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Product quantization for nearest neighbor search
Hervé Jégou, Matthijs Douze, Cordelia Schmid

INRIA

Abstract— This paper introduces a product quantization based
approach for approximate nearest neighbor search. The idea
is to decomposes the space into a Cartesian product of low
dimensional subspaces and to quantize each subspace separately.
A vector is represented by a short code composed of its subspace
quantization indices. The Euclidean distance between two vectors
can be efficiently estimated from their codes. An asymmetric
version increases precision, as it computes the approximate
distance between a vector and a code.

Experimental results show that our approach searches for
nearest neighbors efficiently, in particular in combination with an
inverted file system. Results for SIFT and GIST image descriptors
show excellent search accuracy outperforming three state-of-the-
art approaches. The scalability of our approach is validated on
a dataset of two billion vectors.

Index Terms— High-dimensional indexing, image indexing,
very large databases, approximate search.

I. INTRODUCTION

COMPUTING Euclidean distances between high dimen-
sional vectors is a fundamental requirement in many

applications. It is used, in particular, for nearest neighbor
(NN) search. Nearest neighbor search is inherently expensive
due to the curse of dimensionality [3], [4]. Focusing on the
D-dimensional Euclidean space RD, the problem is to find
the element NN(x), in a finite set Y ⊂ RD of n vectors,
minimizing the distance to the query vector x ∈ RD:

NN(x) = argmin
y∈Y

d(x, y). (1)

Several multi-dimensional indexing methods, such as the
popular KD-tree [5] or other branch and bound techniques,
have been proposed to reduce the search time. However, for
high dimensions it turns out [6] that such approaches are
not more efficient than the brute-force exhaustive distance
calculation, whose complexity is O(nD).

There is a large body of literature [7], [8], [9] on algorithms
that overcome this issue by performing approximate nearest
neighbor (ANN) search. The key idea shared by these algo-
rithms is to find the NN with high probability “only”, instead
of probability 1. Most of the effort has been devoted to the
Euclidean distance, though recent generalizations have been
proposed for other metrics [10]. In this paper, we consider the
Euclidean distance, which is relevant for many applications.
In this case, one of the most popular ANN algorithms is
the Euclidean Locality-Sensitive Hashing (E2LSH) [7], [11],
which provides theoretical guarantees on the search quality

This work was partly realized as part of the Quaero Programme, funded
by OSEO, French State agency for innovation. It was originally published as
a technical report [1] in August 2009. It is also related to the work [2] on
source coding for nearest neighbor search. This particular version is a post-
print correcting mistakes reported by Jan Stria and Ondrej Chum (CVUT).

with limited assumptions. It has been successfully used for
local descriptors [12] and 3D object indexing [13], [11].
However, for real data, LSH is outperformed by heuristic
methods, which exploit the distribution of the vectors. These
methods include randomized KD-trees [14] and hierarchical
k-means [15], both of which are implemented in the FLANN
selection algorithm [9].

ANN algorithms are typically compared based on the trade-
off between search quality and efficiency. However, this trade-
off does not take into account the memory requirements of
the indexing structure. In the case of E2LSH, the memory
usage may even be higher than that of the original vectors.
Moreover, both E2LSH and FLANN need to perform a final
re-ranking step based on exact L2 distances, which requires the
indexed vectors to be stored in main memory if access speed
is important. This constraint seriously limits the number of
vectors that can be handled by these algorithms. Only recently,
researchers came up with methods limiting the memory usage.
This is a key criterion for problems involving large amounts
of data [16], i.e., in large-scale scene recognition [17], where
millions to billions of images have to be indexed. In [17],
Torralba et al. represent an image by a single global GIST
descriptor [18] which is mapped to a short binary code.
When no supervision is used, this mapping is learned such
that the neighborhood in the embedded space defined by the
Hamming distance reflects the neighborhood in the Euclidean
space of the original features. The search of the Euclidean
nearest neighbors is then approximated by the search of the
nearest neighbors in terms of Hamming distances between
codes. In [19], spectral hashing (SH) is shown to outper-
form the binary codes generated by the restricted Boltzmann
machine [17], boosting and LSH. Similarly, the Hamming
embedding method of Jegou et al. [20], [21] uses a binary
signature to refine quantized SIFT or GIST descriptors in a
bag-of-features image search framework.

In this paper, we construct short codes using quantization.
The goal is to estimate distances using vector-to-centroid
distances, i.e., the query vector is not quantized, codes are
assigned to the database vectors only. This reduces the quan-
tization noise and subsequently improves the search quality.
To obtain precise distances, the quantization error must be
limited. Therefore, the total number k of centroids should
be sufficiently large, e.g., k = 264 for 64-bit codes. This
raises several issues on how to learn the codebook and assign
a vector. First, the number of samples required to learn the
quantizer is huge, i.e., several times k. Second, the complexity
of the algorithm itself is prohibitive. Finally, the amount of
computer memory available on Earth is not sufficient to store
the floating point values representing the centroids.

The hierarchical k-means see (HKM) improves the effi-
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ciency of the learning stage and of the corresponding assign-
ment procedure [15]. However, the aforementioned limitations
still apply, in particular with respect to memory usage and size
of the learning set. Another possibility are scalar quantizers,
but they offer poor quantization error properties in terms
of the trade-off between memory and reconstruction error.
Lattice quantizers offer better quantization properties for uni-
form vector distributions, but this condition is rarely satisfied
by real world vectors. In practice, these quantizers perform
significantly worse than k-means in indexing tasks [22]. In
this paper, we focus on product quantizers. To our knowledge,
such a semi-structured quantizer has never been considered in
any nearest neighbor search method.

