 of the Jacobian of C.

Our proof is constructive, and we present explicit formulae, classified according to
the involutions of C, that give the minimal polynomial of the j-invariant of these curves
in terms of the moduli of C. The coefficients of these minimal polynomials are given
as rational functions of the moduli.

keywords: curve of genus 2, group of involutions, Igusa invariants, reducible
Jacobian



Introduction

Among the curves of genus 2, those with reducible Jacobian have a particular interest.
For instance, the present records for rank or torsion are obtained on such curves [3].
Also, it is in this particular setting that Dem’janenko-Manin’s method yields all the
rational points of a curve [7].

The aim of this paper is to give a constructive proof of the following theorem.

Theorem 1 Let C be a curve of genus 2 with (2,2)-reducible Jacobian. Then there are
at most 2 elliptic curves that are quotients of degree 2 of its Jacobian, up to isomor-
phism.

If this is the case, we present rational formulae that give the j-invariant of these elliptic
curves in terms of the moduli of C.

The moduli of the curves of genus 2 form a 3-dimensional variety that was first described
by Igusa in [4]. His construction relies on 4 covariants of the associated sextic, denoted
by (A, B,C, D); the formulae for these covariants are given again in [11]. We use the
moduli (41,72, 73) proposed in [5], which are ratios of these covariants. If we suppose
that A is not zero, they are given by

) B
n = 144?’
. AB - 3C
jo = —1T8E—
. D

The special case A = 0 is dealt with in appendix 5.3. All along the paper, the charac-
teristic of the basefield will be supposed different from 2, 3 and 5. We will regularly
feel free to work over an algebraic closure of the initial field of definition of the curves.
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1 Preliminaries

Definition 2 The Jacobian of a curve C of genus 2 is (2,2)-reducible if there exists a
(2,2)-isogeny between Jac(C) and a product & x & of elliptic curves. The curve & is
then called a quotient of Jac(C) of degree 2.

As usual, the prefix (2,2) means that the kernel of the isogeny is isomorphic to Z /27 x
Z./27.. A curve of genus 2 always admits the hyperelliptic involution, denoted ¢, which
commutes with all other automorphisms. The following lemma, in substance in [4],
relates the reducibility to the existence of other involutions.



Lemma 3 Let C be of genus 2 curve. The set of the non-hyperelliptic involutions
of C is mapped onto the isomorphisms classes of elliptic curves which are quotient of
degree 2 of the Jacobian of C, via T — C/T. As a consequence the Jacobian of C is
(2,2)-reducible if and only if C admits a non-hyperelliptic involution.

Proof. Let T be a non-hyperelliptic involution of C. The quotient of C by 7 is a curve
€ of genus 1 [4]; this curve is a also quotient of the Jacobian of C. The Jacobian
projects onto &£, and the kernel of this map is another elliptic curve £'. Consequently,
the Jacobian of C splits as £ x &'.

On the other hand, let £ be an elliptic quotient of degree 2 of Jac(C). There exists a
morphism ¢ of degree 2 from C onto €. For a generic point p on C, the fiber ¢~ (¢(p))
can be written {p,q(p)}, where ¢ is a rational function of p. We define 7 as the map
p — q(p). Since the curve £ has genus one, 7 is not the hyperelliptic involution. O

Bolza [1], Igusa [4] and Lange [8] have classified the curves with automorphisms, and
in particular the curves with involutions. The moduli of such curves describe a 2-
dimensional subvariety of the moduli space; we will denote this set by #Hs. In our
local coordinates, this hypersurface is described by the following equation R, whose
construction is done in [11].
R: 839390038939659468275712;2 4 92114133216972232458240000053

+ 3298357634722313011200052 53 + 18220094257462272053 j1 53

— 37481336758208102453 j7j2 + 999502313552216064000053 51 j2

+ 9414317882752 — 56222005137312153653 2 — 56222005137312153653 53

+ 4338117680348160053 3 — 7196416657575955660800052 52

— 38860649950910160568320052 j1 — 115683138142617657 ja

— 3138105960957 + 6276211921851 52 + 1394713760453 53

— 3138105960951 5 — 18828635765457 2 — 697356880259 ja

+ 192612425007458304;% j3 + 9414317882776 — 697356880255

+ 28920784535654400572 j353 + 1648484718532300805% j352 = 0.

