Nested OpenMP Parallelization of a Hierarchical Data Clustering Algorithm

Panagiotis Hadjidoukas 1 Laurent Amsaleg 2
2 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This paper presents a high performance parallel implementation of a hierarchical data clustering algorithm. The OpenMP programming model, either enhanced with our lightweight runtime support or through its tasking model, deals with the high irregularity of the algorithm and allows for efficient exploitation of the inherent loop-level nested parallelism. Thorough experimental evaluation demonstrates the performance scalability of our parallelization and the effective utilization of computational resources, which results in a clustering approach able to provide high quality clustering of very large datasets.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/inria-00514758
Contributor : Patrick Gros <>
Submitted on : Friday, September 3, 2010 - 9:02:16 AM
Last modification on : Friday, November 16, 2018 - 1:29:26 AM

Identifiers

Citation

Panagiotis Hadjidoukas, Laurent Amsaleg. Nested OpenMP Parallelization of a Hierarchical Data Clustering Algorithm. Parallel Processing Letters, World Scientific Publishing, 2010, 20 (2), pp.187-208. ⟨10.1142/S0129626410000144⟩. ⟨inria-00514758⟩

Share

Metrics

Record views

302