The advantages of our method are twofold. First, the number
of possible distances is significantly higher than for competing
Hamming embedding methods [20], [17], [19], as the Ham-
ming space used in these techniques allows for a few distinct
distances only. Second, as a byproduct of the method, we
get an estimation of the expected squared distance, which is
required for ε-radius search or for using Lowe’s distance ratio
criterion [23]. The motivation of using the Hamming space
in [20], [17], [19] is to compute distances efficiently. Note,
however, that one of the fastest ways to compute Hamming
distances consists in using table lookups. Our method uses
a similar number of table lookups, resulting in comparable
efficiency.

An exhaustive comparison of the query vector with all codes
is prohibitive for very large datasets. We, therefore, introduce
a modified inverted file structure to rapidly access the most
relevant vectors. A coarse quantizer is used to implement this
inverted file structure, where vectors corresponding to a cluster
(index) are stored in the associated list. The vectors in the
list are represented by short codes, computed by our product
quantizer, which is used here to encode the residual vector
with respect to the cluster center.

The interest of our method is validated on two kinds
of vectors, namely local SIFT [23] and global GIST [18]
descriptors. A comparison with the state of the art shows
that our approach outperforms existing techniques, in par-
ticular spectral hashing [19], Hamming embedding [20] and
FLANN [9].

Our paper is organized as follows. Section II introduces
the notations for quantization as well as the product quantizer
used by our method. Section III presents our approach for
NN search and Section IV introduces the structure used to
avoid exhaustive search. An evaluation of the parameters of
our approach and a comparison with the state of the art is
given in Section V.

II. BACKGROUND: QUANTIZATION, PRODUCT QUANTIZER

A large body of literature is available on vector quantiza-
tion, see [24] for a survey. In this section, we restrict our
presentation to the notations and concepts used in the rest of
the paper.

A. Vector quantization
Quantization is a destructive process which has been ex-

tensively studied in information theory [24]. Its purpose is to

reduce the cardinality of the representation space, in particular
when the input data is real-valued. Formally, a quantizer is a
function q mapping a D-dimensional vector x ∈ RD to a
vector q(x) ∈ C = {ci; i ∈ I}, where the index set I is from
now on assumed to be finite: I = 0 . . . k−1. The reproduction
values ci are called centroids. The set of reproduction values
C is the codebook of size k.

The set Vi of vectors mapped to a given index i is referred
to as a (Voronoi) cell, and defined as

Vi , {x ∈ RD : q(x) = ci}. (2)

The k cells of a quantizer form a partition of RD. By
definition, all the vectors lying in the same cell Vi are recon-
structed by the same centroid ci. The quality of a quantizer
is usually measured by the mean squared error between the
input vector x and its reproduction value q(x):

MSE(q) = EX

[
d(q(x), x)2

]
=

∫
p(x) d

(
q(x), x

)2
dx, (3)

where d(x, y) = ||x − y|| is the Euclidean distance between
x and y, and where p(x) is the probability distribution func-
tion corresponding the random variable X . For an arbitrary
probability distribution function, Equation 3 is numerically
computed using Monte-Carlo sampling, as the average of
||q(x)− x||2 on a large set of samples.

In order for the quantizer to be optimal, it has to satisfy two
properties known as the Lloyd optimality conditions. First, a
vector x must be quantized to its nearest codebook centroid,
in terms of the Euclidean distance:

q(x) = argmin
ci∈C

d(x, ci). (4)

As a result, the cells are delimited by hyperplanes. The
second Lloyd condition is that the reconstruction value must
be the expectation of the vectors lying in the Voronoi cell:

ci = EX

[
x|i
]
=

∫
Vi
p(x|x ∈ Vi)x dx. (5)

The Lloyd quantizer, which corresponds to the k-means
clustering algorithm, finds a near-optimal codebook by iter-
atively assigning the vectors of a training set to centroids and
re-estimating these centroids from the assigned vectors. In the
following, we assume that the two Lloyd conditions hold, as
we learn the quantizer using k-means. Note, however, that k-
means does only find a local optimum in terms of quantization
error.

Another quantity that will be used in the following is the
mean squared distortion ξ(q, ci) obtained when reconstructing
a vector of a cell Vi by the corresponding centroid ci. Denoting
by pi = P

(
q(x) = ci

)
the probability that a vector is assigned

to the centroid ci, it is computed as

ξ(q, ci) =
1

pi

∫
Vi
d
(
x, q(x)

)2
p(x) dx. (6)

Note that the MSE can be obtained from these quantities as

MSE(q) =
∑
i∈I

pi ξ(q, ci). (7)
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The memory cost of storing the index value, without any
further processing (entropy coding), is dlog2 ke bits. Therefore,
it is convenient to use a power of two for k, as the code
produced by the quantizer is stored in a binary memory.

B. Product quantizers

Let us consider a 128-dimensional vector, for example the
SIFT descriptor [23]. A quantizer producing 64-bits codes,
i.e., “only” 0.5 bit per component, contains k = 264 centroids.
Therefore, it is impossible to use Lloyd’s algorithm or even
HKM, as the number of samples required and the complexity
of learning the quantizer are several times k. It is even
impossible to store the D×k floating point values representing
the k centroids.

Product quantization is an efficient solution to address these
issues. It is a common technique in source coding, which
allows to choose the number of components to be quantized
jointly (for instance, groups of 24 components can be quan-
tized using the powerful Leech lattice). The input vector x is
split into m distinct subvectors uj , 1 ≤ j ≤ m of dimension
D∗ = D/m, where D is a multiple of m. The subvectors
are quantized separately using m distinct quantizers. A given
vector x is therefore mapped as follows:

x1, ..., xD∗︸ ︷︷ ︸
u1(x)

, ..., xD−D∗+1, ..., xD︸ ︷︷ ︸
um(x)

→ q1
(
u1(x)), ..., qm(um(x)

)
,

(8)
where qj is a low-complexity quantizer associated with the
jth subvector. With the subquantizer qj we associate the index
set Ij , the codebook Cj and the corresponding reproduction
values cj,i.