We will call reduced group of automorphisms of a curve the quotient of its group of
automorphisms by {1,:}. The points on Hs can be classified according to their reduced
group of automorphisms G.

e (G is the dihedral group Dg; this is the case for the point on Ho associated to the
curve y? = 2% + 1.

G is the symmetric group Gy; this is the case for the point associated to the curve

y?=12° 2.

G is the dihedral group Ds; the corresponding points describe a curve D on Hs,
excluding the two previous points.

G is Klein’s group V4. The corresponding points describe a curve V on Hs,
excluding the two previous points; these 2 points form the intersection of D and

V.

G is the group Z/27. This corresponds to the open subset U = Hy — D — V; this
situation will be called the generic case.

In the sequel, we characterize all these cases, except the two isolated points, in terms
of the moduli of C, describe the involutions of C and compute the corresponding j-
invariants.



In the ”generic case”, we introduce two characteristic invariants of the isomorphism
classes. Our explicit formuae then give an easy proof of the fact that the curves whose
moduli lie on D admit a real multiplication by v/3. Finally, the involutions are naturally
paired as (7, 7t), and these involutions correspond in general to distinct elliptic curves;
we show that on the curve V, each pair (7, 7:) yields a single elliptic curve.

The proof of Theorem 1 could be achieved through the exhaustive study of all possible
automorphism groups, which would require to consider groups of order up to 48. We
follow another approach, which relies on the computer algebra of polynomials systems.

This method brings to treat many polynomial systems. While most of them can be
easily treated by the Grobner bases package of the Magma Computer Algebra Sys-
tem [10], the more difficult one in section 2 requires another approach, which we will
briefly describe. The systems we solved cannot given here, for lack of space; they are
available upon request. The study of the group action in section 2 was partly conducted
using the facilities of Magma for computing in finite groups.

2 The generic case

In the open set U, the reduced group of automorphisms is 7Z/27. Consequently, the
whole group of automorphisms has the form {1,:,7,7:.}, and lemma 3 implies that
there are at most two elliptic quotients. Our goal is then to compute a polynomial of
degree 2 giving their j-invariants in terms of the moduli (41, 72, J3)-

2.1 The minimal polynomial from a Rosenhain form
As a first step, we obtain the j-invariants from a Rosenhain form. The following result

is based on [4], which gives the Rosenhain form of a (2, 2)-reducible curve.

Theorem 4 Let C be a curve of genus 2 whose moduli belong to Ha. On an algebraic
closure of its definition field, C is isomorphic to a curve of equation

v =z(z—1)(z — N (z — p)(z —v), where p = 1/1 -2

)
— UV

and X\, v, p are pairwise distinct, different from 0 and 1. The Jacobian of C is (2,2)-
isogeneous to the product of the elliptic curves of equation y?> = z(x — 1)(x — A), where
A is a solution of

V2AZA? + 2up(—2v + M)A 4 p? = 0. (1)

Proof. The curve C has 6 Weierstrafl points, and an isomorphism from C to another
curve is determined by the images of 3 of these points. Let 7 be a non-hyperelliptic
involution of C, and Py, P>, P3 be Weierstral points on C that represent the orbits of
7. The curve C' defined by sending { Py, P», P3} to {0,1,00} admits the equation

y* =2z(z —1)(z - N (z - p)(z - ).

This curve is not singular, so A, v, u are pairwise distinct, and different from 0 and 1.



The image of the involution of C on C’ is still denoted by 7. This involution permutes
the Weierstrafl points of C'; up to a change of names, we have 7(0) = A, 7(1) = p and
7(00) = v. On another hand, 7 can be written

(2.y) = az +b wy
ey = cx+d (cx+d)3)’

and since it has order 2, we have a = —d and w = +(ad — bc)*/2. The involution 7 is
determined by 7(0) = A and 7(c0) = v, which gives

z—X  udy
T($7 y) = 4 3 ?

z—v (z—v)

where
u==+\v{v—2A).

Changing the sign of u is equivalent to composing 7 with +. The relation 7(1) = p then
yields the first assertion
1—-A

1—v’

p=v

We now look for a curve isomorphic to C’', where the involution can be written (z,y) —
(—z,y). This means that we are interested in a transformation

ar +b
—
cx +d

such that p(0) = —p(X), (1) = —p(u), p(co) = —p(v). It is straightforward to check
that
(z) = rT—v-—u
v r—v+u’
is such a transformation. As a result, the curve C is isomorphic to the curve C” of

equation y? = (22 — z?)(2? — 23)(2? — 23), where

v—u 11— (v—u)

z1 = p(o0) =1, :E2=<P(0):U+u’ x3:§0(1)_m'

The morphism (z,7) — (22,y) maps C” onto the elliptic curve £ of equation

y? = (z = 1)(z — 23)(z — 23).