A reproduction value of the product quantizer is identified
by an element of the product index set I = I1 × . . . × Im.
The codebook is therefore defined as the Cartesian product

C = C1 × . . .× Cm, (9)

and a centroid of this set is the concatenation of centroids
of the m subquantizers. From now on, we assume that all
subquantizers have the same finite number k∗ of reproduction
values. In that case, the total number of centroids is given by

k = (k∗)m. (10)

Note that in the extremal case where m = D, the com-
ponents of a vector x are all quantized separately. Then the
product quantizer turns out to be a scalar quantizer, where the
quantization function associated with each component may be
different.

The strength of a product quantizer is to produce a large
set of centroids from several small sets of centroids: those
associated with the subquantizers. When learning the subquan-
tizers using Lloyd’s algorithm, a limited number of vectors is
used, but the codebook is, to some extent, still adapted to the
data distribution to represent. The complexity of learning the
quantizer is m times the complexity of performing k-means
clustering with k∗ centroids of dimension D∗.

Storing the codebook C explicitly is not efficient. Instead,
we store the m × k∗ centroids of all the subquantizers, i.e.,

memory usage assignment complexity
k-means kD kD

HKM bf
bf−1

(k − 1)D lD

product k-means mk∗D∗ = k1/mD mk∗D∗ = k1/mD

TABLE I
MEMORY USAGE OF THE CODEBOOK AND ASSIGNMENT COMPLEXITY FOR

DIFFERENT QUANTIZERS. HKM IS PARAMETRIZED BY TREE HEIGHT l

AND THE BRANCHING FACTOR bf .
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Fig. 1. SIFT: quantization error associated with the parameters m and k∗.

mD∗ k∗ = k∗D floating points values. Quantizing an element
requires k∗D floating point operations. Table I summarizes
the resource requirements associated with k-means, HKM and
product k-means. The product quantizer is clearly the the only
one that can be indexed in memory for large values of k.

In order to provide good quantization properties when
choosing a constant value of k∗, each subvector should have,
on average, a comparable energy. One way to ensure this prop-
erty is to multiply the vector by a random orthogonal matrix
prior to quantization. However, for most vector types this is not
required and not recommended, as consecutive components
are often correlated by construction and are better quantized
together with the same subquantizer. As the subspaces are
orthogonal, the squared distortion associated with the product
quantizer is

MSE(q) =
∑
j

MSE(qj), (11)

where MSE(qj) is the distortion associated with quantizer qj .
Figure 1 shows the MSE as a function of the code length
for different (m,k∗) tuples, where the code length is l =
m log2 k

∗, if k∗ is a power of two. The curves are obtained
for a set of 128-dimensional SIFT descriptors, see section V
for details. One can observe that for a fixed number of bits,
it is better to use a small number of subquantizers with many
centroids than having many subquantizers with few bits. At
the extreme when m = 1, the product quantizer becomes a
regular k-means codebook.

High values of k∗ increase the computational cost of the
quantizer, as shown by Table I. They also increase the memory
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symmetric case asymmetric case
Fig. 2. Illustration of the symmetric and asymmetric distance computation.
The distance d(x, y) is estimated with either the distance d(q(x), q(y)) (left)
or the distance d(x, q(y)) (right). The mean squared error on the distance is
on average bounded by the quantization error.

usage of storing the centroids (k∗ ×D floating point values),
which further reduces the efficiency if the centroid look-up
table does no longer fit in cache memory. In the case where
m = 1, we can not afford using more than 16 bits to keep
this cost tractable. Using k∗ = 256 and m = 8 is often a
reasonable choice.

III. SEARCHING WITH QUANTIZATION

Nearest neighbor search depends on the distances between
the query vector and the database vectors, or equivalently
the squared distances. The method introduced in this section
compares the vectors based on their quantization indices,
in the spirit of source coding techniques. We first explain
how the product quantizer properties are used to compute
the distances. Then we provide a statistical bound on the
distance estimation error, and propose a refined estimator for
the squared Euclidean distance.

A. Computing distances using quantized codes

Let us consider the query vector x and a database vector
y. We propose two methods to compute an approximate
Euclidean distance between these vectors, a symmetric and
a asymmetric one. See Figure 2 for an illustration.

Symmetric distance computation (SDC): both the vectors x
and y are represented by their respective centroids q(x) and
q(y). The distance d(x, y) is approximated by the distance
d̂(x, y) , d

(
q(x), q(y)

)
which is efficiently obtained using a

product quantizer

d̂(x, y) = d
(
q(x), q(y)

)
=

√∑
j

d
(
qj(x), qj(y)

)2
, (12)

where the distance d
(
cj,i, cj,i′

)2
is read from a look-up

table associated with the jth subquantizer. Each look-up table
contains all the squared distances between pairs of centroids
(i, i′) of the subquantizer, or (k∗)2 squared distances1.

Asymmetric distance computation (ADC): the database

1In fact, it is possible to store only k∗ (k∗ − 1)/2 pre-computed squared
distances, because this distance matrix is symmetric and the diagonal elements
are zeros.

SDC ADC

encoding x k∗D 0
compute d

(
uj(x), cj,i

)
0 k∗D

for y ∈ Y , compute d̂(x, y) or d̃(x, y) nm nm

find the k smallest distances n+ k log k log logn

TABLE II
ALGORITHM AND COMPUTATIONAL COSTS ASSOCIATED WITH SEARCHING

THE k NEAREST NEIGHBORS USING THE PRODUCT QUANTIZER FOR

SYMMETRIC AND ASYMMETRIC DISTANCE COMPUTATIONS (SDC, ADC).

vector y is represented by q(y), but the query x is not encoded.
The distance d(x, y) is approximated by the distance d̃(x, y) ,
d
(
x, q(y)

)
, which is computed using the decomposition

d̃(x, y) = d
(
x, q(y)

)
=

√∑
j

d
(
uj(x), qj(uj(y))

)2
, (13)

where the squared distances d
(
uj(x), cj,i

)2
: j = 1 . . .m, i =

1 . . . k∗, are computed prior to the search.
For nearest neighbors search, we do not compute the square

roots in practice: the square root function is monotonically
increasing and the squared distances produces the same vector
ranking.

Table II summarizes the complexity of the different steps
involved in searching the k nearest neighbors of a vector x in a
dataset Y of n = |Y| vectors. One can see that SDC and ADC
have the same query preparation cost, which does not depend
on the dataset size n. When n is large (n > k∗D∗), the most
consuming operations are the summations in Equations 12
and 13. The complexity given in this table for searching the
k smallest elements is the average complexity for n� k and
when the elements are arbitrarily ordered ([25], Section 5.3.3,
Equation 17).

The only advantage of SDC over ADC is to limit the
memory usage associated with the queries, as the query vector
is defined by a code. This is most cases not relevant and one
should then use the asymmetric version, which obtains a lower
distance distortion for a similar complexity. We will focus on
ADC in the rest of this section.

B. Analysis of the distance error
In this subsection, we analyze the distance error when using

d̃(x, y) instead of d(x, y). This analysis does not depend
on the use of a product quantizer and is valid for any
quantizer satisfying Lloyd’s optimality conditions defined by
Equations 4 and 5 in Section II.

In the spirit of the mean squared error criterion used for
reconstruction, the distance distortion is measured by the mean
squared distance error (MSDE) on the distances:

MSDE(q) ,
∫∫ (

d(x, y)− d̃(x, y)
)2
p(x)dx p(y)dy. (14)

The triangular inequality gives

d
(
x, q(y)

)
− d
(
y, q(y)

)
≤ d(x, y) ≤ d

(
x, q(y)

)
+ d
(
y, q(y)

)
,

(15)
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Fig. 3. Typical query of a SIFT vector in a set of 1000 vectors: comparison
of the distance d(x, y) obtained with the SDC and ADC estimators. We have
used m = 8 and k∗ = 256, i.e., 64-bit code vectors. Best viewed in color.

and, equivalently,(
d(x, y)− d(x, q(y))

)2
≤ d
(
y, q(y)

)2
. (16)

Combining this inequality with Equation 14, we obtain

MSDE(q) ≤
∫
p(x)

(∫
d
(
y, q(y)

)2
p(y) dy

)
dx (17)

≤ MSE(q). (18)

where MSE(q) is the mean squared error associated with
quantizer q (Equation 3). This inequality, which holds for
any quantizer, shows that the distance error of our method is
statistically bounded by the MSE associated with the quantizer.
For the symmetric version, a similar derivation shows that the
error is statistically bounded by 2×MSE(q). It is, therefore,
worth minimizing the quantization error, as this criterion
provides a statistical upper bound on the distance error. If an
exact distance calculation is performed on the highest ranked
vectors, as done in LSH [7], the quantization error can be
used (instead of selecting an arbitrary set of elements) as a
criterion to dynamically select the set of vectors on which the
post-processing should be applied.

C. Estimator of the squared distance

As shown later in this subsection, using the estimations d̂
or d̃ leads to underestimate, on average, the distance between
descriptors. Figure 3 shows the distances obtained when
querying a SIFT descriptor in a dataset of 1000 SIFT vectors.
It compares the true distance against the estimates computed
with Equations 12 and 13. One can clearly see the bias on these
distance estimators. Unsurprisingly, the symmetric version is
more sensitive to this bias.

Hereafter, we compute the expectation of the squared dis-
tance in order to cancel the bias. The approximation q(y) of a
given vector y is obtained, in the case of the product quantizer,
from the subquantizers indexes qj

(
uj(y)

)
, j = 1 . . .m. The

quantization index identifies the cells Vi in which y lies. We
can then compute the expected squared distance ẽ

(
x, q(y)

)

between x, which is fully known in our asymmetric distance
computation method, and a random variable Y , subject to
q(Y ) = q(y) = ci, which represents all the hypothesis on
y knowing its quantization index.

ẽ(x, y) , EY

[
(x− Y )2|q(Y ) = ci

]
(19)

=

∫
Vi
(x− y)2 p(y|i) dy, (20)

=
1

pi

∫
Vi
(x− ci + ci − y)2 p(y) dy. (21)

Developing the squared expression and observing, using
Lloyd’s condition of Equation 5, that∫

Vi
(y − ci) p(y) dy = 0, (22)

Equation 21 simplifies to

ẽ(x, y) =
(
x− q(y)

)2
+

∫
Vi

(
q(y)− y

)2
p
(
y|y ∈ Vi

)
dy

(23)

= d̃(x, y)2 + ξ
(
q, q(y)

)
(24)

where we recognize the distortion ξ
(
q, q(y)

)
associated with

the reconstruction of y by its reproduction value.
Using the product quantizer and Equation 24, the computa-

tion of the expected squared distance between a vector x and
the vector y, for which we only know the quantization indices
qj
(
uj(y)

)
, consists in correcting Equation 13 as

ẽ(x, y) = d̃(x, y)2 +
∑
j

ξj(y) (25)

where the correcting term, i.e., the average distortion

ξj(y) , ξ
(
qj , qj

(
uj(y)

))
(26)

associated with quantizing uj(y) to qj(y) using the jth sub-
quantizer, is learned and stored in a look-up table for all
indexes of Ij .