The curve € has Legendre form y? = z(z — 1)(z — A), where

2 _ .2
Ty~ T3 _ H

1—xzf (y:l: I/(I/_)\))Z-

Computing the minimal polynomial of A proves the theorem. The conditions on A, u,
v show that none of the denominators vanishes, and that £ is not singular. O



Corollary 5 Let C be a curve whose moduli belong to U, and (X, u,v) defined as above.
The j-invariants of the quotients of degree 2 of the Jacobian of C are the solutions of
the equation

j2+01(>\,7/)j+00(>\,7/)=0, (2)
where (co,c1) are rational functions.

Proof. The j-invariant of an elliptic curve under Legendre form is given by the relation
A*(A—1)%5 —285(A2 —A+1)° =0. (3)

The previous theorem yields 2 elliptic curves that are quotients of the Jacobian of C,
and on the open set U, they are the only ones. The polynomial equation giving j is

obtained as the resultant of equations 3 and 1, using the relation y = V%. O

We do not print the values of ¢ (A, v) and ¢; (A, v) for lack of space. Since the moduli
(71, J2,j3) can be written in terms of A and v, an elimination procedure could give the
coefficients ¢y and ¢; in terms of the moduli. Our approach is less direct, but yields to
lighter computations.

2.2 The group acting on Rosenhain forms

In this section, we introduce two invariants that characterize the isomorphism classes
of (2,2)-reducible curves.

Theorem 6 Let C be a curve of genus 2 whose moduli belong to Ha. There are 24
triples (A, u = vi=2,v) for which the curve of equation y* = z(z—1)(z—X)(z—p)(z—v)
is isomorphic to C. The unique subgroup of order 24 of PGL(2,5) acts transitively on
the set of these triples.

Proof. Theorem 4 yields a triple (A1, u1,v1) that satisfies the condition, so from now
on, we consider that C is the corresponding curve. Every curve isomorphic to C is given
by a birational transformation

ar +b

= .

crx+d
Since this curve must be under Rosenhain form, the transformation must map 3 of
the 6 Weierstrafl points (0, 1,00, A1, j11,71) on the points (0,1,00). The corresponding
homographic transformations form a group of order 6.5.4 = 120, and an exhaustive
search shows that only 24 of them satisfy the relation on the new values (A, u, V),

1-A

1—v’

p=rv

Let us denote by (), Nia’/i)i:1,...,24 the corresponding triples. The exhaustive study
shows that the curve of Rosenhain form {0, 1,00, \;, i, v} is sent to the curve of
Rosenhain form {0, 1, 00, Aj, 11,7} by successive applications on these 6 points of the
maps o1(z) = 1/z, o9(z) =1 —z, o3(x) = %, o4(z) = z/p. These maps generate a



group isomorphic to the unique subgroup of order 24 of PGL(2,5), and the action of
this group on the triples (X, u, ) is given by the following table.

map 01 g9 o3 (o]

1 A A
S St LA v B
c b !
v % 1—v ’f:ﬁ %

|

The 24 triples (\;, i, v;) are explicitely given in appendix 5.3. The symmetric functions
in these triples are invariants of the isomorphism class of C. We will now define two
specific invariants that characterize these classes.

Definition 7 LetC be a curve of genus 2 whose moduli belong to Ha, and let {(X\;, pi, vi)}
be the set of triples defined above. We denote by Q and Y the following functions:

— 242
Q - 212?1 Vi )
T = Yo divie

The following proposition shows that {2 and Y characterize the isomorphism classes of
such curves. It is straightforward to check all the following formulae, since (41, jo, j3),
(co,c1) and (2, T) can be written in terms of (A, v).

Proposition 8 Let C be a curve of genus 2 whose moduli belong to Ha, and (2, T)
defined as above. If all terms are defined, then the following holds:

. 36(Q—2)Y2

= Q=8)2Y-30)2

, 216T2(QY+ Y —270)
2= T Q=R)(2T—30)F ¢
o 243074

I3 = T 64(Q=8)2(2T—3Q)5

The previous system can be solved for (j1, j2,j3) only if the point (j1,j2,73) belongs
to Hs. In this case, 2 and Y are given by the following proposition.