Performing a similar derivation for the symmetric version,
i.e., when both x and y are encoded using the product
quantizer, we obtain the following corrected version of the
symmetric squared distance estimator:

ê(x, y) = d̂(x, y)2 +
∑
j

ξj(x) +
∑
j′

ξj′(y). (27)

Discussion: Figure 4 illustrates the probability distribution
function of the difference between the true distance and the
ones estimated by Equations 13 and 25. It has been measured
on a large set of SIFT descriptors. The bias of the distance
estimation by Equation 13 is significantly reduced in the
corrected version. However, we observe that correcting the
bias leads, in this case, to a higher variance of the estimator,
which is a common phenomenon in statistics. Moreover, for
the nearest neighbors, the correcting term is likely to be
higher than the measure of Equation 13, which means that we
penalize the vectors with rare indexes. Note that the correcting
term is independent of the query in the asymmetric version.

In our experiments, we observe that the correction returns
inferior results on average. Therefore, we advocate the use of
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Fig. 4. PDF of the error on the distance estimation d− d̃ for the asymmetric
method, evaluated on a set of 10000 SIFT vectors with m = 8 and k∗ = 256.
The bias (=-0.044) of the estimator d̃ is corrected (=0.002) with the error
quantization term ξ

(
q, q(y)

)
. However, the variance of the error increases

with this correction: σ2(d− ẽ) = 0.00155 whereas σ2(d− d̃) = 0.00146.

Equation 13 for the nearest neighbor search. The corrected
version is useful only if we are interested in the distances
themselves.

IV. NON EXHAUSTIVE SEARCH

Approximate nearest neighbor search with product quantiz-
ers is fast (only m additions are required per distance calcu-
lation) and reduces significantly the memory requirements for
storing the descriptors. Nevertheless, the search is exhaustive.
The method remains scalable in the context of a global image
description [17], [19]. However, if each image is described by
a set of local descriptors, an exhaustive search is prohibitive,
as we need to index billions of descriptors and to perform
multiple queries [20].

To avoid exhaustive search we combine an inverted
file system [26] with the asymmetric distance computa-
tion (IVFADC). An inverted file quantizes the descriptors and
stores image indices in the corresponding lists, see the step
“coarse quantizer” in Figure 5. This allows rapid access to a
small fraction of image indices and was shown successful for
very large scale search [26]. Instead of storing an image index
only, we add a small code for each descriptor, as first done
in [20]. Here, we encode the difference between the vector and
its corresponding coarse centroid with a product quantizer, see
Figure 5. This approach significantly accelerates the search at
the cost of a few additional bits/bytes per descriptor. Further-
more, it slightly improves the search accuracy, as encoding the
residual is more precise than encoding the vector itself.

A. Coarse quantizer, locally defined product quantizer

Similar to the “Video-Google” approach [26], a codebook
is learned using k-means, producing a quantizer qc, referred to
as the coarse quantizer in the following. For SIFT descriptors,
the number k′ of centroids associated with qc typically ranges
from k′ = 1000 to k′ = 1000 000. It is therefore small
compared to that of the product quantizers used in Section III.

In addition to the coarse quantizer, we adopt a strategy sim-
ilar to that proposed in [20], i.e., the description of a vector is
refined by a code obtained with a product quantizer. However,
in order to take into account the information provided by
the coarse quantizer, i.e., the centroid qc(y) associated with
a vector y, the product quantizer qp is used to encode the
residual vector

r(y) = y − qc(y), (28)

corresponding to the offset in the Voronoi cell. The energy
of the residual vector is small compared to that of the vector
itself. The vector is approximated by

ÿ , qc(y) + qp
(
y − qc(y)

)
. (29)

It is represented by the tuple
(
qc(y), qp(r(y))

)
. By analogy

with the binary representation of a value, the coarse quantizer
provides the most significant bits, while the product quantizer
code corresponds to the least significant bits.

The estimator of d(x, y), where x is the query and y the
database vector, is computed as the distance d̈(x, y) between
x and ÿ:

d̈(x, y) = d(x, ÿ) = d
(
x− qc(y), qp

(
y − qc(y)

))
. (30)

Denoting by qpj the jth subquantizer, we use the following
decomposition to compute this estimator efficiently:

d̈(x, y)2 =
∑
j

d
(
uj
(
x− qc(y)

)
, qpj

(
uj(y− qc(y))

))2
. (31)

Similar to the ADC strategy, for each subquantizer qpj the
distances between the partial residual vector uj

(
x − qc(y)

)
and all the centroids cj,i of qpj are preliminarily computed
and stored.

The product quantizer is learned on a set of residual
vectors collected from a learning set. Although the vectors
are quantized to different indexes by the coarse quantizer, the
resulting residual vectors are used to learn a unique product
quantizer. We assume that the same product quantizer is
accurate when the distribution of the residual is marginalized
over all the Voronoi cells. This probably gives inferior results
to the approach consisting of learning and using a distinct
product quantizer per Voronoi cell. However, this would be
computationally expensive and would require storing k′ prod-
uct quantizer codebooks, i.e., k′×d×k∗ floating points values,
which would be memory-intractable for common values of k′.

B. Indexing structure

We use the coarse quantizer to implement an inverted file
structure as an array of lists L1 . . .Lk′ . If Y is the vector
dataset to index, the list Li associated with the centroid ci of
qc stores the set {y ∈ Y : qc(y) = ci}.

In inverted list Li, an entry corresponding to y contains a
vector identifier and the encoded residual qp(r(y)):

field length (bits)
identifier 8–32
code mdlog2 k∗e
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Fig. 5. Overview of the inverted file with asymmetric distance computation
(IVFADC) indexing system. Top: insertion of a vector. Bottom: search.

The identifier field is the overhead due to the inverted file
structure. Depending on the nature of the vectors to be
stored, the identifier is not necessarily unique. For instance,
to describe images by local descriptors, image identifiers can
replace vector identifiers, i.e., all vectors of the same image
have the same identifier. Therefore, a 20-bit field is sufficient to
identify an image from a dataset of one million. This memory
cost can be reduced further using index compression [27], [28],
which may reduce the average cost of storing the identifier
to about 8 bits, depending on parameters2. Note that some
geometrical information can also be inserted in this entry, as
proposed in [20] and [27].

C. Search algorithm

The inverted file is the key to the non-exhaustive version
of our method. When searching the nearest neighbors of a
vector x, the inverted file provides a subset of Y for which
distances are estimated: only the inverted list Li corresponding
to qc(x) is scanned.

However, x and its nearest neighbor are often not quantized
to the same centroid, but to nearby ones. To address this
problem, we use the multiple assignment strategy of [29]. The
query x is assigned to w indexes instead of only one, which
correspond to the w nearest neighbors of x in the codebook
of qc. All the corresponding inverted lists are scanned. Multiple
assignment is not applied to database vectors, as this would
increase the memory usage.

2An average cost of 11 bits is reported in [27] using delta encoding and
Huffman codes.

Figure 5 gives an overview of how a database is indexed
and searched.

Indexing a vector y proceeds as follows:
1) quantize y to qc(y)

2) compute the residual r(y) = y − qc(y)

3) quantize r(y) to qp(r(y)), which, for the product quan-
tizer, amounts to assigning uj(y) to qj(uj(y)), for j =
1 . . .m.

4) add a new entry to the inverted list corresponding to
qc(y). It contains the vector (or image) identifier and
the binary code (the product quantizer’s indexes).

Searching the nearest neighbor(s) of a query x consists of
1) quantize x to its w nearest neighbors in the codebook qc;

For the sake of presentation, in the two next steps we
simply denote by r(x) the residuals associated with
these w assignments. The two steps are applied to all
w assignments.

2) compute the squared distance d
(
uj(r(x)), cj,i

)2
for each

subquantizer j and each of its centroids cj,i;
3) compute the squared distance between r(x) and all the

indexed vectors of the inverted list. Using the subvector-
to-centroid distances computed in the previous step,
this consists in summing up m looked-up values, see
Equation 31;

4) select the K nearest neighbors of x based on the
estimated distances. This is implemented efficiently by
maintaining a Maxheap structure of fixed capacity, that
stores the K smallest values seen so far. After each
distance calculation, the point identifier is added to the
structure only if its distance is below the largest distance
in the Maxheap.

Only Step 3 depends on the database size. Compared with
ADC, the additional step of quantizing x to qc(x) consists
in computing k′ distances between D-dimensional vectors.
Assuming that the inverted lists are balanced, about n×w/k′
entries have to be parsed. Therefore, the search is significantly
faster than ADC, as shown in the next section.

V. EVALUATION OF NN SEARCH

In this section, we first present the datasets used for the
evaluation3. We then analyze the impact of the parameters
for SDC, ADC and IVFADC. Our approach is compared to
three state-of-the-art methods: spectral hashing [19], Hamming
embedding [20] and FLANN [9]. Finally, we evaluate the
complexity and speed of our approach.

A. Datasets

We perform our experiments on two datasets, one with local
SIFT descriptors [23] and the other with global color GIST
descriptors [18]. We have three vector subsets per dataset:

3Both the software and the data used in these experiments are available at
http://www.irisa.fr/texmex/people/jegou/ann.php.



8

learning, database and query. Both datasets were constructed
using publicly available data and software. For the SIFT
descriptors, the learning set is extracted from Flickr images
and the database and query descriptors are from the INRIA
Holidays images [20]. For GIST, the learning set consists
of the first 100k images extracted from the tiny image set
of [16]. The database set is the Holidays image set combined
with Flickr1M used in [20]. The query vectors are from the
Holidays image queries. Table III summarizes the number of
descriptors extracted for the two datasets.

vector dataset: SIFT GIST
descriptor dimensionality d 128 960
learning set size 100,000 100,000
database set size 1,000,000 1,000,991
queries set size 10,000 500

TABLE III
SUMMARY OF THE SIFT AND GIST DATASETS.

The search quality is measured with recall@R, i.e., the
proportion of query vectors for which the nearest neighbor
is ranked in the first R positions. This measure indicates
the fraction of queries for which the nearest neighbor is
retrieved correctly, if a short-list of R vectors is verified
using Euclidean distances. Furthermore, the curve obtained by
varying R corresponds to the distribution function of the ranks,
and the point R=1 corresponds to the “precision” measure used
in [9] to evaluate ANN methods.

In practice, we are often interested in retrieving the K
nearest neighbors (K > 1) and not only the nearest neighbor.
We do not include these measures in the paper, as we observed
that the conclusions for K=1 remain valid for K > 1.

B. Memory vs search accuracy: trade-offs

The product quantizer is parametrized by the number of
subvectors m and the number of quantizers per subvector k∗,
producing a code of length m × log2 k

∗. Figure 6 shows the
trade-off between code length and search quality for our SIFT
descriptor dataset. The quality is measured for recall@100 for
the ADC and SDC estimators, for m ∈ {1, 2, 4, 8, 16} and
k∗ ∈ {24, 26, 28, 210, 212}. As for the quantizer distortion in
Figure 1, one can observe that for a fixed number of bits, it
is better to use a small number of subquantizers with many
centroids than to have many subquantizers with few bits. How-
ever, the comparison also reveals that MSE underestimates, for
a fixed number of bits, the quality obtained for a large number
of subquantizers against using more centroids per quantizer.