Proposition 9 Let C be a curve of genus 2 whose moduli belong to Ha, and (2, T)
defined as above. If all terms are defined, then the following holds:

Q = (34936012851 j3 — 298598405352 + 191102976000052 + 97257 j> — 11073024057 j3
— 455152 — 1244160031 jajo + 675 + 4551 — 3305352 — 565252 — 1657) /
(—2687385651 73 — 149299205352 + 9555148800002 + 37324805753 — 95173
+ 414720051 jajo + 345 + 951 — 37752 + 24153 — 237),

T = 3/4(1625f — 4837294085 j5 + 1719926784000052 + 671846405253 — 3657
— 1343692805352 + 1625152 + 4555 + 3525120051 j3jo — 455352 — 725252
— 69120005352 — 205153 — 45152)(3493601281 53 — 2985984053 52
+ 191102976000052 + 9725252 — 11073024052 j3 — 455152 — 1244160041 j352
+ 655 + 4571 — 3305772 — 565775 — 1657) /
(2771 + 1612431361 53 + 143327232000052 — 5349888052 55 — 957
+ 4478976053 j» + 486522 + 1355152 — 2384640051 jajo — 1625352 — 815252
— 34560003352 — 105155 — 271j2)(—2687385651 j3 — 1492992053 52
+ 95551488000053 + 37324805773 — 95153 + 414720051 jajo + 355 + 951
— 35342 + 25233 — 239)).



Remark The invariants (2, T) are rational functions defined on the variety Hs. Con-
sequently, there may exist simpler formulae to express them.

We now give the coefficients of the minimal polynomial of the j-invariant in terms of
Qand T.

Proposition 10 Let C be a curve of genus 2 whose moduli belong to the open set U.
The j-invariants of the elliptic quotients of degree 2 of its Jacobian are the solutions
of the equation j% + c1j + co, where cg and ¢, are given below.
409672(Q-32)3
0 = T oo

_1287(Q2—4QY+56Q—512)
e = Q(Q—3) :

The two previous propositions lead to an expression of the form

32+ e1(j1, j2, j3)i + co(j1, 42, 43) = 0,

where ¢1(j1, jo, j3) and ¢o(j1,j2,73) are rational functions in (ji, j2,73). The denomi-
nators in these functions vanish on the two curves D and V, and two additional curves.
This last degeneracy is an artifact due to our choice of denominators; it is treated in
appendix 5.3.

Computational considerations. To derive the previous formulae, the first step is
to obtain each of the functions (¢, ¢1, 71, J2,j3) in terms of Q and Y. Let us consider
the case of, say, j1. The indeterminates (), v, j1, 2, T) are related by the system

Q = Q)
T = TOuw),
jl = j1(>‘7y)7

where the right-hand side is a rational function. The relation between (2, Y, j1) is the
equation of the image of the corresponding rational function. Determining this relation
is often called implicitization.

A well-known approach to solve this question relies on a Grobner basis computation.
The system can be rewritten as a polynomial system Fj, in (A, v, ji,Q, ). The relation
we seek is the intersection of the ideal generated by F), and the additional equation
1 — ZD(\,v) with Q[j1,9Q, Y], where Z is a new indeterminate, and D the lcm of the
denominators [2, chapter 3.3]. The intersection can be computed by a Grobner basis
for an eliminating order. In our case, such computations take several hours, using
Magma on a DEC EV6 500 Mhz machine.

We followed another approach to treat this question. The system we consider defines a
finite extension of the field Q(€2, ), and the relation we seek is the minimal polynomial
of j1 in this extension. In [12], the second author proposes a probabilistic polynomial-
time algorithm to compute this minimal polynomial; its Magma implantation solves
the present question in a matter of minutes.

Finally, once j1, jo and j3 are obtained in terms of (€2, Y), we have to solve the system
in Proposition 8 for (€2, Y). This system defines a finite extension of Q(j1,72). Since 2
and T are know to be functions of (j1, jo2, 73), 73 is a primitive element for this extension,
and our question is reduced to compute €2 and T using this primitive element. The
methods in [12] apply as well in this case, and give the formulae in Proposition 9.