As expected, the asymmetric estimator ADC significantly
outperforms SDC. For m=8 we obtain the same accuracy for
ADC and k∗=64 as for SDC and k∗=256. Given that the
efficiency of the two approaches is equivalent, we advocate
not to quantize the query when possible, but only the database
elements.

Figure 7 evaluates the impact of the parameters for the
IVFADC method introduced in Section IV. For this approach,
we have, in addition, to set the codebook size k′ and the
number of neighboring cells w visited during the multiple
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assignment. We observe that the recall@100 strongly depends
on these parameters, and that increasing the code length is
useless if w is not big enough, as the nearest neighbors which
are not assigned to one of the w centroids associated with the
query are definitely lost.

This approach is significantly more efficient than SDC and
ADC on large datasets, as it only compares the query to a small
fraction of the database vectors. The proportion of the dataset
to visit is roughly linear in w/k′. For a fixed proportion, it is
worth using higher values of k′, as this increases the accuracy,
as shown by comparing, for the tuple (m,w), the parameters
(1024, 1) against (8192, 8) and (1024, 8) against (8192, 64).

C. Impact of the component grouping

The product quantizer defined in Section II creates the
subvectors by splitting the input vector according to the
order of the components. However, vectors such as SIFT
and GIST descriptors are structured because they are built
as concatenated orientation histograms. Each histogram is
computed on grid cells of an image patch. Using a product
quantizer, the bins of a histogram may end up in different
quantization groups.

The natural order corresponds to grouping consecutive
components, as proposed in Equation 8. For the SIFT descrip-
tor, this means that histograms of neighboring grid cells are
quantized together. GIST descriptors are composed of three
320-dimension blocks, one per color channel. The product
quantizer splits these blocks into parts.

SIFT GIST
m 4 8 8
natural 0.593 0.921 0.338
random 0.501 0.859 0.286
structured 0.640 0.905 0.652

TABLE IV
IMPACT OF THE DIMENSION GROUPING ON THE RETRIEVAL

PERFORMANCE OF ADC (RECALL@100, k∗=256).

To evaluate the influence of the grouping, we modify
the uj operators in Equation 8, and measure the impact of
their construction on the performance of the ADC method.
Table IV shows the effect on the search quality, measured
by recall@100. The analysis is restricted to the parameters
k∗=256 and m ∈ {4, 8}.

Overall, the choice of the components appears to have a
significant impact of the results. Using a random order instead
of the natural order leads to poor results. This is true even for
GIST, for which the natural order is somewhat arbitrary.

The “structured” order consists in grouping together dimen-
sions that are related. For the m = 4 SIFT quantizer, this
means that the 4×4 patch cells that make up the descriptor [23]
are grouped into 4 2× 2 blocks. For the other two, it groups
together dimensions that have have the same index modulo 8.
The orientation histograms of SIFT and most of GIST’s have 8
bins, so this ordering quantizes together bins corresponding to

the same orientation. On SIFT descriptors, this is a slightly
less efficient structure, probably because the natural order
corresponds to spatially related components. On GIST, this
choice significantly improves the performance. Therefore, we
use this ordering in the following experiments.

Discussion: A method that automatically groups the compo-
nents could further improve the results. This seems particularly
important if we have no prior knowledge about the relationship
between the components as in the case of bag-of-features.
A possible solution is the minimum sum-squared residue co-
clustering [30] algorithm.

D. Comparison with the state of the art

Comparison with Hamming embedding methods: We com-
pare our approach to spectral hashing (SH) [19], which maps
vectors to binary signatures. The search consists in comparing
the Hamming distances between the database signatures and
the query vector signature. This approach was shown to
outperform the restricted Boltzmann machine of [17]. We have
used the publicly available code. We also compare to the
Hamming embedding (HE) method of [20], which also maps
vectors to binary signatures. Similar to IVFADC, HE uses
an inverted file, which avoids comparing to all the database
elements.

Figures 8 and 9 show, respectively for the SIFT and the
GIST datasets, the rank repartition of the nearest neighbors
when using a signature of size 64 bits. For our product
quantizer we have used m = 8 and k∗ = 256, which
give similar results in terms of run time. All our approaches
significantly outperform spectral hashing4 on the two datasets.
To achieve the same recall as spectral hashing, ADC returns
an order of magnitude less vectors.

The best results are obtained by IVFADC, which for low
ranks provides an improvement over ADC, and significantly
outperforms spectral hashing. This strategy avoids the exhaus-
tive search and is therefore much faster, as discussed in the
next subsection. This partial scan explains why the IVFADC
and HE curves stop at some point, as only a fraction of the
database vectors are ranked. Comparing these two approaches,
HE is significantly outperformed by IVFADC. The results of
HE are similar to spectral hashing, but HE is more efficient.

Comparison with FLANN: The approximate nearest-
neighbor search technique of Muja & Lowe [9] is based
on hierarchical structures (KD-trees and hierarchical k-means
trees). The software package FLANN automatically selects the
best algorithm and parameters for a given dataset. In contrast
with our method and spectral hashing, all vectors need to
remain in RAM as the method includes a re-ranking stage
that computes the real distances for the candidate nearest
neighbors.

The evaluation is performed on the SIFT dataset by measur-
ing the 1-recall@1, that is, the average proportion of true NNs

4In defense of [17], [19], which can be learned for arbitrary distance
measures, our approach is adapted to the Euclidean distance only.
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ranked first in the returned vectors. This measure is referred
to as precision in [9].

For the sake of comparison with FLANN, we added a
verification stage to our IVFADC method: IVFADC queries
return a shortlist of R candidate nearest neighbors using the
distance estimation. The vectors in the shortlist are re-ordered
using the real distance, as done in [7], [9], and the closest
one is returned. Note that, in this experimental setup, all the
vectors are stored in main memory. This requirement seriously
limits the scale on which re-ordering can be used.

The IVFADC and FLANN methods are both evaluated at
different operating points with respect to precision and search
time. For FLANN, the different operating points are obtained
with parameters generated automatically for various target
precisions. For IVFADC, they are obtained by varying the
number k′ of coarse centroids, the number w of assignments
and the short-list size R. The product quantizer is generated
using k∗=256 and m=8, i.e., 64-bit codes. This choice is
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and search time. The IVFADC method is parametrized by the shortlist size R
used for re-ranking the vector with the L2 distance, and the two parameters
w and k′ of the inverted file, which correspond to the number of assignments
and to the number of coarse centroids.

probably not optimal for all operating points.
Figure 10 shows that the results obtained by IVFADC are

better than those of FLANN for a large range of operating
points. Moreover, our method has a much smaller memory
footprint than FLANN: the indexing structure occupies less
than 25 MB, while FLANN requires more than 250 MB of
RAM. Note, however, that both are negligible compared to the
memory occupied by the vectors in the case of large datasets.
On such a scale, the re-ranking stage is not feasible and only
memory-aware approaches (HE, SH and our methods) can be
used.

E. Complexity and speed
Table V reports the search time of our methods. For

reference, we report the results obtained with the spectral
hashing algorithm of [19] on the same dataset and machine
(using only one core). Since we use a separate learning set,
we use the out-of-sample evaluation of this algorithm. Note
that for SH we have re-implemented the Hamming distance
computation in C in order to have the approaches similarly
optimized. The algorithms SDC, ADC and SH have similar
run times. IVFADC significantly improves the performance by
avoiding an exhaustive search. Higher values of k′ yield higher
search efficiencies for large datasets, as the search benefits
from parsing a smaller fraction of the memory. However, for
small datasets, the complexity of the coarse quantizer may be
the bottleneck if k′ × D > n/k′ when using a exhaustive
assignment for qc. In that case the ADC variant may be
preferred. For large datasets and using an efficient assignment
strategy for the coarse quantizer, higher values of k′ generally
lead to better efficiency, as first shown in [15]. In this work, the
authors propose a hierarchical quantizer to efficiently assign
descriptors to one million centroids.

F. Large-scale experiments
To evaluate the search efficiency of the product quantizer

method on larger datasets we extracted about 2 billion SIFT
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method parameters search average number of recall@100
time (ms) code comparisons

SDC 16.8 1 000 991 0.446
ADC 17.2 1 000 991 0.652
IVFADC k′= 1 024, w=1 1.5 1 947 0.308

k′= 1 024, w=8 8.8 27 818 0.682
k′= 1 024, w=64 65.9 101 158 0.744
k′= 8 192, w=1 3.8 361 0.240
k′= 8 192, w=8 10.2 2 709 0.516
k′= 8 192, w=64 65.3 19 101 0.610

SH 22.7 1 000 991 0.132

TABLE V
GIST DATASET (500 QUERIES): SEARCH TIMINGS FOR 64-BIT CODES AND DIFFERENT METHODS. m=8 AND k∗=256 FOR SDC, ADC AND IVFADC.
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Fig. 11. Search times for SIFT descriptors in datasets of increasing sizes,
with two search methods. Both use the same 20 000-word codebook, w = 1,
and 64-bit signatures.

descriptors from one million images. Search is performed
with 30 000 query descriptors from ten images. We compared
the IVFADC and HE methods with similar parameters. In
particular, the amount of memory that is scanned for each
method and the cost of the coarse quantization are the same.

The query times per descriptor are shown on Figure 11.
The cost of the extra quantization step required by IVFADC
appears clearly for small database sizes. For larger scales,
the distance computation with the database vectors become
preponderant. The processing that is applied to each element of
the inverted lists is approximately as expensive in both cases.
For HE, it is a Hamming distance computation, implemented
as 8 table lookups. For IVFADC it is a distance computation
that is also performed by 8 table lookups. Interestingly, the
floating point operations involved in IVFADC are not much
more expensive than the simple binary operations of HE.

G. Image search

We have evaluated our method within an image search
system based on local descriptors. For this evaluation, we
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compare our method with the HE method of [20] on the INRIA
Holidays dataset, using the pre-processed set of descriptors
available online. The comparison is focused on large scale
indexing, i.e., we do not consider the impact of a post-
verification step [23], [31] or geometrical information [20].

Figure 12 shows the search performance in terms of mean
average precision as a function of the size of the dataset. We
have used the same coarse quantizer (k′=20,000) and a single
assignment strategy (w=1) for both the approaches, and fixed
k∗=256 for IVFADC. For a given number of bits (32 or 64),
we have selected the best choice of the Hamming threshold
for HE. Similarly, we have adjusted the number of nearest
neighbors to be retrieved for IVFADC.

One can observe that the gain obtained by IVFADC is
significant. For example, for one million distractors, the mAP
of 0.497 reported in [20] with 64-bit signatures is improved
to 0.517.
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VI. CONCLUSION

We have introduced product quantization for approximate
nearest neighbor search. Our compact coding scheme pro-
vides an accurate approximation of the Euclidean distance.
Moreover, it is combined with an inverted file system to
avoid exhaustive search, resulting in high efficiency. Our
approach significantly outperforms the state of the art in terms
of the trade-off between search quality and memory usage.
Experimental results for SIFT and GIST image descriptors are
excellent and show that grouping the components based on
our prior knowledge of the descriptor design further improves
the results. The scalability of our approach is validated on a
dataset of two billion vectors.
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