8



3 The curve D

We now turn to the first special case, the curve D defined in the preliminaries, and
prove Theorem 1 in this case. The computations turn out to be quite simpler, mainly
because this variety has dimension only one. Our formulation also leads to additional
results concerning the endomorphism ring of the Jacobian in question.

Theorem 11 Let C be a curve of genus 2 whose moduli belong to D. There are two
elliptic curves that are quotients of degree 2 of Jac(C).

Proof. As in the generic case, we start form a characterization of those curves due to
Igusa [4].

Lemma 12 Let C be a curve of genus 2. The reduced group of automorphisms of C is
D3 if and only if C is isomorphic to a curve of equation

¥ =z(z—1)(z — Nz — p)(z —v), where p= 1% andv =1— —, (4)

with \ different from 0, 1 and (1 +/3)/2.

If C is under the form 4, its reduced group of automorphisms can be explicitely written.
In the following table, u denotes H=v/A2 — X + 1.

map order
Id (z,y) — (z,y) 1
T (z,y) = ()\—/\1_)£+1’ ((Aff)?ﬂ)'o‘) 2
 (z,y)— (/)\\aji)lx——t\l’ (/\xiigi/\):“ 2
3 (z,y) = )\:1;;_1/\7)\’ (,Zf}?p) 2
p1 (z,y) = (1_%%) 3
p2 (z,y) — (ﬁv (1}:1;)3) 3

For each of the involutions 71, 7o, 73, we repeat the construction done in the proof of
theorem 4: we associate to each 7; a pair of elliptic curves.

To this effect, we determine an isomorphism ¢ from C to a curve where 7; becomes

(z,y) = (—z,y), and denote by z1 = 1, 22 and z3 the values taken by ¢ at {0, 1, 00}.

The means that the curve C is isomorphic to the curve y? = (22 — 1)(22 — 23) (22 — 22),

and the elliptic curves we look for are y? = (z — 1)(z — x3)(z — %), whose Legendre

forms is y? = z(z — 1)(z — A), where A = (23 — 23)/(1 — x3). These computations are

summarized in the following table.

involution T9 T3 A
V4
(—1-w)z+X —1-u+tX u+l _ 1 —_q)2
71 T = (—1+uw)z+X  —14ut+Xr  u-—1 Ay = >‘(>‘ 1 ’LL)
A=1—w)z+1 —1—ut+X A—u _ 1
72 T N ifwztl  —Tfutx  Atu Ag = O 1tu)?
T—Atu —1—u+A A—u _ 1
73 i v —1+ut+X  Au Az = A(A—1+u)?

Let Al be the conjugate of A;, obtained when u is replaced by —u. The elliptic curves
corresponding to 7; and 7,0 have Legendre parameters A; and A}, and we have Ay =

9



A = 1/A}, Ay, = Ay = 1/A;. Since changing A; to its inverse 1/A; leaves the j-
invariant unchanged, there are only 2 isomorphism classes of elliptic quotients. O

We now give generators of the ideals defining the curves in D, in terms of their mod-
uli. We follow the Grobner basis approach we already mentioned; Magma’s Grébner
package takes about a minute to treat these simpler problems.

Equation 4 gives the moduli in terms of A, and these relations can be expressed by a
polynomial system Fp in Q[j1, jo, j3, A]. The ideal defining the curve D is obtained as
the intersection of the ideal generated by Fp and 1 — ZD(\) with Q[j1, jo, j3], where Z
is a new indeterminate, and D()) the lcm of the denominators of (j1,j2,73) expressed
in terms of A:

J1d5 — 297512 — 9055 — 72576051 js + 1728005253
—21874; — 24355 + 16964121653 = 0,
73 — 576007371 j2 + 89915172 + 264655 — 347742725371 — 22394880532
—995328000042 + 656104, + 72907, — 490111948853 = 0,
—81j1 + 2152 — 955 + 5512 + 86400053 =

As in section 2, the previous proof yields the minimal polynomial of the Legenbre
parameters A, and then of j-invariants in terms of A\, under the form 52 +c;(\)j +co()).
Eliminating X is a simple task, which gives the formulae:

—8522141 52 — 6922852 — 662152 + 60543744005351 + 6925760005352 — 595206144053
§3 (470552 + 214925, — 129816)
123733‘% + 141241 j2 + 21053 + 336960005371 + 43200005352 — 24606720053
j3(5j2 + 2741 — 108) ’

)

3
c = -
! 8

co = —8

The points were a denominator vanishes must be treated separately. This is done in
appendix 5.3.

Finally, the previous results make the proof of the following corollaries quite easy.

Theorem 13 Let C be curve of genus 2 whose moduli belong to D. Its two elliptic
quotients are 3-isogeneous.

Proof. We use the same notation as in the previous proof. Let £ be the elliptic curve
associated to the involution 71, under the form y? = z(z — 1)(x — A;). Its 3-division
polynomial is

P3(z) = 3zt + (—4A; — 4)x + 6A127 — A2,

The following linear form divides 5(x):
S3(z) =3z + A —2(u+1),

and corresponds to a subgroup of & of order 3. Using Vélu’s formulae [13], we can
explicitely determine a curve 3-isogeneous to &1, of the form

y2 =23+ a2332 + aqx + ag,

10



where a9, a4, ag are defined by

70 = 2u+1)—N/3

t = 613 —4(A + 1)zo + 244,

u = 41‘% — 4(A1 + 1):13% + 4A1£B0,
ay = —(A1 + 1),
a, = A1 — 5t,

ag = 4:(A1 + 1)t - 7(U + l"ot).

It is a straightforward computation to check that the j-invariant of this curve is A}. O

Corollary 14 Let C be curve of genus 2 whose moduli are on D. The endomorphism
ring of the Jacobian of C contains an order in the quaternion algebra (%) In partic-

ular, it admits a real multiplication by /3.

Proof. The Jacobian of C is isogeneous to £ X &, where £ and & are 3-isogeneous
elliptic curves. Let us denote by Z : & — & a degree-3 isogeny, and Z its dual isogeny.
Let O be the ring

a /3b
O—{(\/gc J >,wherea,b,c,dEZ}.

g )

E1xE — & x&
(P,Q) ~ ([a]P + [DZQ,[ZP + [d]Q)

The map sending ( to the endomorphism

is an injective ring homomorphism. Multiplication by /3 is for instance represented
by the endomorphism (P, Q) — (ZQ,ZP). O

4 The curve V

This is the second special case; as previously, the study is based on a result due to
Igusa.

Theorem 15 Let C be a curve of genus 2 whose moduli belong to V. There exist two
elliptic curves & and Ey such that V is (2,2)-isogeneous to & x €1 and Ey x Ey. These
elliptic curves are 2-isogeneous.

Proof. The following result is taken from [4].

Lemma 16 Let C be a curve of genus 2. The reduced groups of automorphisms of C
s Vy if and only if C is isomorphic to the curve of equation

y2=x(x—1)(x+1)(x—)\)(x—1/)\), (5)

where X\ is different from 0, -1 and 1.

11



If C is under the form 5, its reduced automorphisms can be explicitely determined; in
the following table, u denotes £v/1 — A2 and @ denotes v/ A2 — 1.

map order

Id (z,y) = (z,y) 1
o 3

no(@y) - (52 pety) 2
- 3

T2 ($,y)'_> %7(:;_/]\4)3 2

p @y~ (5 4) 4

We follow the same method as in the proof of theorem 11: for each 7;, we make up
an isomorphism ¢ from C to a curve where 7; becomes (x,y) — (—z,y). This curve
is then isogeneous to the elliptic curve y? = (z — 1)(z — 23)(z — 23), whose Legendre

forms are y? = xz(x — 1)(x — A). This leads to the following table.

involution © To T3 A j
(1—u)xz—X Au—1 1-u _A(1=N _ (4—1?)3
T T Trazx d—u—T Ttu A= —T—u)? Ji = 64"
(=A-w)z+1  Ata—1 Atz _ a1 _ g (a2-1)?
72 T e+t dal Aa Ay = AO—1-7)2 J2 = 64—

The invariants J; and Jo do not depend on w. This implies that the Jacobian of C is
(2,2)-isogeneous to the products & x & and & x £, and consequently, also to &1 x ;.

Finally, the curves & and & are 2-isogeneous, since (Ji, J2) cancels the modular equa-
tion of degree 2. O

Following the same method as in the previous section, we obtain an ideal defining the
moduli of such curves:

32j1j5 — 2Tj1jo — 5453 + 442368051 j5 + 1474560052 j5 — 134369283 = 0,
6455 — 7864320041 jojs + 24351 j> — 37845 + 318504961 j5 — 884736023
—3623878656000052 + 12093235253 = 0,
372 — 10412 + 185, — 46080005 =

Their j-invariant are solution of the equation j2 4 ¢1j + ¢y, where ¢y and ¢; are given
by the following formulae, again obtained through a Grébner basis computation for an
eliminating order.
935152 — 242 + 1866240753 + 2112007371 + 640007372
ATy J3(—243 + 7871 + 20j2) ’
108 256000073 72 + 515172 + 3052 + 7680005375, + 1866240053 _
J3(—243 + 7871 + 2072)

Chy —=

5 Examples

In this section, we present examples, mostly taken from the literature, that show the
use of our results.
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5.1 The generic case
Let C be the curve defined over Q by the equation

2

Y =25 — 2% 42t — 22

—x—1.

Its moduli are

2 x3x5x13 . 2 x P x11x13 . 3% x 53

]1 - 372 ) ]2 = 373 I ]3 = 28 % 375

They belong to the open set U C Ha, so Jac(C) is isogeneous to a product of two elliptic
curves. On this example, finding these curves through a Rosenhain form requires to
work in an extension of Q of degree 24. Propositions 9 and 10 directly give:

214 56 % 373 28 x 3% x 47
CO= " %95 > O~ (g

532 53

and the j-invariants of the elliptic curves are defined on Q(i) by

27><34><47i28><7><11><181,
— 7.
53 53

j =

Notice that 53 divides the discriminant of the curve, it is no surprise to see it appear
in the denominator of j.

5.2 The curve D

The following example is taken from [6], where Kulesz builds a curve admitting many
rational points. Let C be the curve defined on QQ by the equation

y? = 1412964(2% — 2 + 1)* — 803350722 (z — 1).

Its moduli are

32 x 149 x 167 x 2392 x 3618470803 x 336132

= 7572 % 768321547572 ’

C 332397 x 336132 x 195593 x 31422316507485410373257
2= 7573 X 768321547573 ’
i = 272 5 317 % 57 x 70 x 473 x 89% x 239" x 33613"

3 — - .

7575 x 768321547575

We check that they belong to the curve D, so the reduced group of automorphisms of C
is D3 — the construction of this curve in [6] already implies this result. Again, writing
down a Rosenhain form for this curve requires to work in an algebraic extension of Q.
Our formulae readily give the j-invariants of the quotient elliptic curves:

_ 239 x 33613 x 843335633 an 192 x 673 x 239 x 3493 x 33613
224 % 34 x 59 x T2 x 473 x 89’ 28 x 312 x 53 x 76 x 47 x 893 °

13



5.3 The curve V

In the paper [9], Leprévost and Morain study the curve Cy defined on Q(#) by the
equation
y? = x(zt — 0% + 1),

with the purpose to study sums of caracters. Its moduli are

96% — 20 276% — 140 62 — 4

TR PV NS V1.1 Sk gy N VT S
I (302 + 202" 72 (362 + 203" 73 (302 + 20)°

We check that they belong to the curve V, so the reduced group of automorphisms of
C is V4. This yields the j-invariants of the quotient elliptic curves:

(30 —10)3 (30 +10)3

1= w1 e G+2)0-2)°

and j' = 64

Notice that the curves Ey and Ej given in [9]
y? =z(z® 4z +2 —0),

have the same invariants j'. The other quotient curves, with invariant j, admit the
equation
y? = z(e? + 4z + 2+ 6).

Appendix: formulary

To complete the previous study, we give formulae describing the following cases:

e The reduced group of automorphisms G is neither D3 nor Vj, nor Z/27: this is
the case for the two points 2.(a) and 2.(b) below.

e A denominator vanishes. On the curve D, this happens at a single point, treated
in 2.(c); in the generic case, two curves must be studied in 2.(f) and 2.(g).

e The covariant A vanishes, so the moduli (j1, j2,73) are not adapted. We choose
two other invariants, and go through the same exhaustive process.

All these formulae are gathered as an algorithm, taking as input a curve of genus 2,
with (2,2)-reducible Jacobian, that outputs the minimal polynomial of the j-invariants
of the elliptic quotients.

1. Compute the covariants A, B,C, D, R of C given in [4], and check that R = 0.
2. If A # 0: compute j1, o2, J3.
(a) If (41, J2,73) = (%, —%, 25670%), then the reduced group of automorphisms
is Dg; return j(5 — 54000).
(b) If (j1,72,73) = (—?})—6, %, %), then the reduced group of automorphisms
is G4; return 5 — 8000.

..\ _ (24297228 _ 81449284536 _ _57798021931029
(c) If (j1,52,73) = (S§5451 » — 833237621 + — Tr220220240364862): then the reduced

group of automorphisms is D3; return

o ATI600263168 - 8004076887461888
J 658503 * 57289761

14



3. The
(a)

If (41,72, 73) cancel the polynomials defining D, then the reduced group of
automorphisms is Dj3; return j as computed in section 3.

If (j1,j2,73) cancel the polynomial defining V, then the reduced group of
automorphisms is Vj; return j as computed in section 4.

If (1, j2, j3) satisfy
33177643 — j2 — 245150 — 14457 = 0,
951 +Jj2 = 0,
then the reduced group of automorphisms is Z/2Z; return

o 15099494475 . 2609192632327;

ja + 121 Jo + 124,
If (j1,2,73) satisfy
43 + BAji — 32248627273 j5 + 48146942420582453 = 0,
]'8.71 + 5]2 = 0’

then the reduced group of automorphisms is Z/2Z ; return 52 + ¢1j + co,
where

125 (—53 — 2441 j2 — 14453 + 1625702453)>

Cco =

9559130112 42
(—72 — 245142 — 14453 + 1625702453)(272305152053 — 28955 — 69365152 — 4161657)
C =
! 2064772104192;2 ’

Else, we are in the generic case, and no denominator vanishes; return j as
computed in section 2.

case A=0
If B =0and C° = 4050000D2, the reduced group of automorphisms is Z/27;
return (j — 4800)(7 — 8640).

If C = 0 and B® = 303750002, the reduced group of automorphisms is Z/27;
return (5 — 160)(j + 21600).

Compute the invariants

3 CD BC
= 2 Y and = 15362
512 pr M4 = 1980
If (t1,t2) = (1/576000, —460800), the reduced group of automorphisms is Vy;
return j2 + 72005 + 13824000.
If (t1,t2) = (—1/864000,—172800), the reduced group of automorphisms is
Ds; return 52 + 552005 — 69984000.

The reduced group of automorphisms is Z/27Z. Compute

ty

—238878720000¢1 + 1555200tat1 + Tt3t; + 2to 3
Q=-4 and T = =Q,
4777574400001 + 2073600tat1 + t3t) — to 2

then cg and ¢; given in section 2; return j2 4 ¢1j + co.

15



Appendix: the 24 triples

The following table gives the full list of the triples defined in theorem 6.

()\ Av—v ) (—1 —\+v —/\-I-z/) (—)\1/+2V—1 ) (—)x—l—z/)
» =1V v—1? Av—=A—v+1? Av—\ v—1 Y v=1 Av—AX
Av—\ v—1 v-—1 —\+v A—v —\v+2v—1
()\1/—1/’ Av—v? )\—1) (/\’ v—1" )\z/—21/—|—1) ( v—1 y —A+, _V+1)
()\1/—)\ v—1 )\I/—>\—I/+1) ( A —A\t+v )\—z/) ()\—1 A\V—V )\1/—1/)
Av—v’ v ' Av—2v+1 A=1? Aov—A—v+17 A—1 v—1? v—1"7 Av—2X\
( A v A\V—V ) ()\—1 A\V—V A\V—V ) ()\1/—2V-|-1 v—1 )\—1)
A—1v—17 Av—2v+1 A—v?) A—v ) Av—2v+1 Av—v ) v X
()\1/—21/+1 -1 1/—1) (l A—v A—v ) ()\1/—21/—0—1 v )\1/—1/)
Av=A—v+17 A—-17 \-1 v) Av—v’ \v—2v+1 A=A—v+17 v—17 Av—\
(—1 -1 —v+1 ) ()\1/—2V-|-1 A—v /\—1/) (/\1/—21/+1 —v+1 l)
v—17 \—-1° \v—2v+1 Av—v ) dv—rv’ -1 A—v Y A=v A
(A—l —Av+A+v—1 A—l) (Au—2u+1 Av—v ) (l v—1 l)
A—1? A—v DN v ' xuv? v Av—vl \
A—1 Av—A—v+1 AW+ v+ +r—1 v+ —v+1 —v+1
(1/—1’ —A+, Av—2v+1 ) ( A—v ) A—v ’_U+1) ( A—v ) A—v /\1/—21/+1)
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